
Journal of Computing and Information Technology - CIT 21, 2013, 1, 13–22
doi:10.2498/cit.1002115

13

Generating Diagnoses for
Probabilistic Model Checking
Using Causality

Hichem Debbi and Mustapha Bourahla
Department of Computer Science, University of M’sila, Algeria

One of the major advantages of model checking over
other formal methods of verification is its ability to
generate an error trace when the specification is falsified
in the model. We call this trace a counterexample.
In probabilistic model checking (PMC), counterexample
generation has a quantitative aspect. The counterexample
is a set of paths in which a path formula holds, and their
accumulated probability mass violates the probability
bound. In this paper, we address the complementary
task of counterexample generation, which is the coun-
terexample diagnosis. We propose an aided-diagnostic
method for probabilistic counterexamples based on the
notion of causality. Given a counterexample for a
probabilistic CTL (PCTL) formula that does not hold
over Discrete Time Markov Chain (DTMC) model, this
method guides the user to the most responsible causes in
the counterexample.

Keywords: Discrete-TimeMarkovChain (DTMC), Prob-
abilistic Model Checking (PMC), Probabilistic Computa-
tion Tree Logic (PCTL), Probabilistic Counterexamples,
Causality

1. Introduction

Probabilistic model checking has appeared as
an extension of model checking for modeling
and analyzing systems that exhibit stochastic
behavior. Several case studies in several do-
mains have been addressed from randomized
distributed algorithms and network protocols to
biological systems and cloud computing envi-
ronments. These systems are described usually
using Discrete-Time Markov Chains (DTMC),
Continuous-Time Markov Chains (CTMC) or
Markov Decision Processes (MDP), and veri-
fied against properties specified in Probabilistic
Computation Tree Logic (PCTL) [24] or Con-
tinuous Stochastic Logic (CSL) [7, 8].

For counterexample generation in probabilistic
model checking (PMC), many approaches have
been proposed. But unlike the previous method
proposed for conventional model checking that
generates the counterexample as a single path
ending with a bad state representing the failure
[14], the task in PMC is quite different. The
counterexample in PMC is a set of evidences
or diagnostic paths that satisfy the formula and
their probability mass violates the probability
bound. As it is in conventional model checking,
the generated counterexample should be small
and indicative to be easy for analyzing [4, 22].

However, generating small and indicative coun-
terexamples only is not enough for understand-
ing the error. Therefore, many works in con-
ventional model checking have addressed the
analysis of counterexamples to better under-
stand the error [9, 19, 20, 28, 38 and 40]. As
it was done in conventional model checking,
addressing the error explanation in the proba-
bilistic model checking is highly required, es-
pecially that probabilistic counterexample con-
sists of multiple paths instead of single path,
and that it is probabilistic.

In this paper, we address the diagnosis of prob-
abilistic counterexamples. To this end, we
adopt the definition of causality introduced by
Halpern and Pearl [21]. In this paper, we
will focus on upper bounded properties. The
other cases can be transformed easily to up-
per bounded properties. Our approach does not
ignore the previous approaches of generating
probabilistic counterexamples, but instead, it is

14 Generating Diagnoses for Probabilistic Model Checking Using Causality

based on them. Our approach for error expla-
nation is based on the smallest most indicative
counterexamples [4, 22]. To our knowledge, no
work has been done yet for error explanation in
probabilistic model checking.

The rest of this paper is organized as follows.
In Section 2, we present some preliminaries and
definitions. The probabilistic logic PCTL and
probabilistic counterexamples are presented in
this section. In Section 3, we give the def-
inition of causes in probabilistic counterexam-
ples with the formal causalitymodel. Following
that, we introduce an algorithm for generating
the causes and their responsibilities for the vio-
lation of PCTL properties. Experimental results
are given in Section 5. Section 6 presents the re-
lated works. At the end, we present conclusion
and future works.

2. Preliminaries and Definitions

We call a discrete-time stochastic process with
discrete state space a Discrete-Time Markov
Chain (DTMC) if it satisfies the Markov prop-
erty:

P[xn = in|x0 = i0, x1 = i1, . . . , xn−1 = in−1]
= P[xn = in|xn−1 = in−1]

This means, the probability to pass to next state
depends only on the previous state and not on
the state’s history.

More formally, a DTMC is a tuple D = (S, sinit,
P, L) , such that S is a finite set of states, sinit ∈ S
the initial state, P : S × S → [0, 1] represents
the transition probability matrix, L : S → 2AP

is a labelling function that assigns to each state
s ∈ S the set L(s) of atomic propositions. An
infinite path σ is a sequence of states s0s1s2 . . .,
where P(si, si+1) > 0 for all i ≥ 0. A finite
path is finite prefix of an infinite path. We de-
fine a set of paths starting from a state s0 by
Paths(s0). The underlying σ-algebra is formed
by the cylinder sets which are induced by fi-
nite paths in Paths(s0). The probability of this
cylinder set is:

P(σ ∈ Paths(s0)|s0s1 . . . sn is a prefix of σ)

=
∏

i≤0<n

P(si, si+1)

2.1. Probabilistic Computation Tree Logic
(PCTL)

The Probabilistic Computation Tree Logic
(PCTL) has appeared as an extension ofCTL for
the specification of systems that exhibit stochas-
tic behaviour. We use the PCTL for defining
quantitative properties of DTMCs. PCTL state
formulas are formed according to the following
grammar:

φ ::= true|a|¬φ|φ1 ∧ φ2|P∼p(ϕ)

Where a ∈ AP is an atomic proposition, ϕ is a
path formula, P is a probability threshold opera-
tor,∼∈ {<,≤, >,≥} is a comparison operator,
and p is a probability threshold. The path for-
mulas ϕ are formed according to the following
grammar:

ϕ ::= φ1Uφ2|φ1Wφ2|φ1U≤nφ2|φ1W≤nφ2

Where φ1 and φ2 are state formulas and n ∈
N. As in CTL, the temporal operators (U for
strong until, W for weak (unless) until and their
bounded variants) are required to be immedi-
ately preceded by the threshold operator P.The
PCTL formula is a state formula, where path
formulas occur only inside the operator P. The
operator P can be seen as a quantification oper-
ator for both the operators ∀ (universal quantifi-
cation) and ∃ (existential quantification), since
the properties are representing quantitative re-
quirements.

The semantics of a PCTL state formula φ over
a state s (or a path σ) in a DTMC model
D = (S, sinit, P, L) can be defined by a satisfac-
tion relation denoted by |=. A path σ = s0s1 . . .
satisfies a PCTL formula φ if the relation s0 |= φ
is satisfied. We define the set of paths satisfy-
ing the relation s |= φ by Paths(s |= φ) and the
probability of the satisfaction of s |= φ by

P(s |= φ) =
∑

σ∈Paths(s|=φ)
P(σ)

The PCTL semantics is defined as follows:

s |=true⇔ true
s |=a⇔ a ∈ L(s)
s |=¬φ ⇔ s �|= φ
s |=φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2

s |=P∼p(ϕ)⇔ P(s |= φ) ∼ p

Generating Diagnoses for Probabilistic Model Checking Using Causality 15

σ |=φ1Uφ2 ⇔ ∃j ≥ 0.σ [j]
|= φ2 ∧ (∀0 ≤ k < j.σ [k] |= φ1)

σ |=φ1Wφ2 ⇔ σ |= φ1Uφ2

∨ (∀k ≥ 0.σ [k] |= φ1)
σ |=φ1U

≤nφ2 ⇔ ∃0 ≤ j ≤ n.σ [j]
|= φ2 ∧ (∀0 ≤ k < j.σ [k] |= φ1)

σ |=φ1W
≤nφ2 ⇔ σ |= φ1U

≤nφ2

∨ (∀0 ≤ k ≤ n.σ [k] |= φ1)

In the rest of the paper, we will focus on prop-
erties of upper probability bound of the form
φ1Uφ2 or its variant (φ1U≤nφ2). Probabilistic
lower bounded properties can be easily trans-
formed to upper bounded properties [4, 22].

2.2. Probabilistic Counterexamples

The probabilistic counterexamples are gener-
ated when a PCTL property is not satisfied. The
probabilistic property φ = P≤p(ϕ) is refuted
when the probability mass of the paths satisfy-
ing ϕ exceeds the bound p. Therefore, a prob-
abilistic counterexample for the property φ can
be formed of a set of finite paths starting at state
s and satisfying the path formula ϕ. We refer to
these paths as FinitePaths(s |= φ). Thus, each
path σ = s0s1 . . . sn from FinitePaths(s |= φ)
is a prefix of an infinite path from Paths(s |= φ)
satisfying the formula φ . FinitePaths(s |= φ)
are also called diagnostic paths [4, 5].

It is clear that we can get a set of probabilistic
counterexamples, noted PCX(s |= φ), which is
a set of any combination from FinitePaths(s |=
φ), their probability mass exceeds the bound p.
Among all these probabilistic counterexamples,
we are interested by the most indicative one.

The most indicative counterexample is minimal
counterexample (has the least number of paths
from FinitePaths(s |= φ)) and its probability
mass is the highest among all other minimal
counterexamples. We denote the most indica-
tive probabilistic counterexample byMIPCX(s0
|= φ). We should note that the most indica-
tive probabilistic counterexample may not be
unique.

Lemma 2.1 Let MIPCX(s0 |= φ) be the most
indicative probabilistic counterexample. Every
finite path σ ∈ MIPCX(s0 |= φ) is critical.

Which means ∀σ : MIPCX(s0 |= φ) − σ (re-
moving any path σ from MIPCX(s0 |= φ)) will
render the result not a counterexample.

For the counterexample to have high probabil-
ity, it should consist of paths that carry high
probabilities from FinitePaths(s |= φ). The
path σ having the highest probability over all
these paths is called the strongest path and
is defined as follows: for every path σ ′ ∈
FinitePaths(s |= φ) : P(σ) ≥ P(σ ′). The
strongest path also may not be unique.

Lemma 2.2 The most indicative probabilistic
counterexample contains at least one strongest
path σ ∈ FinitePaths(s |= φ).

Corollary 2.1 If a path property φ1Uφ2(φ1U≤n

φ2) is satisfied in a finite path σ, the right state
sub-formula (φ2) is satisfied in the last state of
σ.

Lemma 2.3 According to the semantics pre-
sented above, any PCTL path formula, if it is
satisfied on a finite path, it is also satisfied on
any suffix of this path.

Example 2.1 Let us consider the example of
DTMC shown in Figure 1 and the property
P≤0.5(ϕ), where ϕ = (a ∨ b)U(c ∧ d).

Figure 1. A DTMC.

The property above is violated in this model
(s0 �|= P≤0.5(ϕ)), since the probability mass of
all paths satisfying ϕ is higher than the proba-
bility bound (0.5). We have

FinitePaths(s0 |= φ) =
{s0s1, s0s2s3, s0s2s4s3, s0s2s4s5, s0s4s5}

Any combination of paths from FinitePaths(s0
|= φ) having probability mass higher than 0.5,

16 Generating Diagnoses for Probabilistic Model Checking Using Causality

is a valid probabilistic counterexample includ-
ing the whole set. For instance, we can find
three counterexamples:

P(C1)=P({s0s1, s0s2s3, s0s2s4s3, s0s2s4s5, s0s4s5)
=0.25 + 0.2 + 0.09 + 0.15 + 0.12=0.81

P(C2) = P({s0s1, s0s2s4s5, s0s4s5})
= 0.25 + 0.15 + 0.12 = 0.52

P(C3) = P({s0s1, s0s2s3, s0s2s4s5})
= 0.25 + 0.2 + 0.15 = 0.60

The last probabilistic counterexample is the
most indicative one, since it is minimal and
its probability is higher than the other minimal
counterexample C2, P(C3) = 0.6 > P(C2).
The strongest path is s0s1, which is included in
the most indicative probabilistic counterexam-
ple.

3. Causes in Probabilistic
Counterexamples

For PCTL properties of the form φ = P≤p(ϕ),
explaining the violation reduces to the expla-
nation of exceeding the probability bound over
the DTMC model. Therefore, the question of
“what labelling and/or probability values in the
counterexample cause the system to falsify a
specification” reduces to the question: “what
labelling and/or probability values in the coun-
terexample cause the exceeding of probability
bound over the model”.

3.1. Causality Model

The counterfactual notion of causality [30] states
that: event A is a cause of event B if, had A not
happened, then B would not have happened.
Unfortunately, this statement does not cover all
real cases. Let’s take the major known exam-
ple of Suzy and Billy who both pick up rocks
and throw them at a bottle [21]. Suzy’s rock
gets there first, shattering the bottle. Since both
throws are perfectly accurate, Billy’s would
have shattered the bottle had it not been pre-
empted by Suzy’s throw. Thus, according to
the counterfactual condition, Suzy’s throw is
not a cause for shattering the bottle. Halpern
and Pearl [21] have addressed this issue by tak-
ing A to be a cause of B if B counterfactually

depends on A under some contingency. For
example, Suzy’s throw is a cause of the bottle
shattering because the bottle shattering coun-
terfactually depends on Suzy’s throw, under the
contingency that Billy does not throw.

With respect to the definition of causality by
Halpern and Pearl [21], the causality model
M is defined by a set of exogenous variables
U, whose values −→u are determined by factors
outside the model M, but they should be rep-
resented to encode the context, and by a set
of endogenous variables V , whose values are
determined by structural equations, and set of
functions F, where each f vi ∈ F is a mapping
from U × (V \ Vi) to Vi. Thus, each f vi tells
us the value of Vi given the values of all other
variables in U ∪ V . The causality model M has
no control on context changes.

We can define a causality model for the most
indicative counterexample MIPCX(s0 |= φ) as
a tuple M = (U, V, F), where U is presented by
a single variable; we call it a context variable, its
value u encodes a state in MIPCX(s0 |= φ). V
is a set of variables representing atomic propo-
sitions and Boolean formulas. F is a set of
truth functions associating to every variable in
V a value (0 or 1). So, each f vi ∈ F tells
us the value of a variable in V given the val-
ues of all the other variables. For example,
f p∧r(s, p = 1, r = 1) = 1 where p and r are
atomic propositions, and s is state representing
a context. The causal influences in are modelled
by the transitions in MIPCX(s0 |= φ).

3.2. Generating Causes

We call the path until formula ϕ a causal for-
mula. We write (M, u) |= ϕ if ϕ is true in
causality model M given a context u. We write

(M, u) |= [
−→
Y ← −→y](X = x), if X has a value

(0or1) in M given a context u and the assign-

ment −→y to
−→
Y , where

−→
Y ⊂ V .

We write (M, u) |= ϕ if ϕ is true in causal-
ity model given a context u. For probabilistic
causality, we add a probability to each context,
which is a state s belonging to finite paths from
MIPCX(s0 |= φ). We should note that a state
can belong to other paths that are not in the
most indicative probabilistic counterexample.

Generating Diagnoses for Probabilistic Model Checking Using Causality 17

Therefore, a context probability is defined by
this equation:

P(u = s) =
∑

s∈σ|σ∈MIPCX(s0|=φ)

P(σ)

The statement for causality is “A formula C is
a cause of ϕ in context u of M”. The types of
formulas that are allowed to be causes for ϕ are
ones of the form X1 = x1 ∧ . . . ∧ Xk = xk

which is abbreviated to the form
−→
X = −→x .

Since F defines a mapping from U to V , We
can associate to each cause a probability that
represents exactly the context probability as

P(
−→
X = −→x) = P(s).

With all these definitions in hand, we can now
give the definition of an actual cause for the
violation of PCTL property φ = P≤p(ϕ).

Definition 3.1 we say that
−→
X = −→x is an actual

cause for the violation of φ = P≤p(ϕ) in (M, s)

with a probability equal to P(
−→
X = −→x) = P(s)

if the following holds:

1. (M, s) |= (
−→
X = −→x) ∧ ϕ

2. There exists a partition (
−→
Z ,
−→
W) of V with

−→
X ⊆ −→Z and some setting (−→x ′,−→w ′) of the

variables in (
−→
X ′,−→W ′) such that if (M, s) |=

Z = z for Z ∈ −→Z then
(M, s) |=

[−→
X ← −→x ′,−→W ← −→w ′

]
∧ ¬ϕ

and (M, s) |=
[−→

X ← −→x ,
−→
W ← −→w ′,

−→
Z ′ ← −→z

]
∧ ϕ for all subsets

−→
Z ′ of

−→
Z .

3. The set of variables
−→
X is minimal (no subset

of
−→
X satisfies the conditions 1 and 2).

The first condition states that both
−→
X = −→x

and ϕ are true in the current context, given the

variables
−→
X and their values −→x . The second

condition states that any change on (
−→
X ,
−→
W)will

change ϕ from true to false, changing
−→
W will

have no effect on ϕ as long as the values of
−→
X

are kept at the current values, even if all subsets
−→
Z ′ of

−→
Z are set to their original values in the

current context. Minimality condition ensures

that only elements in the conjunction
−→
X = −→x

are essential for changing ϕ from true to false.

Each cause X = x has a probability P(X = x)
that measures its contribution to the error, where
the cause involved in the satisfaction of ϕ in
more paths is usually the most probable cause.
So that, given the probability of MIPCX(s0 |=
φ), we associate to each cause a degree of con-
tribution for the error, and we call it responsibil-
ity. The degree of responsibility of each cause
is given by:

R(X = x) = P(X = x)/P(MIPCX(s0 |= φ))

Definition 3.2 A cause C1 has more responsi-
bility over another cause C2 for the violation of
φ = P≤p(ϕ), if R(C1) > R(C2).

Example 3.1Consider themost indicative coun-
terexample C3 = {s0s1, s0s2s3, s0s2s4s5} gen-
erated from the DTMC presented in Figure 1
against the property P≤0.5[(a ∨ b)U(c ∧ d)].

It is possible to define a causality model for C3,
where u ∈ {s0, s1, s2, s3, s4, s5}, and F can be
defined over the variables in V as follows

f b(s2) = 1
f c∧d(s2, c = 0, d = 0) = 0

...

For instance, it is clear that in s2,
−→
X = {b},

−→
Z = {b, e} and

−→
W = {a, c, d}. So, the

cause in s2 is b = 1 with a responsibility
R(b = 1) = (0.2 + 0.15)/0.6 = 0.58.

4. Algorithm for Generating Causes

This algorithmperforms on counterexample gen-
erated from the tool DiPro [5], since probabilis-
tic model checkers do not offer the possibility to
generate counterexamples. DiPro is a tool used
for generating counterexamples from DTMC,
CTMC and MDPs models, and can be jointly
used with the model checkers PRISM [26] and
MRMC [27], and can render the counterexam-
ples in text formats as well as in graphical mode.

The algorithm gets from DiPro tool the coun-
terexample MIPCX(s0 |= φ) and the proba-
bilistic formula φ = P≤p(ϕ) as input, and out-
puts the causes with their responsibilities. The

18 Generating Diagnoses for Probabilistic Model Checking Using Causality

formula ϕ is until formula written inNNF (Neg-
ative Normal Form), which means that negation
appears just at the front of atomic propositions.

Algorithm. GenerateCauses
Inputs: The most indicative counterexample
MIPCX(s0 |= φ)
The probabilistic formula φ = P≤p(ϕ) where ϕ
is of
the form φ1Uφ2 or (φ1U

≤nφ2)
Outputs: Set of causes with their responsibili-
ties
Begin
Contexts :=ComputeContexts(MIPCX(s0|=φ))
Causes := ∅
For each context s from the contexts set
If s is the last state in a path σ then
Causes := Causes ∪ FindCauses(s, φ2)
R(Causes)=

∑
s∈σ|σ∈MIPCX(s0|=φ) P(σ)/

P(MIPCX(s0 |= φ))
End If
Else
Causes := Causes ∪ FindCauses(s, φ1)
R(Causes)=

∑
s∈σ|σ∈MIPCX(s0|=φ) P(σ)/

P(MIPCX(s0 |= φ))
End Else

End For
Sort (Causes)
End GenerateCauses
Function FindCauses(s, ψ)
Begin
If ψ is of the form a where a ∈ AP and a ∈ L(s)
Then return 〈 s, a〉

End If
If ψ is of the form ¬a where a ∈ AP and
a /∈ L(s)
Then return 〈 s,¬a〉

End If
If ψ is of the form ψ1 ∧ ψ2 Then
return {FindCauses(s, ψ1) ∪

FindCauses(s, ψ2)}
End If
If ψ is of the form ψ1 ∨ ψ2 Then
return {FindCauses(s, ψ1)} ∪

{FindCauses(s, ψ2)}
End If
Otherwise return ∅
End FindCauses

The algorithm explores the counterexample and
computes the causes and their responsibilities
with respect to each state s. The causes then

will be sorted in order according to their respon-
sibilities R. The main function of this algorithm
is FindCauses, which is based on the formula
structure. It takes a state and state formula as
input and returns recursively the set of causes.
The condition put on the last state followsCorol-
lary 2.1. We note that when the state formula
ψ is of the form ψ1 ∧ ψ2, both sub-formulas
are essentially true at state s. But when ψ is
of the form ψ1 ∨ ψ2, one of them could be true
at s or both of them. This actually follows the
causal intuition that in the conjunctive scenario,
both ψ1and ψ2 are required for ψ being satis-
fied. Whereas in the disjunctive scenario, either
ψ1 or ψ2 suffices to make ψ satisfied. In the
two cases, we apply FindCauses to each sub-
formula. Finally, at the propositional level, the
cause will be a pair 〈 s, a〉 if a ∈ L(s) or 〈 s,¬a〉
otherwise.

This algorithm computes an approximate set of
causes, since computing the set of causes ex-
actly in binary causal models is NP-complete
[16]. The reduction from binary causal models
to Boolean circuits and from Boolean circuits
to model checking as introduced in [12] proved
that computing a set of causes for branching
time formula can be done in linear time. There-
fore, further analysis of the complexity of causes
computing is beyond the scope of this paper.

5. Experimental Results

We have implemented the above method in
Java. To evaluate our method, we use a bench-
mark case study of the embedded control sys-
tem taken from [31]. The system is modelled in
prism as a CTMC [41]. We should mention that
before performing the verification, the CTMC
has to be transformed to its embedded DTMC.
The system consists of input processor (I) that
reads incoming data from three sensors (s1, s2
and s3) and then passes it to main processor
(M). The processor M processes the data and
sends instructions to an output processor (O)
that controls two actuators (A1 and A2) using
these instructions. Any of the system’s compo-
nents M, I/O, the sensors and the actuators may
fail; as a result, the system is shut down. The
types of failures are:

fail sensors = (i = 2 ∧ s < MIN SENSORS)
fail actuators=(o=2∧a<MIN ACTUATORS)

Generating Diagnoses for Probabilistic Model Checking Using Causality 19

fail io = (count = MAX COUNT + 1)
fail main = (m = 0)

We use the variable Max Count to refer to
the maximum number of consecutive cycles
skipped allowed. Thus, the I/O processor will
fail if the count exceeds the limit Max Count.
The down status of the system is labelled as:

down = fail sensors|fail actuators|fail io|
fail main

For this model, we choose the PCTL property
that estimates the probability of I/O failure oc-
curring first, which is given as follows:

P =?[!(down)Ufail io]

We test this property using prism for (Max Count
= 1). For this value, prism renders a probabil-
ity equal to 0.43. We chose the value 0.4 as a
threshold for this property to generate the coun-
terexample. Thus the property can be rewritten
as follows:

P ≤ 0.4[!(down)Ufail io]

We use DiPro to generate the counterexample,
which in turn uses prism. The counterexample
rendered by DiPro can be saved in text format
as well as in XML format. The tool imple-
ments many algorithms. In our experiments,
we used its heuristic search algorithm XBF that
generates the sub-graph inducing the counterex-
ample. Our method takes the counterexample
generated from DiPro in XML format and the
property to be verified as arguments, and out-
puts the causes with their responsibilities. All
the experiments were carried out on windows
XP with Intel Pentium CPU 3.2 GHz speed and
512 mb of memory.

The prism model consists of 2633 states and
11072 transitions. For generating the coun-
terexample, DiPro Explored 480 traces, 558
vertices and 1080 edges in more than 1 minute.
Finally, the counterexample rendered consists
of just 35 diagnostic paths. It is evident that
the number of explored vertices and explored
edges while searching the counterexample is
less than the number of states and the transitions
of the model. It is evident also that the number
of diagnostic paths is less than the number of
solution traces. While solution traces refer to

all the paths of the diagnostic sub-graph found
through exploring the model, diagnostic paths
refer just to the paths forming the counterexam-
ple MIPCX(s0 |= φ). We pass this counterex-
ample to our algorithm for generating the causes
and their responsibilities. Our algorithm takes
less than 1 second for generating the causeswith
their responsibilities. We notice that this time
is negligible comparing to the size of the model
and the time taken for computing the counterex-
ample.

The causes generated are the basic sub-formulas
satisfying the path formula ¬(down)Ufail io.
For the right sub-formula (fail io), the cause
generated is C0 = (count = MAX COUNT +
1). For the left sub-formula, the set of causes
for the system not to be in down state is:

C1 = ¬(i = 2),
C2 = ¬(s < MIN SENSORS)
C3 = ¬(o = 2),
C4 = ¬(a < MIN ACTUATORS)
C5 = ¬(count = MAX COUNT + 1)
C6 = ¬(m = 0)

C1and C2 refer to the probable causes for the
failure in the level of sensors, whereas C3 and
C4 refer to the probable causes for the failure in
the level of actuators. The failure causes for I/O
and M are singletons, C5 and C6 respectively.

The number of states from 35 diagnostic paths,
in which we found these causes are estimated to
be 145 states, which is much less than the states
of the model (2633). The responsibility classes
found are 50, ranging between 0 and 0.3, except
the initial state that has intuitively 1 as a degree
of responsibility, because it is included in all
paths. It is evident that the number of responsi-
bility classes (50) is lower than the number of
states (145), because the states included in the
same set of paths share the same responsibility.

Due to the size of the counterexample, it is not
possible to cite here all the pairs (state, vari-
able), but we can give results description con-
cerning C1 to C6. C5 and C6 are guaranteed
to have the highest responsibility (0.3) in such
states, since they are found in all states, be-
cause they are singletons. For sensor and actua-
tors failures, we are facing disjunctive scenario,
which means that either C1 or C2 can be a cause
of the absence of sensors failure. It is the same

20 Generating Diagnoses for Probabilistic Model Checking Using Causality

case for actuators failure with C3 and C4. In all
states, C2 (all sensors are working) and C4 (all
actuators are working) are found to be the ac-
tual causes of the absence of both, sensors and
actuators failures. Thus, they have absolutely
more responsibility than the two other causes in
such states: C1 (input processor not Ok) and
C3 (output processor not OK), respectively.

6. Related Works

The original algorithm for counterexample gen-
eration was proposed by Clarke et al. [14]
and was implemented in most symbolic model
checkers. This algorithm of generating lin-
ear counterexamples for a fragment of ACTL
(ACTL∩LTL) was later extended to handle ar-
bitrary ACTL properties [15] using the notion
of tree-like counterexamples. Since then, many
works have addressed this issue in conventional
model checking [10, 18, 32, 36 and 37].

However, the counterexample generated does
not indicatewhere the failure really exists. There-
fore, counterexamples analysis is inevitable.
In conventional model checking, many works
have proposed techniques for discovering error
causes from counterexamples, hence present-
ing them to the user in a comprehensive way.
Most of theseworks range in the softwaremodel
checking and programs debugging, especially C
programs, in the aim to find bugs in the source
code [9, 19, 20 and 40]. Based on Lewis coun-
terfactual theory of causality [30] and distance
metrics, Groce et al. in [20] have proposed
semi-automated approach for isolating errors in
ANSI C programs by considering the alternative
worlds as programs executions and the events as
propositions about those executions. Unlike the
previouswork that requiresmultiple executions,
the work [38] introduced a technique performed
on a single concrete execution path using the
weakest pre condition algorithm. While all of
these works addressed safety properties, some
of them attempted to explain errors for liveness
properties, which involves more computational
complexity [28].

For counterexample generation in probabilistic
model checking (PMC), many approaches have
been proposed. In [1,2], Aljazzar et al. intro-
duced an approach for counterexample genera-
tion for DTMC and CTMC against timed reach-

ability properties using heuristics guided and
directed explicit state space search. In comple-
mentary work [3], with the intuition that sin-
gle scheduler makes an MDP as DTMC, they
proposed an approach for counterexample gen-
eration for MDPs using existing methods for
DTMC. They introduced more complete work
in [4] for generating counterexample for DTMC
and CTMS as what they refer to as diagnostic
sub-graphs. Based on all the previous works,
they built an open source tool, DiPro [5], for
generating counterexamples for DTMC, CTMC
and MDPs. This tool can be used with the prob-
abilistic model checkers PRISM and MRMC
and renders the counterexamples graphically.
Similar to the previous works, Han et al. have
proposed the notion of the smallest most indica-
tive counterexample that reduces to the problem
of finding K shortest paths [22, 23]. Instead of
generating path-based counterexamples, Wim-
mer et al. have proposed a novel approach based
on critical subsystems [39]. Following this
work, the authors in [34] proposed the COMICS
tool for generating the critical subsystems that
induce the counterexamples. In [6], the authors
proposed an approach for finding sets of evi-
dences for bounded probabilistic LTL proper-
ties on Markov Decision Processes (MDP) that
behave differently from each other giving sig-
nificant diagnostic information. More special
cases are treated in [25, 33 and 35].

Severalworks have used the definition of causal-
ity in the context of model checking. We found
that the one most closely related to our work
is that of [11, 12]. They used the definition
of causality for explaining LTL counterexam-
ple [11]. Unlike addressing the question in [11],
what causes a system to falsify a specification?
In the context of coverage [12], the question ad-
dressed was: what causes a system to satisfy a
specification? In this aim, they adapt the defi-
nition of causality and its quantitative measure,
responsibility [13]. The definition of causality
has also been used by [29]. They adapt the defi-
nition of causality to event orders for generating
fault trees from probabilistic counterexamples.
They extended their approach by introducing
the notion of causality checking, through inte-
grating causality in the model checking algo-
rithm itself [17].

Generating Diagnoses for Probabilistic Model Checking Using Causality 21

7. Conclusion and Future Works

In this paper, we have shown how the notion
of causality can be interpreted in the context
of probabilistic counterexamples. Due to the
probabilistic nature of the causal model, we
had to define for each context its probability.
Accordingly, we defined for each cause its re-
sponsibility that measures its contribution to the
error inherited from the context it is located
in. Following that, we introduced an algorithm
for diagnoses generation that acts as a guided-
method to the most responsible causes in the
counterexample. The most responsible cause is
considered to be the most relevant to the user.
Evidently, our approach does not ignore the pre-
vious works of counterexample generation, but
instead, it acts as a complementary task. To our
knowledge, we are the first who introduce di-
agnosis approach that acts on counterexamples
generated in PMC.

As future works, we aim to show how our
method can also perform on counterexamples
generated from CTMCs against CSL properties,
as well as MDPs models. In this paper, we did
not introduce a graphical way for representing
the causes and their responsibilities, so as a fu-
ture work, we aim to build a tool for generating
the diagnoses graphically.

References

[1] H. ALJAZZAR, H. HERMANNS, S. LEUE, Counterex-
amples for timed probabilistic reachability. In For-
mal Modeling and Analysis of Times systems (FOR-
MATS), (2005), pp. 177–195.

[2] H. ALJAZZAR, S. LEUE, Extended directed search
for probabilistic timed reachability. In FORMATS,
(2006), pp. 33–51.

[3] H.ALJAZZAR, S. LEUE, Generation of Counterexam-
ples for Model Checking of Markov Decision Pro-
cesses. In Proceedings of the International Confer-
ence on Quantitative Evaluation of Systems (QEST),
(2009), pp. 197–206.

[4] H. ALJAZZAR, S. LEUE, Directed explicit state-space
search in the generation of counterexamples for
stochastic model checking. IEEE Trans. on Soft-
ware Engineering, vol. 36 no. 1 (2010), pp. 37–60.

[5] H. ALJAZZAR, S. LEUE, DiPro – A Tool f or Proba-
bilistic Counterexample Generation. LNCS, (2011),
pp. 183–187. Available at http://www.inf.uni-
konstanz.de/soft/dipro/

[6] M. E. ANDRÉS, P. R. D’ARGENIO, P. VANROSSUM,
Significant Diagnostic Counterexamples in Prob-
abilistic Model Checking. In Haifa Verification
Conference, (2008), pp. 129–148.

[7] A. AZIZ, K. SANWAL, V. SINGHAL, R. BRAYTON,
Model-checking continuous-time Markov chains.
ACM Transactions on Computational Logic, vol. 1,
no. 1 (2000), pp. 162–170.

[8] C. BAIER, B. HAVERKORT, H. HERMANNS, J.-P. KA-
TOEN, Model checking algorithms for continuous-
time Markovchains. IEEETransactions on Software
Engineering, vol. 29, no. 7 (2003).

[9] T. BALL, M. NAIK, S. K. RAJAMANI, From symp-
tom to cause: localizing errors in counterexample
traces. In Symposium on Principles of Programing
Languages (POPL), (2003), pp. 97–105.

[10] M. CHECHIK, A. GURFINKEL, A framework for
counterexample generation and exploration. In Fun-
damentals Approaches to Software Engineering
(FASE), (2005), pp. 217–233.

[11] H. CHOCKLER, I. BEER, S. BEN-DAVID, A. ORNI,
R. TREFLER, Explaining counterexamples using
causality. In Bouajjani, A., Maler, O. (eds.), LNCS,
vol. 5643 (2009), pp. 94–108.

[12] H. CHOCKLER, J. Y. HALPERN, O. KUPFERMAN,
What causes a system to satisfy a specification?
ACM Transactions on Computational Logic vol. 9,
no. 3 (2007), pp. 1–24.

[13] H. CHOCKLER, J. Y. HALPERN, Responsibility and
blame: a structural-model approach. Journal of Ar-
tificial Intelligence Research (JAIR), vol. 22 (2004),
pp. 93–115.

[14] E. CLARKE, O. GRUMBERG, M. C. MILLAN, X.
ZHAO, Efficient generation of counterexamples and
witnesses in symbolic model checking. In Proceed-
ings of the Design Automation Conference, (1995),
pp. 427–432.

[15] E. CLARKE, Y. LU, S. JHA, H. VEITH, Tree-like
counterexamples in model checking. In Proceed-
ings of the 17th Annual IEEE Symposium on Logic
in Computer Science, (2002), pp. 19–29.

[16] T. EITER, T. LUKASIEWICZ, Complexity results for
structure-based causality.Artificial Intelligence, vol.
142 (2002), pp. 53–89, Elsevier.

[17] F. FISCHER S. LEUE, Causality Checking for Com-
plex System Models. In Proceedings of the VMCAI,
LNCS, vol. 7737 (2013), pp. 248–276.

[18] P. GASTIN, P. MORO, Minimal counterexample gen-
eration for SPIN. LNCS, Vol. 4595 (2007), Springer.

[19] A. GROCE, W. VISSER, What went wrong: explain-
ing counterexamples. In Ball, T., Rajamani, S.K.
(eds.) SPIN, LNCS, vol. 2648 (2003), pp. 121–135.

[20] A. GROCE, S. CHAKI, D. KROENING, O. STRICHMAN,
Error explanation with distance metrics. Interna-
tional Journal on Software Tools for Technology
(STTT), vol. 8, no. 3 (2006), pp. 229–247.

22 Generating Diagnoses for Probabilistic Model Checking Using Causality

[21] J. HALPERN, J. PEARL, Causes and explanations:
A structural-model approach – part I: Causes. In
Proceedings of the 17th UAI, (2001), pp. 194–202.

[22] T. HAN, J. P. KATOEN, Counterexamples in proba-
bilistic model checking. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS),
(2007).

[23] T. HAN, Diagnosis, synthesis and analysis of prob-
abilistic models. Ph.D. Thesis, RWTH Aachen
University, University of Twenty, 2009.

[24] H. HANSSON, B. JONSSON, Logic for reasoning
about time and reliability. Formal aspects of Com-
puting, vol. 6, no. 5 (1994), pp. 512–535.

[25] H. HERMANNS, B. WACHTER, L. ZHANG, Probabilis-
tic CEGAR. In Proceedings of the Computer Aided
Verification (CAV), LNCS, vol. 5123 (2008), pp.
162–175.

[26] A. HINTON, M. KWIATKOWSKA, G. NORMAN, D.
PARKER, PRISM: A tool for automatic verifica-
tion of probabilistic systems. In Proceedings of the
TACAS’06, vol. 3920 (2006), pp. 441–444.

[27] J.-P. KATOEN, M. KHATTRI, I. S. ZAPREEV, A
Markov Reward Model Checker. In QEST, (2005),
pp. 243–244.

[28] T. KUMAZAWA, T. TAMAI, Counterexample-Based
Error Localization of Behavior Models. NASA For-
mal Methods, (2011), pp. 222–236.

[29] M. KUNTZ, F. LEITNER-FISCHER, S. LEUE, From
probabilistic counterexamples via causality to fault
trees. LNCS, vol. 6894 (2011), pp. 71–84, Springer.

[30] D. LEWIS, Causation. Journal of Philosophy, vol.
70 (1973), pp. 556žč567.

[31] J. MUPPALA, G. CIARDO, K. TRIVEDI, Stochastic
Reward Nets for Reliability Prediction. Communi-
cations in Reliability Maintainability and Service-
ability, vol. 1, no. 5 (1994).

[32] T. NOPPER, C. SCHOLL, B. BECKER, Computation
of Minimal Counterexamples by Using Black Box
Techniques and Symbolic Methods. In Proceedings
of the International Conference on Computer Aided
Design (CAD), (2007), pp. 273–280.

[33] N. JANSEN, E. ABRAHAM, J. KATELAAN, R. WIM-
MER, J. P. KATOEN, B. BECKER, Hierarchical coun-
terexamples for discrete-time Markov chains. In
Proceedings of the International Symposium on Au-
tomated Technology for Verification and Analysis
(ATVA), vol. 699 (2011).

[34] N. JANSEN, E. ABRAHÁM, M. VOLK, R. WILMER, J.
P. KATOEN, B. BECKER The COMICS Tool – Com-
puting Minimal Counterexamples for DTMCs. In
Proceedings of the ATVA, LNCS vol. 7561 (2012),
pp. 249–353.

[35] M. SCHMALZ, D. VARACCA, H. VOLZER, Counterex-
amples in probabilistic LTL model checking for
Markov chains. In Proceedings of the International
Conference on Concurrency Theory (CONCUR),
vol. 5710 (2009).

[36] V. SCHUPPAN, A. BIERE, Shortest Counterexamples
for Symbolic Model Checking of LTL with Past. In
Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), (2005), pp. 493–509.

[37] J. STAUNTON, J. CLARK, Finding short counterex-
amples in promela models using estimation of
distribution algorithms. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary
Computation (GECCO), (2011), pp. 1923–1930.

[38] C. WANG, Z. YANG, F. IVANCIC, A. GUPTA, Who-
dunit? Causal Analysis for Counterexamples. In
Proceedings of the ATVA, (2006).

[39] R. WIMMER, N. JANSEN, E. ABRAHÁM, B. BECKER,
J. P. KATOEN, Minimal Critical Subsystems for
Discrete-Time Markov Models. In Proceedings of
the TACAS, LNCS, vol. 7214 (2012), pp. 299–314.

[40] A. ZELLER, Isolating cause-effect chains from com-
puter programs. In Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software
Engineering , (2002), pp. 1–10.

[41] EMBEDDED CONTROL SYSTEM: CASE STUDY,
http://www.prismmodelchecker.org/
casestudies/embedded.php

Received: November, 2012
Revised: May, 2013

Accepted: May, 2013

Contact addresses:

Hichem Debbi
Department of Computer Science

University of M’sila
Algeria

e-mail: hichem.debbi@gmail.com

Mustapha Bourahla
Department of Computer Science

University of M’sila
Algeria

e-mail: mbourahla@hotmail.com

HICHEM DEBBI received the B.S. and M.S. degrees in Computer Science
from the University of M’sila, Algeria, in 2009 and 2011, respectively.
Currently, he is a PhD student at University of M’sila. His research
interests are formal methods and model checking.

MUSTAPHA BOURAHLA has Habilitation from the University of Annaba,
Algeria (2010), a PhD degree in computer science from the University
of Biskra, Algeria (2007) and a Master degree in computer science from
the University of Montreal, Canada (1989). He was a member of the
VHDL group at Bell-Northern Research, Ottawa, Canada (1989–1993).
He worked for Bell Canada for one year. He was teacher-researcher
at the University of Biskra (Algeria), from 1994 until 2009. Now,
he is teacher-researcher at the University of M’sila (Algeria). He has
publications in the domains of VLSI and formal methods. His current
research interests are formal methods, especially model checking crit-
ical systems, semantics web and business intelligence. Dr. Bourahla
is a member of a research group working in the domains of semantics
web, decision support systems and formal methods at the University of
M’sila (Algeria).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

