Journal of Computing and Information Technology - CIT 20, 2012, 4, 265-276

doi:10.2498/cit.1002017

265

CLOLINK: An Adapted Algorithm
for Mining Closed Frequent Itemsets

Adebukola Onashoga

Department of Computer Science, Federal University of Agriculture, Abeokuta, Nigeria.

Mining of the complete set of frequent itemsets will lead
to a huge number of itemsets. Fortunately, this problem
can be reduced to the mining of closed frequent itemsets,
which results in a much smaller number of itemsets.
Methods for efficient mining of closed frequent itemsets
have been studied extensively by many researchers us-
ing various strategies to prove their efficiencies such as
Apriori-like methods, FP growth algorithms, Tree projec-
tion and so on. However, when mining databases, these
methods still encounter some performance bottlenecks
like processing time, storage space and so on. This paper
integrates the advantages of the strategies of H-Mine, a
memory efficient algorithm for mining frequent itemsets.
The study proposes an algorithm named CLOLINK,
which makes use of a compact data structure named
L_struct that links the items in the database dynamically
during the mining process. An extensive experimental
evaluation of the approach on real databases shows a
better performance over the previous methods in mining
closed frequent itemsets.

Keywords: frequent pattern growth, closed frequent
itemsets, data mining, mining methods and algorithm,
CLOLINK

1. Introduction

Frequent pattern mining is the identification of
frequent itemsets from large database. Given
a transaction database, frequent patterns can be
found in those transactions. For example, run-
ning a large shop requires maintaining terabytes
of customer transactions. Frequent patterns in
this situation, for example, could be items that
are frequently bought together. The main goal
of frequent itemset mining is to identify all fre-
quent itemsets, that is, itemsets that have at least
a specified minimum support; the percentage of
transactions containing the itemset [14]. The
rationale behind using support is that only item-
sets with high frequency are of interest to users.

According to [14], “the practical usefulness of
the frequent itemset mining is limited by the
significance of the discovered itemsets”.

Definition 1: (Frequent itemset)

Let/ = {xj,...,x,} beasetofitems. Anitem-
set X is a subset of items, i.e., X C I. For the
sake of brevity, an itemset X = {x1,x2 ..., %}
is also denoted as xp, xp, . .., X;;. A transaction
T = (tid, X) is a 2-tuple, where tid is a trans-
action identifier (i.e. customer identifier) and
X, an itemset. A transaction T = (tid,X) is
said to contain itemset Y if ¥ C X. A trans-
action database T'DB is a set of transactions in
TDB containing itemset X, the support of an
itemset X is the number of times it occurs in a
transaction, denoted as sup(X). Given a trans-
action database TDB and a support threshold,
min _sup, an itemset X is a frequent pattern, or
a pattern in short, if sup(X) > min _sup.

Efficient algorithms for mining frequent item-
sets are crucial for mining association rules. An
example of algorithm for mining frequent item-
sets is Apriori [18] algorithm, which suffered
from two drawbacks: (1) multiple scans of a
dataset to compute the frequency of itemsets;
(2) high number of generated association rules.
The bottleneck of Apriori method rests on the
candidate set generation and test. Alternatively,
[6] proposed a pattern growth algorithm called
FP-growth, this algorithm is reported to be an
order of magnitude faster than the Apriori al-
gorithm. FP-growth uses the Apriori property,
but instead of generating candidate sets, it re-
cursively mines patterns in the database, which
is already represented in a tree structure named
FP-Tree. [14] proposed a UMining algorithm
for mining frequent itemsets, which is based on
a levelwise approach. It was noted by [14] that

266

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

depth-first search approaches, such as MAFIA
[15] and FP-growth [16], have several advan-
tages over level-wise approaches. Their future
research considers whether the pruning strate-
gies proposed in the UMining algorithm can
be incorporated into an approach such as FP-
growth. As pointed out by [9], FP-Tree loses its
compactness on sparse datasets.

In classical frequent pattern mining algorithms,
huge number of frequent patterns are generated,
whereas among them exist redundant informa-
tion. Closed frequent pattern mining, how-
ever, solves this problem by returning a succinct
result with redundancies being removed. The
following scenario below gives a good under-
standing of closed frequent patterns.

Suppose the frequent patterns generated are:

{bread, butter: 10}; {sugar, butter: 10}; {bread,

sugar: 10}, {bread, sugar, butter: 10}. Closed
frequent pattern mining will return one itemset
only: {bread, sugar, butter: 10}. This itemset,
however, represents the complete information
about the frequency of its three sub-itemsets.

Definition 2: (Closed frequent itemset)

A frequent itemset X is said to be a closed item-
set if there exists no X’ such that X’ is a proper
superset of X and every transaction containing
X also contains X’. This simply means that a
closed itemset X is an itemset thatis not included
in another itemset having the same support.

In a mathematical form, given the functions:
f(T)y={xel|VteTxect},

which returns all the itemsets included in the set
of transactions 7', and

gll)y={reT|Vxelxet}
which returns the set of transactions support-
ing a given itemset / (its tid-list), the composite

function f og is called Galois operator or closure
operator.

Definition 3: An itemset / is said to be closed
iff
c(l) =f(gll)) =fogll)=1

Proposition 1 [1]: Given an itemset X and an
item x,

g(X) C glx) = x € c(X).

Proof: Since

8(X) C glx) = g(X Ux) = g(X).
Therefore, if g(X U x) = g(X) then

feXUx) =f(g(X)) = c(XUx) = c(x)
= x € c(x).

Given an itemset X, by exploiting proposition 1,
an item x can be determined whether it belongs
to ¢(X) or not. This proposition is used by most
algorithms to calculate closures incrementally.
Another important proposition, also by Claudio
et al. (2004) is:

Proposition 2: Given two itemsets X and Y,
if X C Y and sup(X) = sup(Y) i.e. [g(X)| =
lg(Y)]|, then c(x) = c(Y).

Proof: If X C Y, then g(Y) C g(X).
lg(Y)| = |g(X)] then

Since

g(Y) = g(X),

g(X) =g(¥)
=f(8(X)) =1 (g(Y))
=c(X) = c(Y).

Proposition 2 is to check for any duplicates.

According to [1], it is intuitive that the closure
operator defines a set of equivalence classes
over the lattice of frequent itemsets: two item-
sets belong to the same equivalence class if they
have the same closure, i.e. their support is the
same and is given by the same set of transac-
tions. Knowledge about closed frequent pat-
terns is interesting and useful when efficient
algorithms are used. The efficiency of any algo-
rithm involves the processing time and the space
utilized. Several researchers [9, 13] have also
adapted existing algorithms in mining closed
frequent, frequent sequential patterns in order
to provide an efficient closed pattern mining al-
gorithm.

In this paper, an adaptation of the H-Mine al-
gorithm [5] is proposed for mining closed item-
sets. H-Mine is a memory based pattern growth
algorithm for mining frequent itemsets. It is
tested to be more space and memory efficient
than pattern growth methods like FP-growth
[16] and TreeProjection, when running sparse
and very large datasets [5]. This paper presents
a pattern growth algorithm named CLOLINK
(“CLO” from the closed itemsets being mined
and “LINK” from the structure which makes

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

267

use of node-link to access items) for mining
the complete sets of closed frequent itemsets,
by using a data structure named L _struct (us-
ing the hashtable class in Visual basic.NET).
CLOLINK is experimented on different datasets
and then compared with CHARM, a tree projec-
tion algorithm. Experimental results revealed
that CLOLINK is a scalable algorithm on any
size of datasets by using a limited space in stor-
ing closed patterns. It also eliminates the bottle-
neck of the FP-growth and does not incorporate
the features of candidate set generation.

The remaining part of this paper is organized
as follows: Section 2 details the approaches
used in mining closed frequent itemsets while
Section 3 presents the steps in the proposed al-
gorithm with an elaborate illustration using a
sample database. Each of the steps described is
followed by its comparison with H-Mine algo-
rithm. Section 4 discusses the implementation
and performance study of the algorithm. Sec-
tion 5 concludes the paper and gives an exten-
sion of future work.

2. Review of Related Works

The strategies developed to speed up the process
of mining closed frequent itemsets can be di-
vided into two categories. The first is the candi-
date generation and test approach. Algorithms
in this category include Apriori e.g. A-Close [2]
which runs very slowly on long pattern data sets
because of the huge number of candidate item-
sets it has to generate and test. [7]. A-Close
is the first algorithm for mining closed item-
sets based on the Apriori heuristic, but looks
for frequent closed itemsets and prunes the fre-
quent itemsets that are not closed. The major
cost of the A-Close is from two aspects: (1) it
has to generate a lot of candidates and scan the
transaction database again and again to count
candidates; and (2) in the last scan to com-
pute closures, there could be a large number of
surviving frequent itemsets. For each transac-
tion, the intersection with each surviving fre-
quent itemsets is done. This makes the closure
computation quite costly.

The second approach is Pattern growth which
avoids the candidate generation and test by us-
ing the pattern growth algorithms e.g. Tree Pro-
jection, FP-growth (Frequent Pattern-growth)
and so on. It also uses the Apriori property,

but instead of generating candidate sets, it re-
cursively mines patterns in the database count-
ing the support for each pattern. Algorithms
in this category make use of non-linear struc-
tures to store their databases which is more
complicated when traversing [8], for example
FP-Tree for FP-growth and lexicographical tree
for CHARM.

The authors of FP-growth proposed CLOSET
[4] for mining closed frequent patterns. This
algorithm inherits from FP-growth, the com-
pact FP-Tree data structure and the exploration
technique based on recursive conditional pro-
jections of the FP-Tree. Frequent single items
are detected after a first scan of the dataset, and
with another scan, the pruned transactions are
inserted in the FP-Tree stored in the main mem-
ory. Despite the efficiency of this FP-growth, if
the database is huge, the FP-tree will be large
and the space requirement for recursion is a
challenge [3].

CHARM, a Tree Projection algorithm for find-
ing closed frequent itemsets is proposed by
[10]. CHARM performs a bottom-up depth
first browsing of a prefix tree of frequent item-
sets built incrementally. As soon as a fre-
quent itemset is generated, its tid-list is com-
pared with those of the other itemsets having
the same parent. When two tid-lists are equal,
or one includes the other, the associated nodes
are merged since the itemsets surely belong to
the same equivalence class. Itemset tid-lists are
stored in each node by using the diff-set tech-
nique [11].

Mao in [12] finds out that CHARM scales much
better than the FP-growth and Apriori based
algorithms. So, in this context, CHARM is
considered to be better. In an experimental
evaluation by [7], CLOSET is unable to handle
long biological datasets because of two reasons.
First, the FP-Tree is unable to give good com-
pression for long rows. Second, there are too
many combinations when performing column
enumerations.

3. Algorithm Design

This section presents the complete description
of the proposed algorithm. It should be noted
that steps 1 and 2 of this algorithm are the same
as in the H-Mine algorithm. The major inte-
gration of H-Mine is in step 3 where the closed
itemsets are mined.

268

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

3.1. Description of the Proposed Algorithm

Algorithm: Mining closed frequent patterns
integrating the pattern growth method.

Input: Transaction database, TDB which con-
sists of a set of items.

Output: Closed frequent itemsets.

Method: The algorithm can be divided into
several steps as below:

Step 1 — Find frequent items

In this step, the transaction database is scanned
once. During this scan, the count for each item
is taken. In the meanwhile, their counts are now
compared with the minimum support threshold
to generate the frequent items. Those items that
do not meet up with the minimum support are
considered infrequent and hence, discarded.

For each itemset of a transaction, let Freq(X) be
the frequent-item projection of itemset X which
includes only the frequent items found in each
transaction. The order should be left as in the
original database; the ordering is time efficient,
since the objective of the study is to reduce
the processing time. If multiple transactions
share an identical frequent itemset, they can be
merged into one with the number of occurrences
registered as count. It is easy to check whether
two sets are identical if the frequent items in all
of the transactions are sorted according to an
original fixed order.

To illustrate this step, see the example below:

Example 1: Using Table 1, let the first two
columns be the transaction database, TDB, and
setting the minimum support to 2. The frequent-
item projection is shown in the third column.

| Transaction ID | Items | Freq(X) |
10 a,c,d,e,f | a,c,d,e,f
20 a,b,e a,e
30 c,e.f ce.f
40 a,c,d,f a,c,d,f
50 c,e.f c,e.f

Table 1. The Transaction database (to be used as the
running example).

By scanning the database once, the complete set
of frequent items (a : 3,c:4,d :2,e: 4,f : 4)
are found and the output which forms the F'_List.
Note that item b has been pruned because its

support is 1 and does not meet up with the
min _sup = 2.

Following the order of the F_List, the complete
set of closed frequent patterns can be partitioned
into 5 subsets as follows:

(1) those containing item « (2) those containing
item ¢, but no item a (3) those containing item
d, but no item a nor ¢ (4) those containing item
e, but notitem a nor ¢ nor d (5) those containing
only item f.

Step 2 — Construct the L-struct for the
frequent-item projection in Table 1

Definition 4: L-struct is a data structure defined
below:

(1)Itconsists of a Lookup table, L (user-defined)
such that every occurrence of a frequent item
is stored in an entry with three fields: an
item-id, the support count and a node-link.
There is also a structure called TransLink
which constitutes one for each of the frequent-
item projections with two fields: an item-id
and a node-link, and the other one identi-
fying the first by its Trans-id, (denoted as
T;, where T represents each structure and j
denotes each transaction) [see Figure 1].

(2)When the frequent-item projections are load-
ed into memory, those with the same first
item (in the order of F_List) are linked to-
gether as a queue, and the entries in the
Lookup table as the head of the queue.

The proposed algorithm uses the concept of
data structure proposed in H-Mine, though there
is a difference in the way it builds and adjusts
links in other structure on identifying the closed
itemsets.

Step 3 — Mining the L-struct to generate
closed frequent patterns

Based on this definition, the remaining mining
process can be performed on the L — struct only
without referencing any information in the orig-
inal database. After that the sets of frequent pat-
terns will be generated, each of these mined one
by one to generate the closed frequent patterns
as follows:

e After scanning the TDB once and having col-
lected the frequent item projections of each

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

269

transaction, create a table-like structure la-
beled “L — struct” as described in Defini-
tion 4. Its support count registers the occur-
rence of each frequent item in the transaction
database.

e Following the subsets of the frequent items,
to mine the i-projected database (where i
represents each frequent item), create a new
structure that registers only the postfix items
of each of the subsets, L;-Lookup table. The
support count of these items records the oc-
currence of the corresponding item with i in
each frequent item projection. Then do the
following:

Let the sorted items in the L; Lookup ta-
blebe [i | 1], where I denotes each item in the
postfix item-list. Call insert_struct([i | 1),
The function insert_struct([i | I]) 1s per-
formed as follows:

Check the occurrence of in the L; Lookup
table, if I occurs with i in the 7} table, incre-
ment its count by 1. In this case, the set of
locally frequent items i.e. the items appear-
ing at least the defined min _sup times in the
i-projected database is found. Then each [
will now be combined with i to form ily, il5,
... il,,, where n is the number of frequent pat-
terns generated from L;. After getting each
il (where k = 1, n), build up links for L;.

Note: the i-projected database consists of
all the frequent-item projections containing
item i.

e Going by the definition of closed frequent
patterns in Section 1, the set of frequent
patterns obtained (including i itself) from
the above algorithm are checked to generate
closed frequent patterns. The procedure is:

o First check which of these itemsets is
closed, if there is one, then this is the
output, while Lookup table is created
for the remaining ones so far as they
are frequent. This Lookup table i.e.
Lix (where k = 1,n) will be drawn
using the L; Lookup table. The same
process for finding frequent patterns is
applied and then check for their corre-
sponding closed itemsets. This contin-
ues until all possible combinations have
been found.

o After the closed frequent itemsets con-
taining item i are found, the i-projected
databasei.e. i-queue is no longer needed

in the remaining of mining. To tra-
verse the i-queue once more, each fre-
quent item projection in the queue is ap-
pended to the queue of the next item in
the projection following i in the F_List.

The following pseudocode shows the procedure
that handles this part:

Procedure CloMine(y, z, s)
// for generating closed frequent itemsets
y := the projected item being mined
Z := concatenation of item being mined and its
postfix
tid := transaction identifier
§ 1= support
Add y to set of frequent itemset, F
For all frequent itemsets, F
If s(F;) = s(Fj) [wherei = 1,nandj = 2, n]
If tid(F;) = tid(F;)
Add F; and F; to closed itemset
Else
For all itemset k € F; and k € F;
If size(F;) > size(F))
Delete F; from list
EndIf
EndFor
EndIf
Else
Add F; to closed itemset
EndIf
EndFor

In comparison with H-Mine, CLOLINK checks
on the closed itemsets on every build of the
structure for the i-projected database. L— struct
does not store any other items aside the closed
frequent itemsets generated. The Construct()
function checks and prunes out all duplicated
itemsets. CLOLINK dynamically adjusts the
links in the mining process.

3.2. lllustration

The general idea of CLOLINK is shown us-
ing the same transaction database in Table 1.
Following the highlighted steps, the CLOLINK
algorithm is illustrated using Table 1 in Exam-
ple 1 (the same table used for illustration of
algorithms in referenced articles). On getting
the frequent-item projection, Figure 1 shows the
L — struct.

cldle|f

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

3(4(2]4|4

a

Lookup table, L

270

Figure 2. Lookup table, L,.

Y- ™
han et v |
o = T |~ mfememmccmccncann -
I
| — bl -
o]) -
|
(]
5) ol i -
i |
. -+
1 o < 0 | N
) 5 " S . N
I I = Y-
o
w | !
S L=
- ™ I
s I L u
“© | o o Ll
| [T)
t el mmpmiy | el
L “ | I]
. U] 1| @ | (5] | m (5]
~ T W ! I | |
2 [s | ' : T & A
S - e o | " ety |
i I I becdaad ! : | i !
& o o \ N | h. I) “
|||||||||| o
| [Y X - A i
o “ | 3 _ — !
o ™ | | s | 000 teamaa 4 [I |
ru. ! ! | I ! I
1 " | I ! |
o | |
—) becadecnnanann J
I I
o =3 © | ™ P S —— I e —— J
“ __m_ _m_ _“— __“_
| SRR = I N P —] o
o o © 3 =
L] ™ oy L

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

271

3|4l 2|44 I3 d| e|f
2 1 2
1
|
: 1
| i
1 I
1
! I c |d e |f i
i |
: 2 2 2 2 :
I 1
1 |
1 I
1 |
1 |
I |
I |
: oo == STERTTTIITIITI |
1 1
1 1
1 I
1 |
10 i pr— a c d e f
1 s |
T R N e | ||] :
r e H e
a : I'W""M'W'"'""""""<1
! 1
n | I a e
s 20 ! b
L ! | i
. . w i T
1 \ El
n ! === —
1
k o ! s C e f
| R R T
| : :
1 |]
1 1 3
1 | i
1 | 1
s W S
o i
! d f
40 Lo ' ol B I
umwj MMMMM ,,ll
1 b
1
i
i
1
1
50 i ;
5
| © e

Figure 3. Adjusted node-links after mining the a-projected database and L. Lookup table.

To mine the a-projected database, create a-
Lookup table, L, as shown in Figure 2. In
L,, every frequent item except for a itself, has
an entry with the same three fields as L. The
support count in L, records the support of the
corresponding item in the a-projected database.
For example, item ¢ appears twice with a in the
a-projected database, thus the support count in
entry c of L, is 2.

By traversing the a-queue once, the set of lo-
cally frequent items, i.e., items appearing at
least 2 times, in the a-projected database is
found, which is {c : 2,d : 2,e : 2,f : 2}.
This scan outputs frequent patterns {ac : 2, ad :
2,ae:2,af :2}. Alink is now built for L, ta-
ble as shown in Figure 2. To check for closure
itemsets, item a is contained in 3 transaction-1D
i.e. [10, 20, 40], whereas, ac, ad, af are not con-

tained in same transactions as a, thus {a : 3} is
closed. Itremains to check whether the frequent
patterns are closed.

Similarly, the process continues for the ac-
Lookup table. This output items d and f with
same supports: 2 and are thus considered to be
frequent, and then {e : 1} which is infrequent.
The frequent patterns {acd : 2,acf : 2} are
generated, which are now checked for closed
patterns. Since acd is contained in the same
transaction as cd, as and acd being a larger set,
it is then said to be closed.

Likewise, the itemset acf is also closed in ac.
This outputs only {acd : 2,acf : 2} as closed
itemsets. Each of these will now be checked to
see if there exists a larger set by dynamically
changing its link for acd and acf .

272

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

Lookup Table, L alcld e |f
| a2 s |4
1 [}
1 1
N i
£ 3
: f L [f
3 1
3 ?
: N 2 2
3 1
] H
E i
£ H
et
3 i
i 1 [
i (PRI SRS N C d , e f
T H 1
H t
r L R IR
E i
a |
n 20 b - *1 a € I
s E :
L b k
= [3 s s
i : f
n 3 3 f
k a0 E gl C e .
3 Il
f 1
B g
ot
B i o A e AR o
40 . N a c d f
b
3
F
k
3
L0 fr i e m N e f

Figure 4. Adjusted node-links after mining the c-projected database and Lookup Table, L.

For acd-projected database, there are {e : 1,f :
2}, only f is frequent and thus {acdf : 2} is
output as frequent pattern. Since there is no
larger set of it, it is considered to be closed.

For acd-projected database, d has already been
considered and there is no link for item e, thus
acf : 2 is output as closed itemset. The same
process continues for ad-projected database us-
ing the L, table, then the recursion backtracks to
find patterns containing a and d, but no ¢, (item
¢ has been considered in the mining of ac), this
outputs {e : 1,f : 2}, only item f is frequent
with ad. Thus, pattern {adf : 2} is frequent.
To check whether it is closed or not, it occurs in
the same transaction as ad and there is no larger
set of it, so it is considered to be closed.

For ae, from L, table, only item f will be consid-
ered whose support is 1 and thus not frequent.
Hence, itemset {ae : 2} is closed (note: items
¢ and d have been considered).

There will be no link for af in the L, table,
since all other items have been considered, thus
considered closed.

The overall output from the a-projected database
includes {a : 3,adf : 2,ae : 2,acdf : 2,acf :
2,af :2}.

After the closed frequent patterns containing
item a have been found, the a-projected database

1.e. g-queue is no longer needed in the remaining
of the mining.

The next step is to mine the c-projected database,
1.e. find closed itemsets containing item ¢, but no
a, using the same Lookup table, L, the lookup ta-
ble for c-projected database (Figure 3) is drawn
which includes only the postfix items of ¢, but
no a.

To mine all frequent patterns containing item ¢
but no a other subsets of frequent patters, there
is aneed to insert all the projections in the queue
to the proper queues. By traversing the a-queue
is appended to the queue of the next item from
in the projection i.e. ¢ as shown in Figure 3.

For the c-projected database, on creating the L.
table, the set of frequent items e, d and f is
found. This outputs ed : 2, ce : 3, and cf : 4
(i.e. d appears twice with c, e thrice with ¢ and

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

273

LookupTahle, L a|c |d |[e

i

T

r o

a

n

S

L 30

1

n

k
40
50

Figure 5. Adjusted node-links after mining the d-projected database and Lookup Table, L,.

f four times with c¢) as frequent patterns, a link
is now built for L. table. To check for closed
itemsets, item c is contained in 4 transactions
i.e. Trans-Id: 10, 30, 40, 50 and only {cf : 4}
is contained in the same transactions unlike cd
and ce. Thus {cf : 4} is output as close item-
set. To check any combination of ¢d and ce that
can be closed, lookup tables for c¢d and ce are
created i.e. L.z and L., table.

For L 4-projected database, using the L. lookup
table, items e and f are checked with cd with
supports of 1 and 2 respectively. Since item f
is the only one frequent with cd, thus cdf : 2 is
frequent and it is contained in the same transac-
tion as cd : 2.

For ce-projected database, only f : 3 is fre-
quent and thus {cef : 3} is frequent and thus
{cef : 3} is output as frequent pattern. Since
every transaction containing ce also has f, there
is a need to check whether there is any larger
set than cef : 3 and it is discovered that there is
no larger set of it. Thus, it is considered to be
closed, i.e., cef : 3.

To check if there is any combination of cdf
and cef that are closed, the link in the L.; and
L., will be changed dynamically. For the cdf -
projected database, only item e is to be checked
and it has been considered infrequent in cd,
there is no link for it.

Conclusively, in the c-projected database the
following patterns are derived as closed: {cdf :
2,cef :3,cf 14},

To check the d-projected database, only items e
and f will be considered without @ and c. By
traversing the d-queue once, the locally frequent
item is {f : 2} (Note e : 1 is not frequent and
thus will not be considered). This scan outputs
frequent pattern (df : 2) and builds up link as
shown in Figure 4. To check for the closed fre-
quent pattern, item d is contained in the same
transaction as df , but there is no larger set than
df : 2, thus picked as a closed itemset.

There cannot be any combination of df that
could be closed because on checking Figure 4 ,
there is no link, thus the mining completes here.

274

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

Therefore, the d-projected database has only df
as a closed itemset.

As for the e-projected database, create the L,
table which contains only item f', but no a nor ¢
nor d as shown in Figure 5. On checking the L,
table, the only locally frequent item is f : 3, the
output ef : 3, as the frequent pattern. To check
for the closed pattern, since item e occurs in 4
different transactions where ef does not occur,
the closed pattern will be e : 4.

Frequent pattern ef is now checked to see if it
has any combination that can be closed. On
checking the L, table, ef has no projected data-
base, thus considered as closed itemset.

The closed itemset for the e-projected database
includes e : 4 and ef : 3.

The remaining partition to be mined is that con-
taining only item f , i.e. the f-projected database.
On trying to create a lookup table for f, it is dis-
covered that f does not have any postfix items,
thus the mining completes on generating only
f : 4 as aclosed frequent itemset.

The last scan is to check for any duplication
[1] in the following closed patterns generated:
{a : 3}, {acdf : 2}, {af : 2}, {acf : 2},
{ae : 2}, {cf : 4}, {cdf : 3}, {cef : 3},
{df : 2}, {e : 4}, {ef : 3}, {f : 4}. On
cross-checking, it is discovered that itemsets:
{acdf : 2}, {adf : 2}, {acf : 2}, {cdf : 2},
{df : 2} all occur in the same transactions
where {acdf : 2} is the largest set of all,
thus picked as the closed frequent itemsets.
Also {ef : 3} occurs in the same transaction
as {cef : 3}, thus {cef : 3} is picked as
closed itemset. Likewise, itemsets {c¢f : 4}
and {f : 4} both occur in the same transaction,
butcf : 4 being alarger set, is picked as a closed
frequent itemset.

The overall output of the closed itemsets gener-
ated from the transaction database after remov-
ing duplication [1] is the set {a : 3}, {acdf : 2},
{ae : 2}, {cf : 4}, {cef : 3}, {e: 4} which is
the same closed pattern generated by A-Close,
CLOSET and CHARM.

The efficiency of the algorithm, as highlighted
below, comes from the comparison with other
closed frequent pattern mining methods:

e First, the complete search can be done in one
database scan by constructing the Lookup

tables at all levels simultaneously and dy-
namically changing the links.

e Also, it can be seen that the transaction iden-
tifiers in the structure make it easy to see
where each item occurs.

e Lastly, CLOLINK confines its search in a
dedicated space. All information needed can
be obtained from the structure, unlike with
some other algorithms where you have to
be checking through the database on every
scan.

4. Implementation and Performance Study

All the tests were performed on a 733MHz Pen-
tium III PC, WITH 128 MB RAM and 20 GB
HD running Microsoft Windows XP. CLOLINK
is written in Microsoft VISUAL Basic.NET.

In this paper, the runtime is the CPU time (start-
ing from the construction of the data structure to
the generation of patterns) and the support is the
absolute occurrence frequency. The databases
used are:

i. atelecommunication database from a PABX
telecommunication switch of historical life
of 7 months with size 11.8 MB. It is repre-
sented as T60135D660k, where T represents
the number of Callers’ names (i.e. 60); I rep-
resents the numbers of areas called (i.e. 35);
and D represents the number of records in
the database (i.e. 660,000).

il. acustomer — transaction database from a su-
permarket in Nigeria of historical life of 4
months with size 3.1 MB. It is represented
as T28I7D12K, where T, in this case, is the
number of the customer-identifiers (i.e. 28),
I is the number of items bought per transac-
tion (i.e. 7) and D is the number of records
in the database (i.e. 12,498).

Figure 6 shows the flexibility of the proposed
algorithm. With the growth of pattern length
the support threshold is decreasing. As the sup-
port threshold goes down, there is a change in
the number of patterns generated. The differ-
ence between the numbers of patterns gener-
ated in situations of applying various support
constraints is also depicted.

Figures 7 and 8 show the comparison of runtime
with CHARM on T60135D660k and T2817D12K

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

275

databases respectively. It can be seen that at
high support threshold, CLOLINK is a bit faster
than CHARM and at very low support thresh-
old the CLOLINK has difference from CHARM
and thus performs better.

Number of Patterns against Minimum

» Support —=— T60I35D660k
- —e— T28I7D12k
,,3 12
o 8
(2]
(2] 6 \\\
£
5 4
s 2

0

2 4 6 8 10

Min_Support

Figure 6. The Minimum support with the number of
closed patterns generated.

0.4 A

0.35 1 —B—CHARM
03 -

——
p—— CLOLINK
0.2 -
015] \

Run time(sec)

0.1 4
0.05 A

Min_Support

Figure 7. The Minimum support with the runtime (in
seconds) on T760/35D660k.

0.45 -

0.4 1 —-CHARM

035 1 ——CLOLINK
§ 0.3 -
@ 0.25 -
£
= 0.2 -
5 o015 -

0.1 -

0.05 -

0 T T T T 1
1 2 3 4 5
Min_Support

Figure 8. The Minimum suggort with the runtime in
seconds on T2817D12K.

In order to calculate the percentage difference
between the two algorithms, the following equa-
tion is used on both 760/35D660K and T2817-
D12K.

Runtime(CLOLINK)—Runtime(CHARM)
Z Runtime(CHARM)
N

) -100

Based on the above equation, it is discovered
that on 760135D660k, CLOLINK is by 17.12%
better than CHARM. Also, on 7287D12K,
CLOLINK is better by 17.92%. Conclusively,
CLOLINK performs better than CHARM at an
average of 18%.

5. Conclusion

This paper adapted the ideas of the H-Mine al-
gorithm to find closed frequent itemsets because
of its efficiency. This adaptation allows a pre-
sentation of a data structure called L_struct and
a memory efficient algorithm called CLOLINK
for discovering closed frequent itemsets. The
algorithm needs to scan the database only once.
In the experimental comparison of the perfor-
mance of CLOLINK against CHARM on T601/-
35D660k and T2817D12K, the result shows that
the proposed algorithm outperforms
CHARM on this database for the given ranges of
support levels. A major distinction of CLOLINK
from the previously proposed methods for min-
ing closed frequent itemsets is that CLOLINK
readjusts its link in mining different projected
databases. It integrates the advantages of the
previously proposed effective strategies to achi-
eve a higher performance. Furthermore, it is
shown that the interestingness of the closed fre-
quent itemsets can be shown by pushing various
support constraints.

6. Future Work

Real-time mining

Real-time databases are concerned with the stor-
age and collection of data under the time col-
lection constraints and time-constrained trans-
actions. Integrating closed frequent itemsets
mining into a real time database system is an
active research area where hidden and on-line
knowledge could be discovered on a real-time
basis.

276

CLOLINK: An Adapted Algorithm for Mining Closed Frequent ltemsets

References

[1]

C. LUCCHESE, S. ORLANDO AND R. PEREGO, Mining
frequent closed itemset without Duplicates genera-
tion,Proc. of the 2004 ACM-SIGMOD Int. Conf. on
Management of Data (2004).

N. PASQUIER, Y. BASTIDE, R. TAOUIL, AND L.
LAKHAL, Discovering frequent closed itemsets for
association rules, Proc. of the 7th Int. Conf. on
Database Theory (ICDT’99), (1999).

J. PEI, J. HAN, B. MORTAZAVI-ASL, H. PINTO, Q.
CHEN, U. DAYAL, AND M. C. Hsu, PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth, Proc. of the 2001 Int.
Conf. on Data Engineering (ICDE’01), (2001).

J. PEL, J. HAN, AND R. MAO, CLOSET: An Ef-
ficient Algorithm for Mining Frequent Closed
Itemsets, Proc. of the 2000 ACM-SIGMOD Int.
Workshop Data Mining and Knowledge Discovery
(DMKD’00), (2000).

J. PEL, J. HAN, H. LU, S. NISHIO, S. TANG, D. YANG,
H-Mine: Hyper Structure Mining of Frequent Pat-
terns in Large Databases, ICDM 2001 Proceedings
of the 2001 IEEE International Conference on Data
Mining, (2001).

J. HAN, J. PEL, AND Y. YIN, Mining Frequent Pat-
terns without Candidate Generation, Proc. of the
2000 ACM-SIGMOD Int. Conf. on Management of
Data (SIGMOD’00), (2000).

P. G. Ra1 AND G. S. YUDHO, ITL-MINE: Mining
Frequent Itemsets More Efficiently, Proc. of the
2002 Int. Conf. on Knowledge Discovery and Data
Mining (KDD’00), pp. 35-49, (2000).

L. SEYMOND, Schaum’s Outline Series: Theory and
Problems of Data Structures, McGraw-Hill Inc.,
Singapore, 1986.

M. BEN HADJ HAMIDA AND Y. SLIMANI, A Patricia-
Tree Approach for Frequent Closed Itemsets, World

Academy of Science, Engineering and Technology,
2005.

M. J. ZAKI AND C. Hsia0, CHARM: An efficient
algorithm for closed itemset mining, In SDM’02,
April, (2002).

M. J. ZAKI AND K. GOUDA, Fast vertical mining
using diffsets, Technical Report 01-1, RPI, 2001.

R. Mao, Adaptive-FP: An efficient and effective
methods for Multi-level Multi-dimensional frequent
pattern mining, M.Sc. Computer Science thesis, Si-
mon Fraser University, (2002).

U. NIRANJAN, R. B. V. SUBRAMANYAM, V. KHANAA,
An Efficient System Based on Closed Sequential
Patterns for Web Recommendation System, Inter-
national Journal of Computer Science Issues, Vol.
7, Issue 3, No. 4, May 2010.

H. Yao, H. J. HAMILTON, Mining itemset utilities
from transaction databases, Data & Knowledge En-
gineering (Elsevier), Vol. 59, pp. 603-626, (2006).

[15] D. BURDICK, M. CALIMLIM, J. FLANNICK, J.
GEHRKE, T. YIU, MAFIA: a maximal frequent item-
set algorithm, IEEE Transactions on Knowledge
and Data Engineering, 17(11), pp. 1490-1504,
(2005).

[16] J. HAN, J. PEL, Y. YIN, R. MAO, Mining frequent
patterns without candidate generation: a frequent-
pattern tree approach, Data Mining and Knowledge
Discovery, 8(1), pp. 53-87, (2004).

[17] E PAN, G. CONG, A. K. H. J. YANG M. J. ZAKI,
CARPENTER: Finding Closed Patterns in Long
Biological Datasets, SIGKDD 03, August 2427,
Washington, DC, USA, (2003).

[18] R. AGRAWAL AND R. SRIKANT, Fast algorithms for
mining association rules, Proc. of the 1994. Int.
Conf. on Very Large Data Bases (VLDB ’94), pp.
487-499, (1994).

Received: November, 2011
Revised: December, 2012
Accepted: December, 2012

Contact address:

Adebukola Onashoga, Ph.D.
Department of Computer Science
University of Agriculture

P.M.B 2240

Abeokuta

Ogun State

Nigeria

e-mail: onashogasa@gmail.com

ADEBUKOLA ONASHOGA is a lecturer at the Department of Computer
Science, Federal University of Agriculture, Abeokuta, Nigeria. She has
a Ph.D. degree in computer science, with a focus on computer security
and data mining. She has published in both international and local jour-
nals. She has attended and presented papers at reputable international
conferences. Her current research interests include computer security,
data mining and pervasive computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

