Journal of Computing and Information Technology - CIT 19, 2011, 2, 105-112 105

doi:10.2498/cit.1001419

Evolutionary Synthesis of

Cellular Automata

Jernej Zupanc' and Bogdan Filipi¢?

! Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2 Department of Intelligent Systems, JoZef Stefan Institute, Ljubljana, Slovenia

Synthesis of cellular automata is an important area
of modeling and describing complex systems. Large
amounts of combinations and candidate solutions render
the usage of deterministic approaches impractical and
thus nondeterministic optimization methods have to be
employed. Two of the typical evolutionary approaches
to synthesizing cellular automata are the evolution of a
single automaton and a genetic algorithm that evolves
a population of automata. The first approach, with
addition of some heuristics, is known as the cellular
programming algorithm. In this paper we address the
second approach and develop a genetic algorithm that
evolves a population of cellular automata. We test both
approaches on the density classification task, which is
one of the most widely studied computational problems
in the context of evolving cellular automata. Comparison
of the synthesized cellular automata demonstrates unex-
pected similarity of the evolved rules and comparable
classification accuracy performance of both approaches.

Keywords: cellular automata, cellular programming al-
gorithm, density classification task, evolutionary com-
puting, genetic algorithm

1. Introduction

Cellular automata are a framework for modeling
complex systems. Even though they were in-
troduced in 1940s with primarily experimental
motives [1, 2], their modeling ability has since
been applied in various research areas and real
life problems, for instance: biological modeling
[3], cryptography [4], traffic modeling [5], etc.
The general approach to modeling with cellu-
lar automata is to use an optimization method
for synthesizing its elements: the neighborhood
and the rule table. Even in optimization of one
element of a cellular automaton, the rule table,
the space of candidate solutions is still immense.

Therefore, a genetic algorithm and its deriva-
tives are commonly employed to find a cellu-
lar automaton that best solves a given problem.
One such derivative is the cellular programming
algorithm (CPA) which begins with a random
cellular automaton and synthesizes its rule table
through multiple steps of evolution [6, 7]. This
algorithm is known to perform well on tasks
such as the density classification task (DCT)
[8], the synchronization task [9], etc. In this
paper, we consider a more general genetic algo-
rithm (GA) to find the best cellular automaton
by evolving a population of cellular automata.
Both the proposed GA and the CPA are applied
to the DCT. The main objective of this study
is to compare the rules obtained with both ap-
proaches. The rules evolved with the CPA tend
to be quasi-uniform with only a small subset of
all possible single cell rules being present. As
this has a positive effect on solving the DCT,
we were interested in finding out whether such
rules also dominate when cellular automata are
evolved with the GA.

The remainder of this paper is organized as
follows. First, an overview of the theoretical
background on cellular automata is provided,
followed by a description of the DCT. Next, we
describe the CPA and the GA. Then we present
numerical experiments and analyze the results.
The paper concludes with a summary of the
work and directions for further research.

2. Cellular Automata

Cellular automata were introduced by Ulam and
Von Neumann in the 1940s as a formal frame-
work to study behavior of complex and com-
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prehensive systems [1, 2]. They are dynamic
systems, discrete in time and space. Here, dis-
crete means that space, time, and the properties
of an automaton can only have a finite number
of states. Although cellular automata can theo-
retically exist in n-dimensions, most commonly
one-, two- and three-dimensional automata are
used. A cellular automaton is a lattice of cells
where each cell is a binary memory element.
Moreover, a cellular automaton consists of the
following elements: a rule table, information
about each cell’s neighborhood, and the state of
the automaton. The rule of each cell defines
what its state will be in the next time step, de-
pending on the state of its neighborhood. In
this context, different neighborhood definitions
are possible, although in most cases cells near
the observed cell in the lattice are chosen to be
its neighbors and (together with the cell itself)
represent the cell’s neighborhood. The rules of
a cellular automaton are presented in a rule ta-
ble. In this respect, the behavior of all cells of
the automaton is described. When all cells of a
cellular automaton use the same rule, and there-
fore behave in the same way, the automaton and
its rules are called uniform. Since in each step
the states of the automaton cells are calculated
from the rules and the cells neighborhoods, the
states before the first step have to be defined dif-
ferently. These states are called the initial con-
figuration and typically depend on the problem
being solved. When talking about synthesizing
cellular automata, one has in mind finding the
rules (or even neighborhoods) that best solve

this problem. This is usually done with an op-
timization algorithm for searching the space of
all possible rules. After the synthesis, the cel-
lular automaton is run for a predefined number
of steps and the states dynamics are observed.
If required for the problem we are solving, the
final states after the cellular automaton run are
also observed. In this respect, the DCT is espe-
cially interesting.

As this paper focuses on approaches based on
genetic algorithms, we frequently use the term
evolving an individual or evolving a cellular au-
tomaton. Nevertheless, in this context the only
element of the cellular automaton being evolved
are its cell rules — the rule table.

3. Density Classification Task

The DCT is a computational problem proposed
in 1978 by Gdcs, Kurdyumov, and Levin [§]
and is also referred to as the majority task. To
solve the DCT, a cellular automaton is required
to classify a finite binary sequence based on the
prevailing number of zeros or ones. Standard
formulation of the DCT states that a binary, one-
dimensional cellular automaton has to converge
to a final configuration of all cells in state 1 when
the initial configuration contains more ones than
zeros, and to a configuration of all cells in state
0 when the initial configuration contains more
zeros than ones. The answer to the majority
problem is stored in the states of the cellular
automaton after the run and is considered to be

(b)

(a)

(c) (d)

Figure 1. Four examples of solving the DCT with a one-dimensional cellular automaton consisting of 149 cells. Each
graph represents the history of steps leading to the final solution. Solving proceeds vertically top-down, each line
representing one step. The first line represents the initial configuration and the last line the solution computed with

the cellular automaton. The images show solving the DCT: (a) with the majority rule 232 (Wolfram notation [6],
Table 2) and the initial density of ones 0.4, (b) with the majority rule 232 and the initial density of ones 0.6, (c) with
a heterogeneous rule table and an initial density of ones 0.4, (d) with a heterogeneous rule table and an initial density

of ones 0.6.
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the result of classification [2]. Solving this task
with a computer that has centralized processing
is trivial, however, let us once again draw atten-
tion to the fact that the next state of each cell
in the cellular automaton is decided only upon
the states of its neighborhood. Consequently,
the processing is distributed, and solution can-
not be obtained by simply counting the number
of ones and ordering the cells of the cellular
automaton into the correct state. The cells pro-
cessing only local information have to solve the
task as a whole and this makes solving the DCT
with cellular automata challenging. Four exam-
ples of solving the DCT with cellular automata
can be seen in Figure 1.

4. Cellular Programming Algorithm

An established algorithm for synthesizing cel-
lular automata is the CPA, presented in Figure 2.
It has been successfully applied to solving prob-
lems such as synchronization, square filling and
the majority task [6, 7]. Although its core is the
GA, there are a few specifics worth mentioning.
Instead of evolving a population of candidate
solutions, the CPA focuses on a single individ-
ual and evolves its rule table. This is not done
by applying the crossover operator to the rule
tables of a population of cellular automata. In-
stead, every single cell’s fitness is compared to
the fitness of its neighboring cells. Rules of
the cells with low fitness are replaced with the
rules obtained from better performing neighbor-
ing cells. The cell rules with the highest fitness
among the neighbors are kept and in some cases
replace those with lower fitness (Figure 3). As

FOR each cell; in CA DO
Initialize cell; rule table
cell; fitness f; 0

END FOR

c 0

WHILE not done DO
Generate random initial

configurations IC
Run CA on all IC for M steps
FOR each cell; DO

IF cell; correctly classifies
THEN
f,=f; + 1
END IF
END FOR
Calculate fitness of CA from cell
fitness
c c+1
IF ¢ mod C = 0 THEN
FOR each cell; DO
Calculate nf;(c)
IF nf;(c)=0 THEN
No change
ELSIF nf;(c)=1 THEN
Exchange with the better
Mutation
ELSIF nf;(c)=2 THEN
Exchange with crossover ...
merging of better neighbors
Mutation
END IF
£i 0
END FOR
END IF
END WHILE

fi: classification accuracy of cell;
c: counter of configurations
nf;(c): number of fitter neighbors

Figure 2. Pseudo code of the CPA.

aresult, rules that are more likely to lead to mis-
classification are eliminated and replaced with
better ones from the neighborhood.

IF f,_, > max(f, f,,)

|

(a)

(b)

(c)

Figure 3. Examples of generating new individuals (rule tables) with the crossover operator in the CPA: (a) exchange
with crossover of both better neighbors, (b) exchange with the single better neighbor, and (c) no change. The
function f; denotes the fitness for the cell i.
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5. Genetic Algorithm

The other approach to the cellular automata syn-
thesis is the GA, presented in Figure 4. This
algorithm begins with a population of individu-
als and through applying evolutionary operators
improves the average fitness of the population.
Such approach leads to synthesizing exceptional
individuals in the population.

GA is a population-based meta-heuristic opti-
mization algorithm [10]. It belongs to a fam-
ily of evolutionary algorithms and uses mech-
anisms inspired by biological evolution: re-
production, recombination, mutation, and se-
lection, to find (near)optimal solutions to the
problem considered. Candidate solutions to
the optimization problem play the role of in-
dividuals in a population, and the cost function
(also called the fitness function) determines the
environment within which the solutions exist.
Through repeated application of the genetic op-
erators over the population of candidate solu-
tions it is expected that average fitness of the
population increases. After multiple genera-
tions, such repetition usually leads to finding at
least suboptimal solutions to the problem as ex-
ceptional individuals are likely to appear in the
population.

As both the CPA and the GA come from the
family of evolutionary algorithms, the differ-
ence between the two can also be viewed from
the perspective of the two major approaches to
evolutionary computing: the Michigan [12] and
the Pittsburgh [13] approach. The CPA can be
associated with the Michigan approach since it
evolves a single individual. This approach pro-
vides an interesting property since although all
rules compete to participate in the next genera-
tion, they also have to cooperate to establish a
rule base that performs well with respect to the
objective.

A drawback of the Michigan approach is that
evolving a single individual and constant appli-
cation of a priori knowledge can lead to less
diverse solutions. The Pittsburgh approach, on
the other hand, applies evolutionary operators
to a population of individuals, which compete
for involvement in the next generation. As a
result, a greater diversity in the population pool
is achieved, since there are no limitations to the
structure of individual cellular automata. Our
GA uses the Pittsburgh concept as we believe

g=1
P(g) = population of CA’s
FOR each CA in P(g)

FOR each cell; in CA
Initialize cell; rule table
cell; fitness f; = 0

END FOR

END FOR
WHILE not done DO

Generate random initial...

configurations IC

FOR each CA in P(g)

Run CA on all IC for M steps
FOR each cell; in CA DO
IF cell; correctly class. THEN
fi=1£f +1
END IF
END FOR
Calculate fitness of CA...
from cell fitness

END FOR

% Tournament selection

Select P’(g) from P(g)

% crossover of CA’s

FOR pairs of CA from P’(g)
Crossover at random place...
in CA rule table

END FOR

% mutation

Randomly mutate bits ...

in rule tables of P’(g)

g = g+l

P(g) = P’ (g-1)

END WHILE

f;: classification accuracy of cell;
g: counter of generations

Figure 4. Pseudo code of the GA for evolving
populations of cellular automata.

that the advantages of a diverse population pool
should more than compensate the lack of not
imposing any limitations to the structure of so-
lutions.

6. Experiments and Results

6.1. Experimental setup

Let us first focus on the properties of the cel-
lular automata used in the experiments. As
listed in Table 1, the cellular automata are one-
dimensional and consist of 19 cells. The cell
neighborhood contains the cell i together with
its left neighbor i — 1 and right neighbor i 4 1.
This way, a neighborhood of size 3 is formed.
The outmost cells (number 1 and 19) are consid-
ered neighbors. A one-dimensional /ine cellular
automaton can therefore be viewed as a circle,
so every cell has its complete neighborhood.
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Property || Value
Number of cells 19
Neighborhood size 3
Cell rule length 8
Cell states Binary
Cell rules Nonuniform
Number of dimensions 1

Table 1. Properties of the cellular automata used in the
experiments.

Since the behavior of each cell is decided upon
the states of its neighborhood cells and the states
are binary, the size of every cell rule is 23 bits.
A widely accepted notation for rules is the Wol-
fram notation, presented in Table 2, which uses
the decimal system to describe binary presented
rules [6].

| Cell neighborhood || New value of the cell |

000 0
001
010
011
100
101
110
111

—_— = O = OO

Table 2. The majority rule, also called rule 232 in
Wolfram notation, for a one-dimensional cellular
automaton with a neighborhood of 3. If we join the bits
in the right column ottom-u}()) into a word, it can be
interpreted as 11101000, = 2324.

As no framework to force uniform rules among
the cells is imposed in the GA approach, a cellu-
lar automaton can be synthesized so that every
cell behaves according to its own rule. Con-
sequently, the size of a single rule table as an
individual in the GA is 152 bits, and the solution
pool consists of 2152 possible individuals. Fur-
thermore, to evaluate the quality of individuals
in the GA, there is a need for a fitness function.
To evaluate a cellular automaton, the latter has
to solve the DCT for a number of random ini-
tial configurations, and its fitness is based on
the classification accuracy. Duration of a sin-
gle run is chosen to be M = 21 steps, which

was experimentally proven to be enough for the
cellular automaton to reach a fixed state. After
each run, each cell of the cellular automaton is
given a score of 1 if the cell is in the correct
state and O otherwise. The fitness of a cell is
accumulated over all different initial configu-
rations, where 100% fitness after the last run
means that a cell was in the correct state at the
end of the DCT for all initial configurations.
There is only a slight difference between the fit-
ness functions of the GA and the CPA: while in
the CPA a single cell’s rule competes against its
neighbors, individuals in the GA are entire rule
tables — therefore their fitness is calculated as an
average of all individual cells’ fitness. Another
fact to note is that all initial configurations are
generated randomly so that all different densi-
ties of ones are equally probable. In this way,
we avoid the difficulties which could occur if
zeros and ones in the cells of all initial con-
figurations were equally probable. In such a
case, finding the optimal rules with any evolu-
tionary approach is not feasible. The small bit-
difference between configurations would often
cause configurations with small majorities of
zeros or ones to be wrongly classified and thus
render the optimization algorithm useless.

During the synthesis of rules, each cellular au-
tomaton was tested on 500 random initial con-
figurations. Both algorithms were run 100
times with the algorithm parameter settings dis-
tributed randomly in such a way that their com-
binations approximately covered the ranges
where the algorithms are known to perform
well. Results presented in this paper are ob-
tained with the best cellular automata each of
the algorithms synthesized. The algorithms per-
formed best when their parameters were set as
follows:

e number of generations = 104,

e number of fitness tests = 500,

e probability of mutation = 0.01,

e probability of crossover (GA) = 0.7,

e probability of crossover (CPA) = 0.9,
e number of crossover points (GA) = 4,
e number of crossover points (CPA) = 1,
e population size (GA) = 200,

e tournament size (GA) = 50.
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Further, let us take a look at both algorithms
and the specifics of the experiments. For the
GA (Figure 4), a population of 200 rule tables
is randomly chosen so that zeros and ones are
equally represented and no specific patterns are
imposed. This is done only for the initial popu-
lation, as later in the evolution new individuals
evolve from their parents. Each individual is ad-
ministered to the fitness function for evaluation
of the quality of solving the DCT. After fitness
of all the individuals is examined, tournament
selection is used to select the individuals for the
mating pool of the subsequent generation [11].
Every parent for the next generation is chosen
as the best individual (highest fitness) among
randomly chosen representatives in the tourna-
ment. The size of the tournament is selected
experimentally and set at 50. The crossover op-
erator is then applied to the mating pool where
pairs of individuals are split apart at four ran-
dom points and the parts are recombined into a
pair of new individuals. These are exposed to
mutation, which is executed randomly, bitwise.
The individuals generated through these steps
represent a new population and are subjects to
fitness evaluation.

©
W

©o
o =< N
T T T

©
T T

o N
T T

Correctly classified cells [%]
o ® o W ® © ©
o ©

]
S
.

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of cell in the CA

Figure 5. Fitness of the uniform CA 232 and the CA

evolved with the GA and the CPA on 10° initial
configurations.

6.2. Results and comments

Here we present the best cellular automata syn-
thesized by both algorithms and their proper-
ties, and comment on the results. At this point,
it should be explained what is meant by the
fitness of a population in both cases. When
dealing with the CPA, the fitness of a popu-
lation is the fitness of the cellular automaton
being evolved, as there is only one, while in

the context of the GA it is the maximum fit-
ness that any individual cellular automaton in
the observed population achieves.

It can be seen (Figure 7) that after about 200
generations, when the fitness of the population
evolved with the GA reaches a plateau, the fit-
ness achieved with the CPA keeps improving.
It is to be noted that the horizontal axis is log-
arithmic and that the differences in the rate of
change of fitness are not so obvious on the linear
scale. At the end of the evolutionary synthesis,
the best fitness achieved with the CPA is 91%
classification accuracy, whereas with the GA it
is 89%.

Cell 1

SSSSSSSSSSSSSSSSSS

2 3 45 6 7 8 910 1112 13 14 1516 17 18 19

SWESSS | SSS

CPA

Rules: E

224 226 232 234 240

Figure 6. The uniform 232 rule table and the rule tables
evolved with the two algorithms. Cell numbers
correspond to successive numbers of the cell rules in the
cellular automaton, and the rule numbers denote the cell
rules in Wolfram notation.

Fitness

10 10 10° 10° 10
Number of generations

Figure 7. Best cellular automaton fitness during the
evolution with both approaches.

The best cellular automata synthesized with
both algorithms, together with the uniform 232
rule table, are presented in Figure 6. Both
approaches find rule tables which can be de-
scribed as “quasi-uniform rules of the cellu-
lar automata”, meaning that the majority of
cells use only a small subset of possible rules.
Because of the nature of the CPA that prop-
agates the best rules across the neighboring
cells, quasi-uniformness of its resulting cellu-
lar automata is expected. On the other hand,
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it is somewhat surprising to find such quasi-
uniformness in the cellular automata evolved
with the GA. In contrast to the CPA, the GA
provides no framework for propagating the cell
rules between the cells and neither the crossover
operator implies such behavior.

The best cellular automaton each algorithm
evolves (in 100 runs with different algorithm
parameter settings) is tested over 10° random
initial configurations which are equal for both
algorithms. These runs on test initial configura-
tions are performed to compare the performance
of individual cell rules inside each cellular au-
tomaton rule table. The reason for comparing
the efficiency of the cell rules was the unusually
high occurrence of the rule 226 in the cellular
automaton evolved with the CPA. From Figure 6
and Figure 5 it is evident which cell rules per-
form best. On the horizontal axis in Figure 5, the
leftmost cell in the automaton is labeled as 1 and
the rightmost cell is labeled as 19. In the same
graph, it is evident that both synthesized cellu-
lar automata classify the tested initial configu-
rations noticeably better than the uniform 232
cellular automaton. The classification accuracy
analysis of the cells in the uniform 232 cellu-
lar automata shows that all cells have about the
same, 84% classification accuracy. Their per-
formance is similar to the cells with the same
232 rule in the cellular automata synthesized
with the GA. As the latter is quasi-uniform, a
noticeable increase in cell fitness can be seen
between the cells 10 and 14 where the combi-
nation of rules 226 and 234 dominates. It is
interesting that these two rules are dominantly
present also in the cellular automaton synthe-
sized with the CPA. The combination of rules
226, 234 and 224 is the best cellular automaton
evolved in the experiments. Almost all of its
cells exceed the classification accuracy of 90%
and only one of the 234 cells falls below the
90% mark. Interestingly, both best cellular au-
tomata the evolutionary approaches synthesized
were quasi-uniform.

7. Conclusion

Cellular automata have the ability to describe
and model complex systems. Two approaches
to the cellular automata synthesis tested in this
study are the CPA and the GA. The experi-
ments demonstrate that both algorithms are able

to synthesize cellular automata capable of suc-
cessfully performing the density classification
task. When tested on the randomly generated
initial configurations, the average fitness of both
evolved cellular automata exceeded the fitness
achieved with the best known uniform cellu-
lar automata with the rule 232. An interesting
property of the best cellular automata evolved
with the two algorithms is that both have quasi-
uniform rules. This is somewhat expected for
the CPA, but comes as a surprise with the GA.
The resulting cellular automata rules consist of
only five distinct rules which is a small amount,
since the maximum number of distinct rules
both algorithms could evolve is 38 (sum of the
number of cells in both cellular automata). The
most frequent rule in both resulting automata
is the rule 226, which is not the rule that con-
stitutes the best uniform cellular automata (232
from the literature). In addition, it was ob-
served that the fitness curve of the GA reaches
a plateau after a certain number of generations,
while with the CPA it further improves.

Performance improvement of the GA could pos-
sibly be achieved by adaptable algorithm pa-
rameters that would allow the algorithm to
smoothly converge to an even better solution.
Moreover, decreasing the probability of crossover
and mutation and decreasing the number of
crossover points in later generations could also
result in better convergence. Another interest-
ing issue for future work would be merging both
approaches: first synthesizing a good solution
with the CPA and then passing it to the GA for
further improvement. In this way, the advantage
of individual rule propagation between cells in
the CPA would be merged with the diverse pop-
ulation property of the GA for fine tuning.
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