
Journal of Computing and Information Technology - CIT 22, 2014, 4, 267–275
doi:10.2498/cit.1002344

267

An Empirical Study of Offshore
Software Development: the Case
of a Ticketing Application

Carlo Consoli1, Paolo Rocchi1,2 and Paolo Spagnoletti2

1 IBM, Roma, Italy
2 LUISS Guido Carli University, Roma, Italy

This is an industry report about a software development
project that included a local team and an offshore team.
Both teams contained highly qualified experts who had
been selected before the project start up. After a year,
which could be deemed as a break-in period, the project
leaders observed that the quality and quantity of the
software modules produced by the two teams were not
up to expectation while costs had gone up. The manage-
ment monitored the performance of the two groups by
analysing the tests undertaken to ensure correctness of the
modules. They reached the conclusion that the project
failurewas influenced by cultural differences between the
onshore and offshore teams. The management became
convinced that the current work-organization prevented
knowledge delivery and knowledge acquisition, so they
established a new organization as the solution to this
problem. A rapid validation of the new work arrangement
convinced all the involved experts that the diagnosis was
right.

Keywords: global software development, offshore in-
sourcing, large software project, project management

1. Background

The concept of global outsourcing started in
the late 1980s when leading technology com-
panies discovered Asian countries as untapped
sources of high tech professionals at substan-
tial lower labour costs. The increased accep-
tance of offshore outsourcing with IT depart-
ments and software vendors encouraged those
firms to build excellence centres, which sup-
plemented software production in offshore lo-
calities at comparatively inexpensive disbursal.
Offshore software development outsourcing be-
came a global delivery model through geo-
graphically dispersed companies and even went

into effect as a modern business strategy for
producing software at low costs. However, in
a few years, managers of both outsourcing and
vendor firms realised that cost considerations,
generally assumed to be the main reason for off-
shore outsourcing, needed to be balanced with
the focus on maintaining quality [1].

Since the birth of the computer era, experts
have recorded high rates of failed or troubled
IT projects. Various negative factors result in
the software failures. “Bad communication”
between the members of an IT project towers
as one of the most significant factors. The sur-
veys conducted in this area show that fifty to
thirty per cent of project failures derive from
insufficient or misleading exchange of infor-
mation [2]. Offshoring aggravates this aspect
of software production, as distance is a well-
known barrier to communication. Time dif-
ferences also interfere with interpersonal rap-
ports when people operate in remote geograph-
ical areas. At last, a few software projects
are only technical. Software specifications deal
with the customer environment besides comput-
ing, and project managers involve profession-
als from very different educational and work
background [3]. Within this scenario, know-
ledge transfer processes (KTP) turns out to be a
core question. Knowledge transfer has become
a critical argument in companies and institu-
tions. Drucker holds “knowledge is informa-
tion that changes something or someone either
by becoming grounds for action, or by mak-
ing an individual or group of individuals capa-
ble of different or more effective action” [4].

268 An Empirical Study of Offshore Software Development: the Case of a Ticketing Application

This statement written two decades ago is more
current now than before, especially in offshore
projects. Empirical investigations demonstrate
the importance of KTP. Survey [5] conducted
on modern technical literature identifies 22 un-
favourable success factors (CSF) for vendors
who operate in offshore projects and finds four
‘human factors’ that rank the first twelve levels
of the CSFs classification. The authors hold
that “Skilled Human Resources” ranks as the
second level in important factors of success;
“Efficient Outsourcing Relationships Manage-
ment” ranks the fifth level; and “Knowledge of
the Client Language and Culture” and “Know-
ledge Transfer” rank as the tenth and twelfth
levels, respectively. Global work involves peo-
ple who speak different languages, who have
different ways of working and communicating
andwhounderstand a variety of cultures: all this
constitutes a growing communication challenge
for KTPs [6]. The survey [7] casts light on the
performances of joined Western and Asian soft-
ware development teams, which are influenced
by inherent cultural disparities and differences
in the structures of the relevant national software
communities. Vendors demonstrate responsive-
ness to the knowledge transfer issue [8] and 70
project managers engaged in offshore projects
underlining the importance of good knowledge
management [9]. Some researchers tackle the
KTP argument from the technical stance and
suggest the use of standard development meth-
ods and tools [10] [11].

Experts attend the human factors in order to
optimize KTPs [12][13][14]. The present study
shares this stance and makes a condensed report
on an industry case where the impact of know-
ledge management turned out to be crucial for
the success of the project. This report begins
with presenting the control of software produc-
tion. The next section gives an account of addi-
tional investigations undertaken to understand
apparent and unexpected failures provoked by
KTP issues. Finally, the report explains the new
organisation of the project and its validation in
relation to human communication and coopera-
tion.

2. Software Development Monitoring

An Italian company that transports goods and
passengers by railways – herein called IT Client

– signed an outsourcing project with IBM –
herein called the IT Provider – for developing
a ticketing application. The aim of the project
was to redefine and expand the entire ticket trad-
ing system of the client. The project began in
late 2009 and two teams – herein called A and
B – were in charge of the software develop-
ment. The former was the offshore team, which
included a variable number of programmers liv-
ing in India: from 50 to 70, depending on the
workload. The latter was the domestic team
consisting of 20 experts involved in the analysis
phase.

The following groups of software practitioners
carried out the operations:

1. The Development Team including A and B.

2. The Test Team arranged and executed test
cases and discovered software errors.

3. The Release Team registered all the func-
tions implemented and tested. On request, it
provided statistics on the work in progress.
This team delivered the modules to the cus-
tomer as soon as the modules of the ticketing
application were ready.

During 2010, teams A and B did not produce
significant outcomes. It may be said that 2010
was a break-in period. In early 2011, practition-
ers began to work steadily, and the project lead-
ers perceived significant difficulties in the great
amount of tests necessary to monitor the soft-
ware quality. Managers overlooked the number
and typology of defects, which are more telling
on the technical plane, looked at the quantity
and kind of tests.

The control system of the software production
was arranged in the following manner. Devel-
opers subdivided the ticketing application into
six macro-functions or modules. They devised
F different functional tests for each module and
executed the following number of functional
tests per module:

FTN (functional test number) = B × F

where B is the number of compilations of a sin-
gle module.

Developers progressively joined the modules
and created five builds. For example, build
#1234 included the modules from 1 to 4. Ex-
perts devised S regression tests for each build

An Empirical Study of Offshore Software Development: the Case of a Ticketing Application 269

and undertook this numbers of regression tests
per build.

RTN (regression test number) = S × R

where R is the number of times a build was
compiled.

Module B F FTN

1 Base Functions 73 63 4,599
2 Billing Functions 16 6 96
3 Advanced Ticket Purchase Options I 46 16 736
4 Advanced Ticket Purchase Options II 72 29 2,088
5 Ticket Purchase with Subscription 44 22 968
6 Advanced Ticket Purchase Options III 48 90 4,320

Total FTN 12,807

Table 1. Amount of functional tests achieved during the
first semester in 2011.

Build S R RTN

12 5 63 315
123 15 69 1,035
1234 24 85 2,040
12345 15 114 1,710
123456 16 136 2,176

Total RTN 7,276

Table 2. Number of regression tests achieved during the
first semester in 2011.

In conclusion, developers undertook

Grand Total = (Total FTN + Total RTN)
= (12, 807 + 7, 276) = 20, 083

This value was determined by the enormous
amount of errors found in the software modules,
and it contradicted the profiles of the skilled de-
velopers belonging to A and B. The high num-
ber of tests strengthened the idea that something
was wrong and resulted in the low performance
of the offshore and domestic teams. Managers
settled to investigate the reason of this failure
by means of further inquiry.

Table 3 exhibits the states of software defects
classified according to the common terminol-
ogy. Defects classified as In Progress, Pending
and Reopened will generically be termed Open
defects hereafter.

New Defect never seen before.

In Progress Defect subject to ongoing
remedial work.

Pending Defect pending remedial action while
experts gather additional information.

Resolved Defect that has been fixed.
Reopened Defect that still occurs.

Closed Definitely fixed defect.

Table 3. Classification of software defects under testing
sessions.

The test manager separately surveyed New and
Open defects during the first semester of 2011.

• The amount of Open defects was growing
steadily from 50 (February 2011) to 130
(June 2011) (Figure 1). Let N1 equal the
number of defects on the 1st of February,
N2 equal the number on the 1st of June, and
G the number of days in the interval. The
amount of Open defects increased at this av-
erage rate:

Δ =
N2 − N1

G
=

130 − 50
120

=
80
120

=

=
6.7 Open defects

10 Days

• Meanwhile, New defects were decreasing.

AugmentingOpen defects and diminishingNew
defects demonstrated that several software er-
rors were causing cascade failures. The leaders
meant to analyse this conclusion using the Re-
lease Note that is a software tool for monitoring
the status of defects in the course of operations.

Figure 1. Number of open defects in the first semester
of 2011.

270 An Empirical Study of Offshore Software Development: the Case of a Ticketing Application

The Release Note provided a diagram that ex-
hibits the six states listed in Table 3, in addi-
tion to the special block ‘Release Note’, which
indicates the status of defects just resolved and
under registration by means of the Release Note
(Figure 2). Teams (I), (II) and (III) responsi-
ble for handling precise states appear on the far
left (Figure 2). For instance, the Development
Team was in charge of the defects in Pending,
Resolved and In Progress. The flow diagram
also shows the transitions of defects from one
state to another with transition frequencies. For
instance, 2% of new defects evolve toward the
Pending status.

The regular steps to handle New errors are the
following:

New→Resolved→Release Note→Closed

Empirical evidence shows that only 88% of
New defects became Resolved; 89% of defects
passed from Resolved to Release Note; and
84% officially registered in Release Note were
Closed. In sum, scarcely more than half of New
defects were closed throughout the regular pro-
cedure:

(0.88 × 0.89 × 0.84) = 0.65

The remaining defects followed a winding path-
way. For example, as many as 16% of Resolved
defects were tested anew for partial corrections
(see Release Note → Reopened in Figure 2).
Nearly 6% of Closed defects followed similar
abnormal treatment (see Close → Reopened in
Figure 2). A non-negligible amount of defects

crossed the states In Progress → Pending; oth-
ers followed the pathway: Pending→Resolved
→ In Progress. Finally, 11% of Resolved de-
fects could not be registered by Release Notes
due to various reasons and were lost:

(100% − 89%) = 11%

The project leaders calculated the number of
defects that remained in the same state from
approximately February to May 2011, using a
simulation program, and obtained the results in
Table 4.

Percentage

1 New 4%
2 In Progress 55%
3 Pending 92%
4 Resolved 11%
5 Reopened 1%

Table 4. Percentage of defects remaining in the same
status during the period.

It is worth explaining how these values – in
particular 2 and 3 – do not derive from the pri-
ority of defects. Software defects with different
urgency levels shared the same destiny. For ex-
ample, a software error with high priority was
revamped and closed for a short while, but a
subsequent regression test often placed it into
the Open status anew. This cyclic mechanism
occurred more than once. In substance, the Re-
lease Note and the simulation program provided
evidence of the bad handling of defects, and, in
turn, the abnormal software development.

Figure 2. Flowchart of defects’ states.

An Empirical Study of Offshore Software Development: the Case of a Ticketing Application 271

Practical observations of everyday job corrob-
orated the statistical data reported above and
clarified the dimension of the project failure.
Managers noted how groups A and B were over-
loaded and spent most energy fixing the soft-
ware defects rather than developing new code.
Secondly, the high number of tests incurred time
delays and high costs.

In conclusion, teams A and B were showing
rather chaotic behaviour. This defeat could de-
pend on the development of knowledge trans-
fer since both teams included individuals char-
acterised by high professionalism. Inefficient
KTPs were influencing the operations in a dra-
matic manner.

3. Structural Analysis and Reorganization

A special control group of experts began to
analyse the work organization of the project in
search of the reasons for the abnormal KTPs.

They found out that, in the early beginning,
commercial obligations counselled the manage-
ment of IBM to set up a specific work organiza-
tion whose entities corresponded to the entities
of the IT Client for each of the first four levels
(see horizontal dotted lines at the right side of
Figure 3). In substance, the provider’s structure
mirrored the client’s structure at the upper lev-
els, and this arrangement helped the managers
to cooperate in reaching common goals. The
manager profiles were as follows:

• The Executive Manager was formally re-
sponsible for all the aspects of the work and
for the relations with the customer.

• The Project Manager was responsible for
technical questions.

• The Technology Executive was responsible
for the overall architectural design of the
ticketing application.

• The Demand Manager defined the detailed
requirements and ensured the adherence of
the ticketing application to the customer’s
needs.

• The Test Manager assured that software de-
fect ratewas constantly kept under the agreed
thresholds.

• The Project Management Office (PMO) de-
fined and maintained standard procedures
for the project management.

• The Quality Manager was responsible for
quality assurance.

• The Release Manager was responsible for
the development, build and release of the
ticketing application; in particular, he fur-
nished a guide to the development teams lo-
cated in Italy and in India.

• The Infrastructure & Service Manager en-
sured that the infrastructure services met the
negotiated requirements in terms of size, per-
formance and availability of the system.

The control group emphasized how the upper
levels of the Provider organisation had been in-
fluenced by the signed contract, whereas the
lower levels had been arranged beyond precise
criteria of effectiveness. Teams A and B had
contrasting features. In particular, the control
group remarked:

1. The Indian team was somewhat large (50 to
70 programmers, as described above) and
rigidly structured according to hierarchical
levels. There were managers, general co-
ordinators, area coordinators, specialised
developers and generic developers. They
adopted standard methodologies and used
advanced software tools such as Rational,
but they followed somewhat rigid work-pro-
cedures. Most of the team A members were
young and lacking professional experience
in large software projects. The Indian team
was chiefly in charge of coding and had a
low level of responsibility.

2. By contrast, the Italian team B included ar-
chitects, analysts and developers with ex-
tensive experience and knowledge of the
target market. The latter group took sev-
eral details for granted, whereas the former
group was completely unaware of technical
requirements, needs of the customer, defects
to correct, etc.

3. Testing was centralised in order to ensure
full control of the software development. As
a result, the Italian test team suffered from an
overload of activity, which stressed the com-
munication between domestic and offshore
developers.

272 An Empirical Study of Offshore Software Development: the Case of a Ticketing Application

Figure 3. IT Provider new structure (far left), old structure (centre) and IT Client structure (far right).

An Empirical Study of Offshore Software Development: the Case of a Ticketing Application 273

4. For team B, it was not a straightforward task
to explain the requirements of the IT Client
and the Indian team. The latter had linguistic
difficulties in reading some expressions typi-
cal of the Italian transport sector. There were
considerable flaws in relation to the delivery
of knowledge and knowledge acquisition by
the Indians. The offshore team had very lit-
tle domain knowledge and no understanding
of how their development work fitted with
the operations of the client.

5. The coding activity of team A was man-
aged by chiefs of the parent organization
who viewed the offshore support merely as
a low-cost production facility with an abun-
dant supply of cost-effective labour for low-
level activities.

It was evident how the work organization of
the IT Provider was arranged basically to an-
swer contract obligations and was not suitable
to manage knowledge transfer issues. Top man-
agers decided to redesign the structure of the
entities involved in the project. They moved the
Release Manager near the Project Manager so
that the two could gain better understanding of
the software development in progress. Themost
significant changes that took place can be seen
in the lower levels of the IT Provider structure
and mean to enhance the collaboration between
Italian and Indian developers.

Domestic and offshore developers were subdi-
vided into small groups. That is to say, ex-
members of teams A and B made eight groups
that were paired off (Figure 3 far left) and re-
ported to four Technical Team Chiefs (TTCs)
responsible for the following areas of railway
ticketing:

• Ticket Counter = Base functions for ticket
selling.

• Business to Business (B2B)= Internet trans-
actions amongst the IT Client and other
transport companies.

• Business to Consumer (B2C) = Internet
transactions amongst the IT Client and the
travellers.

• System Configuration = Miscellany of tech-
nical functions.

Italian and Indian developers belonging to a pre-
cise area share the same issues and goals and
cooperate better. In addition:

• Two Indian experts moved to Italy and ac-
quired detailed information on the needs and
characteristics of the Italian market through
special training. They were appointed to
facilitate integration between multicultural
and multilingual environments. These pro-
fessionals were wholly involved in optimis-
ing communication between the on-shore
and off-shore resources.

• The Indian team was charged to carry out
unit tests and functional tests before the cor-
responding Italian team.

• A dozen Indian developers learned the tick-
eting methods established by the IT Client
and became able to suggest corrections for
the software errors to offshore developers.

• The project leaders established that defects
were to be treated following the correct path:
New→Resolved→ReleaseNote→Closed.
Vicious circles and abnormal transitionswere
formally forbidden. As a result, a negligi-
ble number of defects went into the Pending
status.

• All testing processes were monitored in the
“war room”, which included experts from
both the on-shore and the off-shore sides.
The war room members followed the status
of each module, and analysed and weighted
issues in real time.

4. Validation of the New Structure

Some project leaders identified 18 significant
functions of the ticketing application before the
reorganisation described above, and forecasted
the resources necessary to validate those func-
tions.

Each function should have required 406 tests,
including unit and regression testing. The test

Test
per

Function

Total
Test

Number
Total
MDs

Elapsed
Time
(days)

Prospects 406 7,308 76 15
Definitive

Data 96 1,728 18 4

Table 5. Summary of the validation process.

274 An Empirical Study of Offshore Software Development: the Case of a Ticketing Application

workload should have required 76 MDs (man-
days) and should have caused 15 days of delay
(Table 5, upper row).

The project leaders arranged the resources to
check the 18 functions of the ticketing applica-
tions once the reorganisation was finished, and
made the inventory in the close of testing. They
observed that the grand total of tests dropped
from 7,308 to 1,728; the MDs came down from
76 to 18, and the elapsed time fell from 15 days
to four. It is worth mentioning that the regres-
sion errors no longer occurred. The human re-
sources and the release times dropped down by
up to one fourth of the resources previously sup-
plied. A sound net 76% savings on costs and
efforts was achieved.

These relevant differences in the number of tests
and the amount of resources necessary to ensure
the quality of production mean that the new
work organization of the IT Provider created
better software modules. The novel governance
structure created to enable knowledge sharing
across the organizational boundaries of the off-
shore environment was working and the KTPs
issues were beyond any reasonable doubt.

5. Discussion and Conclusion

The IT Provider recruited skilled developers be-
fore the present project start. It took adequate
measures to satisfy the requirements negotiated
with the Client. When blatant failures emerged
during the development of the ticketing applica-
tion, the project leaders anticipated unexpected
and hidden issues and superposed difficulties in
knowledge transfer. For this reason, the project
leaders conducted complex inquiries, which the
present paper accurately recounts.

Empirical data convinced the managers that the
cultural gap between Italian and Indian devel-
opers and the diverging daily methods of work
were a unique origin of inefficient outcomes
and economic losses. In substance, the lesson
learned by the project leaders fits with current
literature, which illustrates the negative effects
provoked by KTPs issues. This kind of issues
can go so far as to cause depreciable quality of
software products, low performance, unaccept-
able time delays, out of control costs and other
noteworthy difficulties.

A unified and integrated solution that ensures
perfect KTPs does not exist in the literature;
thus, a structural rearrangement of the project
organisation can be seen as a contribution pro-
vided by the present paper to the scientific com-
munity. In particular, the small teams created to
ensure close communication amongst local and
remote practitioners are the key solution that
we emphasize. People working in small groups
can learn from each other about what is working
better. A small number of people encourages
interaction; it keeps discussion manageable and
enables discussion to happen: it becomes easier
to tackle problems. The individuals can get to
know each other and become comfortable with
each other. In substance, the introduction of
small teams turns out to be the essential organi-
sation measure devised to enhance KTPs in this
case study.

An anticipatory report of this work has been
delivered in [15].

References

[1] A. GOPAL, B. R. KOKA, The Role of Contracts on
Quality and Returns to Quality in Offshore Soft-
ware Development Outsourcing. Decision Sciences,
41(3), 491–516, 2010.

[2] M. KEIL, P. CULE, K. LYYTIMEN, R. SCHMIDT, A
Framework for Identifying Software Project Risk.
Comm. of the ACM, 41(11), 76–83, 1998.

[3] A. GOPAL, T. MUKHOPADHYAY, M. S. KRISHNAN,
The Role of Software Processes and Communica-
tion in Offshore Software Development. Comm. of
the ACM, 45(4), 193–200, 2002.

[4] P. DRUCKER, The New Realities. Transaction Pub-
lishers, Revised edition, 2003.

[5] S. U. KHAN, M. NIAZI, R. AHMAD, Critical Success
Factors for Offshore Software Development Out-
sourcing Vendors: A Systematic Literature Review.
Proc. of the 4th IEEE Conf. on Global Software
Engineering, 207–216, 2009.

[6] T. KENDRICK, Identifying and Managing Project
Risk: Essential Tools for Failure Proofing Your
Project. Amacom, New York, 2009.

[7] D. LEE, A. SMITH, M. MORTIMER, Cultural differ-
ences affecting quality and productivity in West-
ern/Asian offshore software development. Proc. of
the 3rd International Conference on Human Com-
puter Interaction, 29–39, 2011.

[8] A. MATHRANI, S. MATHRANI, D. PARSONS, Know-
ledge Management Initiatives in Offshore Software
Development: Vendors’ Perspectives. J. of Univer-
sal Computer Science, 18(19), 2706–2730, 2012.

An Empirical Study of Offshore Software Development: the Case of a Ticketing Application 275

[9] N. V. A. PRABHU, R. LATHA, K. SANKARAN, G.
KANNABIRAN, Impact of Knowledge Management
on Offshore Software Development: An Ex-
ploratory Study. Proc. of the 3rd Intl. Conf. on
Advanced Computing, 121–128, 2011.

[10] K. MATSUYAMA, Quantitative Comparison Between
Domestic and Offshoring Projects in the Software
Factory Environment Driven by UML-Modelled
Development Standard. Proc. of the 2nd IEEE Intl.
Conf. on Information Management and Engineer-
ing, 590–596, 2010.

[11] F. SALGER, S. SAUER, G. ENGELS, A. BAUMANN,
Knowledge Transfer in Global Software Develop-
ment: Leveraging Ontologies, Tools and Assess-
ments. Proc. of the 32nd ACM/IEEE Intl. Conf. on
Software Engineering, 2, 211–214, 2010.

[12] G. LEE, J. A. ESPINOSA, W. H. DELONE, Task En-
vironment Complexity, Global Team Dispersion,
Process Capabilities and Coordination in Software
Development. IEEE Trans. on Software Engineer-
ing, 39(12), 1753–1771, 2013.

[13] A. RAI, L. M. MARUPING, V. VENKATESH, Offshore
Information Systems Project Success: the Role of
Social Embeddedness and Cultural Characteristics.
MIS Quarterly, 33(3), 617–641, 2009.

[14] S. SARKER, S. SARKER, Exploring Agility in Dis-
tributed Information Systems Development Teams:
An Interpretive Study in an Offshoring Context.
Information Systems Research, 20(3), 440–461,
2009.

[15] C. CONSOLI, P. ROCCHI, P. SPAGNOLETTI, P. NICO,
Reorganizing an Offshore Software Project with the
Goal of Favoring Knowledge Transfer. Proc. of the
9th Int. Conf. on Software Engineering Advances,
Nice (France), in printing, 2014.

Received: January, 2014
Revised: September, 2014

Accepted: September, 2014

Contact addresses:

Carlo Consoli
IBM

Roma
Italy

e-mail: carlo.consoli@it.ibm.com

Paolo Rocchi
LUISS

Guido Carli University
Roma
Italy

e-mail: procchi@luiss.it

Paolo Spagnoletti
LUISS

Guido Carli University
Roma
Italy

e-mail: pspagnoletti@luiss.it

CARLO CONSOLI graduated in Computer Science from the University of
Rome “La Sapienza” with a thesis focusing on artificial intelligence and
natural language processing. He is currently working as an expert of
information technology at IBM. Consoli has been involved in research
projects framed in the field investigation of the Internet technologies,
predictive analytics, and the semantic web.

PAOLO ROCCHI recevied the degree in Physics from the University of
Rome. He retired from IBM as docent emeritus and is presently a
contract professor at the LUISS University. He has driven investiga-
tions over various theoretical fields including general systems theory,
reliability theory, linguistics, information theory, probability calculus.
He has also investigated an assortment of applied topics in ICT. He has
written over one hundred works including a dozen books. Newspapers
and television have commented Rocchi’s professional activity in suc-
cessive stages and his biographical entry was included in “Who’s Who
in the World” (Marquis, 2002, 2003, 2004).

PAOLO SPAGNOLETTI is assistant professor of Information Systems and
Organization at LUISS Guido Carli University where he coordinates
the Research Centre on Information Systems (CeRSI). He received his
Ph.D. from LUISS and has been a visiting fellow at LSE, Georgia State
University and University of Agder. He serves as vice-president of the
Italian chapter of AIS and as ERCIS member. His research interests are
in digital platform, digital transformation, and IT governance, privacy
and security. His works are published in Information & Management,
Communications of AIS, Intl. J. of Accounting Information Systems,
J. of Theoretical and Applied E-Commerce Research, J. of Information
System Security and conference proceedings. He has edited three books
and since 2012 he is Executive Editor of the Springer series LNISO.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

