
Journal of Computing and Information Technology - CIT 19, 2011, 2, 71–82
doi:10.2498/cit.1000911

71

Using Actors to Build a Parallel DBMS

Walid-Khaled Hidouci and Djamel Eddine Zegour
Ecole Nationale Supérieure d’Informatique, (ESI), Oued-Smar, Algeria

In this paper, we present the design and the architec-
ture of a parallel main memory database management
system. We focus on concurrency control scheme and
recovery. Our prototype is based on the concept of
“database actors”, an object-oriented data model well
suited for parallel manipulations. The storage sub system
is built upon distributed Ram-files using SDDS (Scalable
Distributed Data Structures) techniques. A nested trans-
action model is proposed and used to handle concurrency
access and recovery. We have also proposed novel
approach, based on wait-die, to implement a distributed
deadlock prevention technique for our model of nested
transactions.

Keywords: parallel DBMS, actor programming, SDDS
(Scalable Distributed Data Structures), nested transac-
tions, concurrency control, locking, indirect deadlocks,
recovery, checkpoints, 2PC

1. Introduction

In distributed AI, actor programming languages
were used to implement distributed inference
engines and multi-agent systems. One of the
main advantage of such an architecture, is to
distribute the effort for problem solving over
a number of autonomous agents, thereby re-
ducing the complexity of the problem. Actor
languages are also used in the development of
distributed open systems where each compo-
nent is described by an autonomous dynamic
object (called ‘actor’) that encapsulates a part
of the global knowledge. To achieve a com-
mon goal, actors must collaborate by means of
messages passing. The system can be extended
or modified dynamically by creating new actors
and inserting them into the running system with-
out global reorganization (Agha 1986; Hewitt
1977; Yonezawa 1990).

Actors are also recently used for concurrent ap-
plications that combine event-based and multi-
thread architectures, such as GUI desktop appli-
cations and message passing in virtual machines
(Schäfer, Poetzsch-Heffter 2010; Haller, Oder-
sky 2009; Schippers et al. 2009)

In database field, main memory databases sys-
tems (MMDB) are an attractive solution for
OLTP database applications which require very
high throughput and fast response time (Kall-
man et al. 2008), because data reside in main
memory and secondary memory accesses are
only needed for recovery purposes (namely:
logging and checkpointing) (Garcia-Molina,
Salem 1992, Jagadish et al. 1993; LeGruenwald
et al. 1996; Lin, Dunham 1997). Another way
to improve performances in database systems is
via parallelism and distributed computing (De-
Witt, Gray 1992; DeWitt et al. 1996). However,
building a parallel database system is known to
be among the most complex tasks in software
development.

The main idea in Act211 project is to apply the
concepts of distributedAI, using actor paradigm,
to build a parallel DBMS. In this context, we
have developed an object-oriented data model
based on actor model for concurrency program-
ming (which we called DB-Act). We also
used the Scalable Distributed Data Structures
(SDDS), a class of dynamic fragmentationmeth-
ods, to store data in distributed main memory
(Litwin et al. 1993). These methods (SDDS)
can effectively manage huge data sets over clus-
ter nodes with some interesting features, such
as (Alaei et al. 2010):

• Absence of a centralized repository, thereby
avoiding bottlenecks;

1 Act21, ANDRU research project of the Algerian Ministry of High Education and Research.

72 Using Actors to Build a Parallel DBMS

• Asynchronous updates of access functions,
implying the absence of global reorganiza-
tion;

• Dynamic distribution of data across all nodes
in the network, facilitating load balancing in
the system.

For this purpose, we have also developed an
SDDS method called CTH* (distributed Com-
pact Trie Hashing) to store the databases man-
aged by Act21. As far as we are aware of, it is
the first time that SDDSare used to build a paral-
lel DBMS. There were two previous works that
concern the coupling of SDDS techniques with
existing DBMS (Litwin, Sahri 2004; Ndiyae
2000). Their main purpose is to add some scal-
ability to the database system by maintaining
a partitioning scheme dynamically adaptable to
the size of the database.

In this paper, we focus on concurrency con-
trol and recovery issues that permit to manage
nested transactions in Act21 parallel DBMS.
The main functionalities of our transactional
system are:

• The design of a nested transaction model
adapted to our actormethods execution sche-
me. In this model, upward and automatic
downward locks inheritance are provided for
transactions a long a hierarchy path.

• The usage of “identifying strings” to times-
tamps transactions in the concurrency con-
troller. This permits the “wait for commit”
relationship to be straightforward handled
and hence, facilitate the adaptation of dead-
lock prevention techniques (like wait-die or
wound-wait) in distributed nested transac-
tions.

• The adaptation of physical logging to the
SDDS servers level, provides the ability to
do fuzzy checkpointswithout interferingwith
client transactions.

There are two major contributions of the present
work:

• We show that nested transaction models can
be adapted to actor programming paradigm
to effectively build complex parallel database
systems.

• Wepresent an implementation of nested trans-
actions and recovery techniques adapted to
data management with SDDS methods.

The remainder of this paper is organized as fol-
lows: In Section 2 we present an architecture
overview of Act21 parallel DBMS, we briefly
present the concept of “database actors” and
the SDDS-based storage sub-system. Section 3
is devoted to our nested transaction model im-
plemented in Act21, concurrency control and
recovery techniques are described. Section 4
presents some related works and Section 5 con-
cludes the paper.

2. Architecture Overview

Act21 is a parallel DBMS running on a Linux
cluster. It is functionally divided into three lay-
ers (see Figure 1): storage sub-system (SDDS
servers), Act21 kernel (database actors: DB-
Act) and external user layer (SQL and applica-
tion programs).

Figure 1. Act21 Architecture.

Act21 data model is very close to the object
model, but is based on programming actors in-
stead of the traditional class approach (Hidouci,
Zegour 2008). It is mainly based on the notion
of “databases actor” introduced below.

Database actors (DB-Act) are a kind of active
objects oriented to database applications. There
are three types of DB-Act:

• Type actors (T-Act): These actors represent
user data types. Their role is to maintain and
manage the stored data and to answer queries
from other actors in the system. These are
similar to classes in the object model.

Using Actors to Build a Parallel DBMS 73

• Collection actors (C-Act): These actors are
containers. They allow to store a collection
of data and can be used to represent some
multivalued attributes or to store temporary
results of queries.

• Request actors (R-Act): These are program-
ming actors. They don’t have predefined
role as the first two, their behavior must be
specified entirely by the user or by an appli-
cation program. We use this kind of actors
to make queries to the database.

These actors communicate through synchronous
and asynchronous messages:

1. x=send method-name(parameters,. . .)
to receiver-actor /* Synchronous message
*/

2. send method-name(parameters,. . .):
continuation-actor to receiver-actor/*Asyn-
chronous message */

In the first approach, method invocation is a
blocking event, since the caller (sender actor)
waits until the receiver actor finishes the exe-
cution of the called method and returns a re-
sponse. In the second approach (asynchronous
messages), method invocation is non blocking,
the sender triggers the execution of the called
method and continues in parallel with the called
method. Eventually, the result of the invoca-
tion can be forwarded to another actor in the
system. This is called ’continuation’ in actor
programming languages (Agha 1986).

The storage sub-system is composed of a set
of SDDS servers managing distributed Ram-
files using the distributed Compact Trie Hash-
ing (CTH*) fragmentation technique (Zegour
2004). These SDDS servers store the instances
of T-Act (Type actors) and the contents of col-
lections (C-Act) i.e. the database.

Distributed Ram-files (files maintained in main
memories of the cluster nodes) are composed by
a set of SDDS-servers that store records in main
memory at each node. Application programs
that access these files are called SDDS-clients.

Each node of the cluster contains a set of database
actors and one or more SDDS servers. The
entry-point of the cluster distributes database
actors using PVM2 tasks and offers SQL and
application program interface to the database
users (Figure 2).

Some actors (namely T-Act and C-Act) com-
municate with SDDS-servers to store and ma-
nipulate data. These are considered as SDDS-
clients. AnSDDS-servermanages a bucket con-
sisting of a fixed number of pages (I/O transfer
unit). Pages contain records of the form: <key,
attribute value>.

We assume that the size of main memory is suf-
ficient for all the SDDS-servers and all actors
for a particular node. The entire database is
then kept in distributed main memories. The
set of disks attached to each node are used only
to perform checkpoints and logging activities.

Figure 2. Nodes and entry-point of the cluster.

2 PVM: Parallel Virtual Machine, a library to build clusters (http://www.csm.ornl.gov/pvm/)

74 Using Actors to Build a Parallel DBMS

Figure 3. Node components.

3. Transaction Management

Transaction management and recovery concern
specifically type actors (T-Act), collections (C-
Act) and SDDS-servers, because they repre-
sent the distributed database. We recall that
the whole T-Act instances and C-Act contents
are managed by the SDDS-servers. Thus we
have to adapt the conventional transaction ar-
chitecture (Bernstein et al. 1987) where each
site maintains one Transaction Manager (TM),
one Concurrency Controller or scheduler (CC)
and one Data and Recovery Manager (DRM),
to an architecture where each site maintains a
multitude of these modules (TM, CC,. . .). Each
SDDS server implements one concurrency con-
troller (using strict 2PL) to schedule the re-
ceived data access operations (reads, writes, in-
serts, deletes. . .) and one data manager (DM)
to execute them.

In Act21, there is one TM per site (or node),
whose role is to coordinate the start and termina-
tion of transactions. The data access operations
are issued in T-Act and C-Act (SDDS-clients
managing data files) that are responsible for
forwarding them to the correct SDDS-servers to
be executed. Thus, T-Act and C-Act are doing
some traditional TM’s functions. There is also
a Recovery Manager (RM) (one per site) that
collaborates with all the DM located in the same
site (SDDS-servers) to perform checkpointing
during normal operations or recovering after a
crash (see Figure 3).

The execution of an actor method is considered
as a transaction. The nested model is then a
good option to take into account the hierarchy
of method calls (Figure 4). In this case, a parent
transaction can run multiple sub-transactions,
themselves can launch other sub-transactions,
thus forming a transaction tree whose root is

Figure 4. Nested transactions in Act21.

Using Actors to Build a Parallel DBMS 75

initiated by an external client (user or applica-
tion program). The root transaction is called
top-level transaction (TL-transaction).

Because synchronous messages are blocking
calls, we consider that the execution of a method
(Method2) following a synchronous message
from a transaction T (Method1), does not gen-
erate a new transaction, unlike the model of
Harder andRothermel (Harder, Rothermel 1993).
In fact, the same transaction T continues its exe-
cution in a different client space (that of the ac-
tor running Method2). When the called method
(Method2) terminates, the execution of T re-
turns to the initial client space (Figure 4).

However, the execution of a method (Method3
in Figure 4) following an asynchronous mes-
sage (non blocking call) from a transaction T
generates a new sub-transaction T’ that runs
in parallel with T. When T’ terminates (pre-
commits), the locks it had acquired during its
execution will be “inherited” by its parent trans-
action T, offering the opportunity for other sub-
transactions of T to ask for these locks if they
need them. This is the principle of “upward
inheritance of locks”. If T’ aborts, the locks it
held (i.e. those that have been acquired through
access operations) will be released.

Recall that a lock inherited by a transaction T
does not give it the right to access the data, but
just to limit its sphere of visibility to T and to its
sub-transactions. Thus, T and its descendants
will have the right to request the lock.

InHarder andRothermelmodel (Harder, Rother-
mel 1993), the application programmer has the
ability to transmit some of the locks of a par-
ent transaction to its sub-transactions. This is
known as “controlled downward inheritance”.
In our case, we opted for a slightly different
approach, we used an “automatic downward in-
heritance” at the end of the parent transaction.
That is, if a sub-transaction T’ requests a lock
held by its parent transaction T, it will proceed
only when T reaches the end of its execution
(just before the precommit state). This proce-
dure seems simpler (and more realistic) to use
for the programmer who does not need to know
the types of locks acquired by each access op-
eration it uses.

When a non TL-transaction finishes its execu-
tion, its locks become visible to its descendants.

It then starts waiting for the termination (pre-
commit) of its sub-transactions. When done,
it precommits and signals its termination to its
parent transaction.

On the other hand, when a TL-transaction T
(root transaction) finishes its execution (reach
the COMMIT statement), the 2PC protocol is
started by the local TM to ensure that all SDDS-
servers that have participated in the execution of
data access operations issued from transactions
in T hierarchy take the same decision (commit
or rollback). At this point, all the precommited
sub-transactions commit effectively.

This implies that the commitment of a root
transaction (Top Level Transaction) is condi-
tioned by the precommit of all its sub-transactions.
If a sub-transaction is aborted due to an error or
failure, all other transactions of the same hier-
archy must abort too. But if a sub-transaction
is aborted due to a deadlock, it will, just, auto-
matically be reactivated.

3.1. Identifying the distributed transactions

When a TL-transaction begins its execution in
a node, the local TM assigns it a unique identi-
fier in the cluster (a timestamps formed by the
concatenation of the clock value and the task
ID of the TM). In a synchronous call, the called
method receives the same identifier as that of the
calling method (because it is part of the same
transaction). In the case of an asynchronous
message, a new sub-transaction is generated in
the system. It registers with its local TM that
assigns it a new timestamp (clock+TM’s TID).
The identifier of the new sub-transaction is then
the result of the concatenation of the parent
transaction identifier and the local timestamps.
Thus each transaction Ti is globally identified
by a sequence of Ids (T1,T2, . . ., Ti), describing
a path in the tree hierarchy between T1 (the root
transaction) and Ti. This identifiers sequence is
what we call the “identification string” of Ti.

The “identification string”models the nesting of
transactions in the system and will be used by
the CC of an SDDS server for allocating locks
and detecting indirect deadlocks. For instance,
in Figure 5, the identification string for T2 is
“T,T2” because T is the parent of T2, similarly,
the identification string of T6 is “T,T1,T4,T6”
and for T7 it is “T’,T3,T7” and so on . . .

76 Using Actors to Build a Parallel DBMS

3.2. Distributed deadlock management

This way of identifying transactions facilitates
detection of deadlocks, even those deemed dif-
ficult in the nested context.

In the example of Figure 5, we have 2 TL-
transactions (T and T’). T1 and T2 are sub
transactions of T, then T can’t terminate until
T1 and T2 precommit first. This is known as
“wait-for-commit” relationship. Similarly, T’
waits for T5 and T3, T1 waits for T4, who waits
for T6. By transitivity of the wait-for-commit
relationship, we have that T waits for T6 and T’
waits for T9.

Recall that by the rule of upward locks inheri-
tance, if a sub-transaction precommits, its locks
are inherited by its parent. Now in the exam-
ple of Figure 5, if transaction T2 requests a lock
held by transaction T5, T2 waits for termination
of T5 (since strict 2PL is applied) and also it
waits for the termination of T’, because, when
T5 precommits, its locks are inherited by T’
(its parent) and T2 cannot acquire the requested
lock until T’ terminates.

Figure 5. Indirect deadlock.

Since T waits for T2 (wait-for-commit relation-
ship) and T2 waits for T’ (lock request and up-
ward inheritance between T5 and T’), we can
actually say that T waits for T’. Moreover, if
transaction T9 (a descendent of T’) requests
another lock held by T6 (a descendent of T),
for the same reasons we see that T9 is actually
waiting for all ascendants of T9 (T4, T1 and
T) because of the upward locks inheritance rule
and T’ is actually waiting for T9 because of the
wait-for-commit relationship. Thus we are in a
situation where T waits for T’ and T’ waits for
T. This is called an “indirect deadlock”.

To prevent all deadlock situations, we have
adapted wait-die technique to manipulate times-
tamps in the form of identification strings. In
wait-die, when a transaction Ti with timestamps
ts(Ti) requests a lock held by a transaction Tj,
Ti is allowed to wait only if ts(Ti) < ts(Tj), oth-
erwise Ti is rolled back with unchanged times-
tamps ts(Ti).

The extension of the wait-die method concerns
the generalization of the test (ts(Ti) < ts(Tj)) to
take into account the identifying strings and to
know what is the sub-tree of nested transactions
to be aborted, if necessary.

The following pseudo-code illustrates this changes:

/* L1, L2 are the identifying strings of respec-
tively Ti and Tj */

bool test(Identifying String L1 , Identifying String
L2 , Timestamps &Victim)

{
if (Empty(L1) && !Empty(L2)) {

Victim = Head(L2) ;

return true ;

}
else if (!Empty(L1) and Empty(L2)) {

Victim = Head(L1) ;

return false ;

}
else if (Head(L1) < Head(L2)) {

Victim = Head(L2) ;

return true ;

}
else if (Head(L1) > Head(L2)) {

Victim := Head(L1) ;

return false ;

}
else /* Head(L1) == Head(L2) */

return test (Tail(L1), Tail(L2), Victim) ;

}
If the test failed (return false), Victim is then
the root of the sub-hierarchy to abort. It is the
highest ascendant of Ti, for which Tj is not a
descendant.

Using Actors to Build a Parallel DBMS 77

In the nested model, transactions belong to en-
closing spheres (Figure 6). All transactions de-
rived directly or indirectly from a transaction
T (i.e. the whole sub-tree rooted at T), belong
to the sphere of T. Each transaction defines an
enclosing sphere. In the example of Figure 6,
when a transaction T4 waits for the termina-
tion of a transaction (T6) to acquire a lock, T4
waits in fact, the termination all the transactions
in the most enclosing sphere including T6 that
does not include T4 (sphere of T2). When all
transactions in this sphere terminate, all locks
that were held or inherited by these transactions
become free to other transactions in the next en-
closing sphere (in this case, it is the T sphere).

In deadlock prevention, the main reason which
leads us to abort the highest possible ascendant
that is not in the same sphere as the transaction
holding the lock, is dictated by the wait-for-
commit relationship.

In Figure 6, we suppose that T5 is holding a
lock to a data item A, and that T2 is holding a
lock to another data item B. We also suppose
that Ti identifier is less than Tj identifier (i.e.
ID(Ti) < ID(Tj) if and only if i < j. For the
TL-transactions T and T’, we suppose in this
example that ID(T’) < ID(T)).

In that case, if T5 requests a lock on B, it is al-
lowed to wait for the termination of T2 (and
thus its ascendant T) because “T0,T’,T5” <
“T0,T,T2” in the test function (T’ < T). Now
while T5 is waiting for the termination of T2
(and of its parent T), if another transaction in
the sphere of T (say T4 for instance) requests
a lock on A (which is held by T5), T4 must
be rolled back (because the test “T0,T,T1,T4”
< “T0,T’,T5” is false: T > T’). If we only abort
T4, the deadlock remains, because while T4 is
automatically rolled back, its parent T can’t ter-
minate and then T5 remains blocked waiting for
the lock on B to leave the sphere of T. To solve
this problem, it would have had to cancel the
whole sphere T instead of only T4. This is done
in the test function by positioning Victim to be
the first transaction ID in the identifying string
L1 which is higher than its equivalent in L2 (in
that case Victim == T).

Figure 6. Enclosing spheres.

Locks can be shared (S) or exclusive (X) and
are managed at page level. The DM executes
the (read/write) operations on pages located in
its bucket. No I/O are needed to perform this
task (data ismemory resident), however the log-
ging and checkpointing activities may require
the RM of the node to access the local disks
(e.g. for transaction commitment with 2PC).

3.3. Physical logging

SDDS servers maintain active transaction tables
(ATT) (one per server) that keep track of trans-
actions execution (see Figure 7).

All update operations on a page x generate phys-
ical undo record : <x, pos, len, old value> and a
physical redo record: <x, pos, len, new value>
where pos and len indicate respectively the po-
sition and the offset, in the page, of the updated
bytes.

Each ATT entry contains both the undo and redo
logs for one transaction. The undo log is used
to rollback the effects of a transaction if it is
aborted, whereas the redo log is flushed to the
global stable log (on the disk) when the trans-
action commits.

When a transaction Ti commits, a record <Ti,
Nb rec> is added to the head of its redo log and
then the whole redo log is flushed to the global
stable log on the disk. Nb rec indicates the
number of log records pertaining to transaction
Ti.

The stable log contains only the effects of com-
mitted transactions in serial order equivalent to

78 Using Actors to Build a Parallel DBMS

the concurrent (but serializable) execution of
these transactions in the MMDB:

. . .<T1,3>,<x,. . .>,<y,. . .>,<z,. . .>,
| T1’s redo log |

<T2,2>,<x,. . .>,<y,. . .>,
| T2’s redo log |

<T3,4>,<x,. . .>,<y,. . .>,<z,. . .>,<t,. . .>. . .
| T3’s redo log |

- the global stable log on the disk -

When a transaction terminates (commit/abort),
its entry (and its log records) is discarded from
the active transaction table ATT.

3.4. Fuzzy checkpointing

To recover from failure (system crash), where
the content of main memory is lost, the global
stable redo log can be replayed from the begin-
ning or (if possible) from a “previous consistent
copy” of the database to bring up the latest con-
sistent state before the crash. There are two
major drawbacks with this “naive” approach :

• Making a consistent copy of the database is
a very time consuming task, because trans-

Figure 7. Node storage sub-system.

Using Actors to Build a Parallel DBMS 79

action processing has to be stopped during
the flush of the bucket content.

• The huge number of records in the stable
log makes the redoing procedure very inef-
ficient, when recovering from a crash.

Instead of making a consistent copy, we can
“emulate” it by doing a snapshot of the bucket
content while active transactions are processed
concurrently (the backup copy obtained is then
not consistent, since uncommitted updates could
be copied out). Then a copy of ATT with the
undo logs is made. Indeed undoing the effects
of uncommitted transactions from the inconsis-
tent database copy makes it consistent. This is a
“fuzzy” checkpoint, since the dump procedure
does not require the system to be quiescent, i.e.
a page locked (even exclusively) by an active
transaction can be dumped during the check-
point.

In Act21 we have adapted for the SDDS a vari-
ant of a fuzzy checkpoint (called ping pong
checkpoint (LeGruenwald et al. 1996)) that
keeps two copies of the database on the disk.
Each one contains an inconsistent dump and
the undo logs of active transactions during the
dump.

For each SDDS server we maintain on the disk
two copies (A and B) of the bucket, the ATT and
the related undo-logs. A master record is also
maintained and is composed of: an indicator of
the current checkpoint (A or B), a pointer to the
redo point in the stable log (the start point for
scanning the stable log when recovering) and a
“Directory” that keeps informations necessary
for rebuilding all the SDDS servers and actors
(SDDS clients: T-Act and C-Act) hosted in the
site, when recovering.

Recall that buckets are composed of a set of
pages (that contain data records). A page is
“clean” when no updates have occured since
the previous checkpoint. A page is “dirty”when
one ormore transactions have updated their con-
tent since the previous checkpoint.

The page state (clean/dirty) is indicated by two
state bits: 00 for clean and 01 or 10 for dirty.

When a checkpoint occurs, all dirty pages (state
bits = 01 or 10) are flushed to one copy of
the disk database and their state bits are incre-
mented modulo 3, i.e. those having state bits =

01 remain dirty (10) and those having state bits
= 10 become clean (00).

When the next checkpoint occurs, the old dirty
pages (10) and new ones (01) are flushed to the
other copy of the disk database. Thus each dirty
page is flushed twice, once to each copy of the
database, on two consecutive checkpoints. If
the system crashes before completing the cur-
rent checkpoint, the other copy can be used to re-
cover the database to the latest consistent state.

The checkpoint procedure below runs periodi-
cally without interfering with normal transac-
tion processing:

1. Let x = (A or B), such that x is different from
the current checkpoint (stored in the master
record)

2. Note the end of the stable log in a variable
(redo point)

3. For each bucket in the node, do:

write dirty pages to the bucket copy x (on the
disk)

write ATT and the undo-logs to their copy x

4. replace the master record with the new one:
< x, redo-point, Directory > (in one atomic
operation)

To recover from a crash, RM loads the current
checkpoint and rolls back the transactions that
were active during this checkpoint. Finally we
replay the global redo log beginning from the
redo-point (saved in the master record) to reach
the latest consistent state before the crash.

The recovery procedure is as follows:

1. read the current checkpoint (A or B) in x, the
redo point and the directory from the master
record

2. rebuild the SDDS servers

3. For each SDDS server, do:

load its ATT and undo logs from copy x on
the disk

load the bucket pages and reset their state
bits (00)

roll back the active transactions from the
loaded ATT, using the undo logs

4. Replay the global redo log and update the
ATT, undo logs, and dirty bits accordingly.

80 Using Actors to Build a Parallel DBMS

3.5. Tests

We have implemented some modules of Act21
prototype in a virtual parallel environment (net-
worked Linux boxes + PVM):

• An SQL interface that produces an execution
plan from an SQL query, consisting of some
R-Act and C-Act that cooperate with the ex-
isting T-Act to produce the query result.

• An interpreter of PACT language for execut-
ing actor’s scripts.

• An actor manager that implements the ac-
tor’s primitives (New Act, Send, Broadcast,. . .)
and the transaction management (TM) for T-
Act (coordinators in 2PC).

• A storage manager based on CTH* SDDS
method. Concurrency controllers, data man-
agers and cohorts (in 2PC) are also imple-
mented in the SDDS servers.

• A recovery manager that uses fuzzy check-
points is also implemented.

We have conducted some preliminary experi-
ments. The results are presented below:

The bucket size is fixed to 400 pages for each
SDDS server. A page is a 1kb block.

Our parallel virtual machine is composed of 4
PC (Pentium 3 750Mhz – 256MB RAM) con-
nected by an Ethernet switch (10-100 Mb/s).
Clients and servers are PVM tasks.

Each client generates 1000 serial transactions,
each one is composed of a random number of
I/O operations varying from 1 to 10, example:
read page(103) from server(1), write page(82)
to server(4), write page(261) to server(3), . . .
page and server numbers are also randomly gen-
erated.

The tests consist of launching n parallel clients
and observing some parameters such as re-
sponse time, throughput, and the number of
aborted transactions for dead-lock prevention
(wait-die). When a transaction is aborted, the
client waits 10 ms before restarting the transac-
tion.

The response time is computed as the mean
of the transaction execution time (from begin
transaction to commit). The throughput is the
number of successful commitments done in 1

second in the system. It’s computed as the sum
of all client throughputs in the same period.

The next tables (Tables 1, 2 and 3) resume the
tests for respectively 2, 3 and 4 servers:

clients Resp.
Time Throughput Aborts

10 23 ms 425 tps 1.6 %
20 41 ms 481 tps 3.9 %
30 66 ms 450 tps 7.3 %
40 89 ms 440 tps 10.7 %
50 114 ms 400 tps 15.4 %
60 140 ms 420 tps 20.6 %

Table 1. Performances with 2 servers.

clients Resp.
Time Throughput Aborts

10 18 ms 544 tps 1.1 %
20 34 ms 566 tps 2.6 %
30 54 ms 540 tps 4.3 %
40 73 ms 521 tps 7.2 %
50 91 ms 510 tps 9.8 %
60 114 ms 481 tps 13.1 %

Table 2. Performances with 3 servers.

clients Resp.
Time Throughput Aborts

10 18 ms 535 tps 0.5 %
20 29 ms 659 tps 1.9 %
30 44 ms 658 tps 3.1 %
40 59 ms 644 tps 4.7 %
50 76 ms 620 tps 7.4 %
60 93 ms 603 tps 9.6 %

Table 3. Performances with 4 servers.

We notice that the speed-up is about 66% to
79% for the response time when the number of
servers doubles (from 2 servers to 4 servers). At
the same time the percentage of aborted transac-
tions is decreased by a factor of 1/3 to 1/2. The
throughput computed in this experiment is rel-
ative to one server only and the global through-
put is expected to be higher when the number
of servers increases.

Using Actors to Build a Parallel DBMS 81

4. Related Works

A lot of work has been conducted in the area
of high performance main memory database
systems. (Bohannon et al. 1997) present the
architecture of a main memory storage man-
ager called Dali. It is a toolkit providing re-
covery and concurrency control features. Its
primary goals are to serve as the lowest level
of a database system and to support transaction
processing in performance-critical applications.
The main feature of the Dali storage manager is
the use of a direct access to data in shared mem-
ory rather than via inter-process communica-
tion, which is relatively slow, but is not portable
to a parallel shared nothing environment.

Scalable Distributed Data Structures (SDDS)
are another way to use main memories as res-
ident storage for databases. They are usually
based on a dynamic hashing function as a parti-
tioning scheme and provide good performances
and scalability. In Act21 we use an SDDS
method called CTH* (Zegour 2004) that is or-
der preserving (like range partitioning (Litwin
et al. 1994)) and less sensitive to data skew. We
have implemented a fuzzy recovery technique
in order to avoid loss of data in presence of
failure. Other techniques have been studied to
extend the SDDS methods with a high availabil-
ity property, based on parity and reed-solomon
codes (Cieslicki et al. 2010; Litwin, Schwarz
1997).
One open problem known to be the most seri-
ous limit to parallel MMDBs is the relatively
high cost of the atomic commitment protocol
for distributed transactions. In (Park, Yeom
1999) an approach that combines the advan-
tages of the pre-commit and group commit in
parallel MMDB while avoiding the consistency
problem is presented.

5. Conclusion

In this article, we have presented an approach
to build parallel Main Memory DBMS using
the concepts of distributed open systems and of
database actors. An overview of the architec-
ture, including the data model and the storage
sub-system, have been presented briefly.

We have also presented a model of nested trans-
action that is suited for our parallel DBMS. We

used identifying strings to timestamp the trans-
actions which permit to facilitate the manage-
ment of locks in the tree hierarchy. We have also
adapted the wait-die distributed deadlock pre-
vention procedure to handle this kind of times-
tamps.

Recovery techniques (fuzzy ping pong check-
pointing) are also adapted to the use of “Scal-
able Distributed Data Structures” SDDS as a
storage manager for the parallel main memory
DBMS.

Some improvements can be provided to our ar-
chitecture, particularly for 2PC extensions to
support “group commit”. This can be done by
keeping in main memory the tail of the global
redo log and using techniques like those pre-
sented in (Lee et al. 2004; Park, Yeom 1999)
where log records and some precedence infor-
mation are centralized in one site.

References

[1] G. AGHA, ACTORS. a model of concurrent compu-
tation in distributed systems. MIT press, (1986).

[2] S. ALAEI, M. GHODSI, M. TOOSSI, Skiptree: A
new scalable distributed data structure on multidi-
mensional data supporting range queries. Computer
Communications, vol. 33, Issue 1 (2010).

[3] P. A. BERNSTEIN, V. HADZILACOS, N. GOODMAN,
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] P. BOHANNON, D. LIEUWEN, R. RASTOGI, A. SIL-
BERSCHATZ, S. SUDARSHAN, The Architecture of
the Dali Main Memory Storage Manager. The Intl.
Journal on Multimedia Tools and Applications, 4(2)
(March 1997).

[5] D. CIESLICKI, S. SCHAECKELER, T. SCHWARZ, Main-
taining and checking parity in highly available Scal-
able Distributed Data Structure. Journal of Systems
and Software, vol. 83, Issue 4 (2010).

[6] D. DEWITT, J. GRAY, Parallel Database Systems:
The Future of High Performance Database Systems.
Communications of the ACM, vol. 35, no. 6 (June
1992).

[7] D. DEWITT, J. NAUGHTON, J. SHAFER, SH.
VENKATAMAN, Parallelizing OODBMS traversals:
a performance evaluation. VLDB journal, vol. 5 n\r
1 (Jan 1996), pp. 3–18.

[8] H. GARCIA-MOLINA, K. SALEM, Main Memory
Database Systems: An Overview. IEEE Trans.
Knowl. Data Eng., vol. 4, n\r 6 (Dec 1992), pp.
509–516.

82 Using Actors to Build a Parallel DBMS

[9] P. HALLER, M. ODERSKY, Scala Actors: Unifying
thread-based and event-based programming. The-
oretical Computer Science, vol. 410, Issue 2-3
(2009).

[10] T. HARDER, K. ROTHERMEL, Concurrency Control
Issues in Nested Transactions. The VLDB Journal,
vol. 2, n\r 1 (1993), pp. 39–74.

[11] C. E. HEWITT, Viewing Control Structure as Pat-
terns of Passing Messages. Artificial Intelligence,
(1977).

[12] W. K. HIDOUCI, D. E. ZEGOUR, An actor like data
model for a parallel DBMS. Journal of Digital In-
formation Management, vol. 6 issue 3 (June 2008).

[13] H. V. JAGADISH, A. SILBERSCHATZ, S. SUDARSHAN,
Recovering from Main Memory Lapses. Proceed-
ings of the 19th VLDB, Conf. Dublin, Ireland,
(1993).

[14] R. KALLMAN, H. KIMURA, J. NATKINS, A. PAVLO,
A. RASIN, S. ZDONIK, E. P. C. JONES, S. MAD-
DEN, M. STONEBRAKER, Y. ZHANG, J. HUGG, D. J.
ABADI, H-store: a high-performance, distributed
main memory transaction processing system. Pro-
ceedings of the VLDB Endowment, vol. 1, Issue 2
(2008).

[15] L. GRUENWALD, J. HUANG, H. M. DUNHAM, J.-L.
LIN, A. CH. PELTIER, Survey of Recovery in Main
Memory Databases. Engineering Intelligent Sys-
tems, 4/3 (Sept. 1996), pp. 177–184.

[16] I. LEE, H. Y. YEOM, T. PARK, A New Approach for
Distributed Main Memory Database Systems: A
Causal Commit Protocol. IEICE Trans. Inf. & Syst.,
vol. E87-D, n\r 1 (January 2004).

[17] J. LIN, M. H. DUNHAM, A Survey of Distributed
Database Checkpointing. Distributed and Parallel
Databases, 5 (1997), pp. 289–319.

[18] W. LITWIN, S. SAHRI, Implementing SD-SQL
server: A Scalable Ditributed Database System.
Intl. Workshop on Distributed Data and Structures,
WDAS 2004, Carleton Scientific.

[19] W. LITWIN, J. E. SCHWARZ, LH*rs: A high avail-
ability scalable distributed data structure using Reed
Solomon codes. CERIA Res. Rep., 99-2 (1997),
Paris 9.

[20] W. LITWIN, M. A. NEIMAT, D. SCHNEIDER, LH*: A
Scalable Distributed Data Structure. CERIA Res.
Rep., (Nov. 1993), Paris 9.

[21] W. LITWIN, M. A. NEIMAT, D. SCHNEIDER, RP*: A
Family of Order Preserving Scalable Distributed
Data Structures. Proc. Of 2Oth conf. VLDB, (1994),
Chile.

[22] Y. NDIYAE, W. LITWIN, T. RISCH, Scalable Dis-
tributed Data Structures for High-Performance
Databases, Tech. Rep, Ceria Paris Dauphine Univ.
2000.

[23] T. PARK, H. Y. YEOM, A Distributed Group Commit
Protocol for Distributed Data Systems. Tech. Rep.,
PDCS99-GC, Department of computer engineering,
Sejong Univ., Korea, 1999.

[24] J. SCHÄFER, A. POETZSCH-HEFFTER, Writing con-
current desktop applications in an actor-based
programming model. Proc. of the 3rd Interna-
tional Workshop on Multicore Software Engineer-
ing, (2010), New York, USA.

[25] H. SCHIPPERS, T. VAN CUTSEM, S. MARR, M.
HAUPT, R. HIRSCHFELD, Towards an actor-based
concurrent machine model. Proc. of the 4th work-
shop on the Implementation, Compilation, Opti-
mization of Object-oriented Languages and Pro-
gramming Systems, (2009), New York, USA.

[26] A. YONEZAWA, ABCL: an object-oriented concur-
rent system. MIT press, (1990), Cambridge MA.

[27] D. E. ZEGOUR, Scalable Distributed Compact Trie
Hashing. Inform. Soft. Tech., (2004), Elsevier.

Received: August, 2006
Accepted: March, 2011

Contact addresses:

Walid-Khaled Hidouci
Ecole Nationale Supérieure d’Informatique, (ESI)

BP 68M Oued-Smar, Algeria
e-mail: w hidouci@esi.dz

Djamel Eddine Zegour
Ecole Nationale Supérieure d’Informatique, (ESI)

BP 68M Oued-Smar, Algeria
e-mail: d zegour@esi.dz

WALID-KHALED HIDOUCI is an associate professor of computer science
at ESI Graduate School of Computer Science in Algiers. His main top-
ics of interests are: database systems, data structures, operating systems
and parallel programming.

DJAMEL EDDINE ZEGOUR is a professor of computer science at ESI
Graduate School of Computer Science in Algiers. His main research
interests include data structures and algorithms, compilers, functional
programming, object-oriented programming and distributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

