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An electronic device is reliable if it is available for use
most of the times throughout its life. The reliability
can be affected by mishandling and use under abnormal
operating conditions. High quality product cannot be
achieved without proper verification and testing during
the product development cycle. If the design is difficult
to test, then it is very likely that most of the faults will
not be detected before it is shipped to the customer. This
paper describes how product quality can be improved by
making the hardware design testable. Various designs for
testability techniques were discussed. A three bit counter
circuit was used to illustrate the benefits of design for
testability by using scan chain methodology.
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1. Introduction

A look at the electronic market will reveal that
a lot of substandard electronic goods abound in
the market such that consumers find it difficult
to differentiate between the brand names and
fakes. No thanks to unethical practices of some
organisations that are deeply involved in cloning
and reverse engineering of the branded goods.
The reliability of electronic system used to be
the concern of the military, aerospace and bank-
ing industries. But today applications such as
computers, consumer electronics, telecommu-
nication and automotive industries have joined
the league of applications that demands relia-
bility and testing techniques because they are
everywhere and their feature sizes have become
less and less as the years go by. In addition,
their proliferation has led to the tendency of
their misuse. An important aspect of reliability
is the system’s ability to run independently on
demand. This requires that the system be fault
tolerant.

Poor quality products requiremoremaintenance
and repairs which leads to huge expenses on
staff and mileage to get staff and spares to out-
door locations [4]. It also affects the manufac-
turer’s image and costs on returned parts and
systems.

The three basic engineering activities are de-
sign, manufacture and test. Currently testing
activities are also carried out at the design stage.
This means that testing process is integral to
both design and manufacturing actions and can-
not be seen as a standalone activity. These ac-
tivities are done as quickly as possible and eco-
nomically too. Because we want to save time
and cost, we should endeavour to ensure that the
quality of the would-be product is not compro-
mised. Even while a product is in use testing
can also be carried out, either as a normal rou-
tine service arrangement or to eliminate faults
as they occur.

A good quality product must meet the purpose
for which it was designed and produced. In ad-
dition, it must be very reliable meaning that the
device should be operational most of the time
and rarely fail. The reliability of digital devices
is high. But this can be undermined if the op-
erational conditions are not adhered to. Condi-
tions such as operating temperature, power sup-
ply voltages and frequencies, electromagnetic
influences and handling can negatively affect
the reliability of digital devices. If the room
temperature is higher or lower than the recom-
mended, for example, the device may overheat
and probably damage some of the components,
which may render the device inoperable.

If we can guarantee 98% fault free circuit at
the design and implementation stages, we may
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not be able to say what happens after packaging
and when the component is finally mounted on
a board and delivered to the consumer. It is im-
portant to note that ICs at the end of the day find
their ways onto a circuit board. Even Systems
on chip (SoC) end up on a board. While on the
board, we have to boarder about how well the
pins of the various ICs mounted on the board
are connected or whether the right IC is in the
right position.

Testing encompasses design verification and di-
agnosis (fault location for purposes of effecting
repairs). There are two aspects to test. One is
testing the design, or carrying out design veri-
fication to make sure that the design is correct
and conforms to requirements. Design verifi-
cation also lets you know where you are in the
development cycle and how stable the design
is [1]. The other aspect of test is testing for
physical failures, making sure nothing has been
broken and there’s no defect from manufactur-
ing. A significant portion of our development
cycle time is spent on testing the product design,
and that’s becoming extremely expensive.

The beauty of integrated design and manufac-
turing is that it cuts product cycle time, but
successful integration hinges on the quality of
the design data passed to manufacturing. The
remaining parts of this paper are divided into
sections. In Section 2, the challenges of prod-
uct quality will be discussed. Section 3 briefly
discusses the design flows with integrated test-
ing. In Section 4, this paper reviews faults and
test pattern generation, whereas Section 5 x-
rays ways of making designs testable. A simple
example to illustrate the design for testability
technique using scan chain methodology is pre-
sented in Section 6.

2. Electronic Product Quality Challenges

Quality improvement starts at the design stages.
It is a standard in electronics industry to test
chips before they are mounted on a board, test
the board before system assembly and finally
test the system. This is essentially so because
of the rule of ten. If a chip fault is not caught
by chip testing, finding the fault costs 10 times
as much at the PCB level as at the chip level.
Similarly, if a board fault is not caught by PCB
testing, finding the fault costs 10 times as much

at the system level as at the board level. This
means that a fault that is not caught at the chip
level will now cost 100 times as much as at the
system level.

Some engineers are suggesting that rule of twenty
be adopted considering the complex nature of
present day ICs. The rule of ten is illustrated
in Figure 1. Very real costs are associated with
inattention to design quality. If errors or omis-
sions in design data are not addressed early,
more costly changes are required later in the
product development process.

Figure 1. Rule of ten.

Another development is the synthesis for dif-
ferent objectives. Early synthesis was aimed at
decreasing area and delay. More recently, other
objectives have come into play, such as power,
noise, thermal control, verifiability, manufac-
turability, variability, and reliability. Conse-
quently, additional criteria will emerge as new
technologies develop, and new models and op-
timization techniques will be needed to address
such requirements [12].

2.1. Concept of Reliability

Reliability is the probability of no failure within
a given operating period. For example, if 50
systems operate for 1,000 hours on test and two
fail, then using expression (1)we would say that
the probability of failure, Pf , for this system in
1,000 hours of operation is 0.04. Clearly, the
probability of success,Ps, which is known as the
reliability,R, is given byR(1, 000) or Ps(1, 000)
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is equal to 0.96 using expression (2).

pf =
Number failed systems
total number systems

(1)

ps = 1 − pf (2)

One can also deal with a failure rate, f r, for the
same system. Substituting the values in expres-
sion (3), failure rate equals 4 × 10−5 or, as it
is sometimes stated, f r = z = 40 failures per
million operating hours, where zis often called
the hazard function.

f r =
Number failed systems

total number systems × hours
(3)

If failure rate z is a constant (one generally uses
λ to represent a constant failure rate), the re-
liability function can be shown to be equation
(4).

R(t) = e−λ t (4)

The mean time between failures (MTBF):

MBTF =

∞∫

0

e−λ tdt =
1
λ

(5)

The repair time (Rep) is also assumed to obey
an exponential distribution and is given by ex-
pression (6).

Rep(P > t) = e−μt. (6)

The mean time to repair (MTTR) is represented
in equation (7):

MTTR =
1
μ

(7)

where μ is the repair rate. The system avail-
ability (failure-free) is the fraction of time the
system is operating normally and is given by
expression (8):

System Availability
MTBF

MTBF + MTTR
(8)

With the expression (4) for reliability it be-
comes evident that the more complex a system
is, the less its reliability. For instance, if a sys-
temboard contains n number of components and
each component has a reliability of Rc, the reli-
ability of the board (Rsb) over time t period of

operation without failure is given by expression
(9):

Rsb[Rc(t)]n = [e−λ t]n = e−nλ t (9)

It is therefore clear that the system reliability is
very small, not minding the fact that the relia-
bility of individual component is high and will
reduce further if the reliability of the intercon-
nections are taken into consideration.

The graphical representation of failure rate Z(t)
as a function of time can be illustrated by the
popular bathtub curve shown in Figure 2.

Figure 2. Failure rate curve.

The infant mortality region in the graph depicts
failures that are attributed to poor quality as a
result of variations in the production process
technology. The region in the graph termed
“Working life” shows that the failure rate is
constant (Z(t) = λ ). This is the working life
of a component or system and fault occurrence
here is random. The wear out region marks the
end-of-life period of a product. For electronic
products it is assumed that this period is less
important because they will not enter this re-
gion due to a shorter economic lifetime resulting
from technology advances and obsolescence. It
is important to note here that all ICs must be
shipped after they have passed infant mortality
test periods in order to reduce field failure and
subsequent repairs.

2.2. Temperature Effect on Reliability

Temperature acceleratesmany physical and che-
mical processes of a component, thereby accel-
erating the aging process. The accelerating ef-
fect of the temperature on the failure rate can be
expressed by the experimentally determinedAr-
rhenius equation [11] shown below. The Arrhe-
nius equation is a simple formula for the temper-
ature dependence of the reaction rate constant,
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and therefore, rate of a chemical reaction.

λT2 = λT1 × e(Ea(1/T1−1/T2)/k) (10)

Where:
Ea is the activation energy expressed inElectron-
volts (eV)
k is the Bolzmann constant 8.617×10−5 eV/K
T1 and T2 are absolute temperatures (in Kelvin,
K),
λT1 and λT2 are the failure rates at T1 and T2,
respectively.

From equation (10) it is evident that the failure
rate is exponentially dependent on the temper-
ature. The ratio of λT2 to λT1 gives us the
acceleration factor effect of temperature. This
is the factor by which the infant mortality can
be reduced during burn-in testing.

3. Design Flows

The design of VLSI follows certain procedure,
evolving from the highest level of abstraction
down to implementation – Design Specifica-
tion, HDL Capture, RTL Simulation & Func-
tional Verification, RTL Synthesis, Functional
Gate Simulation, Place and Route and Post Lay-
out Timing Simulation.

Every design starts with specification capture.
We must determine the functionality of the new
design at the onset. Wrong conception at this
level could lead to a lot of problems such as poor
quality product. An idea of what is to be de-
signed is converted into formal document called
design specification. In some cases one or more
specification documents are created, depend-
ing on whether we are creating a component
or a system. Design specification is a written
statement of functionality, timing, area, power,
testability, fault coverage, etc. The following
methods are used to specify the functionality –
state transition graphs, timing charts, algorith-
mic state machines and hardware description
languages (VHDL and Verilog). Lately, the
need to capture designs at the highest level of
abstraction in what is called Electronic System
Level (ESL) using SystemC, System Verilog,
etc. is being integrated and pursued vigorously.
The specification is then captured using HDL
in form of behavioural description. The HDL
model of the design is simulated in order to
determine functional compliance and to expose

any design or coding errors. In order to achieve
this, a test plan is developed. This involveswrit-
ing a test bench for the model and applying ap-
propriate test vectors to verify the design. If the
functionality has been verified, then the model
is synthesised using appropriate synthesis tools.
The objective of synthesis is to produce the
netlist (list of modules and their interconnec-
tion at the register transfer level stage or at the
gate level) of the design for the target technol-
ogy. Synthesising the design involves optimisa-
tion of Boolean functions (minimise logic, re-
duce area, reduce delay, reduce power, balance
speed versus other resources consumed). After
the RTL/gate level synthesis, the design is fur-
ther simulated to determine that the gates used
function properly and meet the overall function-
ality. If this is achieved, then we move on to
the placement and routing stage where selected
cells are placed on the target technology (CPLD,
FPGA or ASIC) and connected in accordance
with the netlist. After the placement and rout-
ing have been completed, the need to further
simulate the design arises. In this case we sim-
ulate to determine whether the timing (timing
back-annotation), speed, physical and electrical
specifications have been met. This simulation
includes test vector generation to test inherent
fabrication flaws. It is important to note that the
design should be correct at this stage, because
this is the last stage before the design is signed
off for fabrication. You can see that testing is
carried out virtually at all the stages of the de-
sign flow. This is important because the earlier
an error is detected, the better and, of course,
the cheaper.

Verification and Testing occur at different lev-
els of product development. Design verifica-
tion is a set of activities that is carried out on a
circuit before the circuit is implemented phys-
ically. These activities are geared toward en-
suring that the circuit under design meets its
functional and timing specifications. Mapping
a design from one phase to another may cause
some errors. These errors may result from im-
proper handling of the EDA tools and they must
be removed before the next phase. You see that
at each stage the design is verified to assert that
it is the same design from the previous stage
and that it meets the specification. Currently,
simulation is the most efficient method of de-
sign verification. We simulate for functional
and timing compliance.
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Testing, on the other hand, is a set of activi-
ties designed to ensure that a circuit that has
been manufactured complies with the paramet-
ric (voltage, resistance, current, capacitance,
etc), timing and functional specifications of the
design. In other words testing demonstrates that
the manufactured IC is error free. Digital test-
ing is performed on the manufactured IC using
test patterns generated to demonstrate that the
product is fault-free. It is important to note that,
at the logic gate level, automatic test pattern
generation (ATPG) is used to generate the test
patterns and they are verified using fault sim-
ulators. At higher levels of abstraction (RTL
and behavioural) testability measures are used
instead.

Rapidly evolving submicron technology and de-
sign automation has enabled the design of elec-
tronic systems with millions of gates integrated
on a single silicon die, capable of delivering gi-
gaflops of computational power. At the same
time, increasing complexity and time to market
pressures are forcing designers to adopt design
methodologieswith shorterASICdesign cycles.
With the emergence of system-on-chip (SoC)
concept, traditional design and test methodolo-
gies are hitting the wall of complexity and ca-
pacity. Conventional design flows are unable
to handle large designs made up of different
types of blocks such as customized blocks, pre-
designed cores, embedded arrays, and random
logic. A key requirement for obtaining reliable
electronic systems is the ability to determine
that the systems are error-free [6]. Electronic
systems consist of hardware and software. In
this paper we shall be looking at hardware testa-
bility issues. What is a system? Semiconductor
components are not thought of as systems. A
system is a collection of components that forms
a complete item that one can procure to do a
specific task or function. A system also in-
cludes a hierarchy of other systems, which we
call subsystems, each of which is a system in
its own right. In [1] Hal Carter opined that
the basic philosophy is that systems grow as
large as our technology will permit and testing
complexity also grows. In the words of Carter,
“You have to be able to distribute the testing
load down to the lower level so that you don’t
impose that entire load on the highest complex-
ity of the system” [1]. If you take n units and
combine them such that they all interact, you’ll
get n(n − 1)/2 interconnections, which is a n2

product of the communication complexity be-
tween the units. If you can decompose that, you
can get down to log n complexity for the num-
ber of units actually being diagnosed or tested.
Design-for-test and self-test must therefore be
involved with components at as many levels as
possible. Then system-level testing can actu-
ally aggregate those lower level tests in a more
streamlined way as they migrate towards the
system as a whole [1].

4. Review of Faults and Test
Pattern Generation

With the present deep sub-micron technology
which is currently at 20 nm [7] ensuring high
product reliability has become more daunting.
The more transistors/gates we squeeze into a
small area of a chip the greater the risk of over
heating, crosstalk between interconnections and
the more likely the chip is subjected to fail-
ure. This has not been the case because of the
enormous effort the design and verification en-
gineers spent in testing the would-be IC. The
would-be chip is subjected to rigorous testing
to expose any fault in terms of functional com-
pliance and power violations. Apart from de-
sign errors, faults also result from manufactur-
ing process. Testing continues right after the IC
is mounted on a board – system test.

4.1. Fault Types and Fault Models

A digital circuit whose implementation is dif-
ferent from its intended design is said to be
defective. And if the output of the circuit is
wrong because of the defect, we say an error
is observed. When we talk about defects from
a higher level of abstraction in terms of circuit
function, we refer to them as faults. One is
talking about the imperfections in the hardware
whereas error refers to the imperfections in the
functionality of the hardware. An IC may be-
come faulty not only as a result of incorrect
design or manufacturing procedure, but also as
a result of external influence (electromagnetic
influence), mechanical rupture and wear and
tear. Hard failures (permanent failures) are usu-
ally caused by breaks due to mechanical rupture
or incorrect design/manufacturing procedure.
Soft failures are transient or intermittent. These
are induced by supply fluctuations or radiation.
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Intermittent failures are caused by the degrada-
tion of component parameters.

Faults play a great role in helping test engineers
detect defects in ICs. In other words we can
say that faults are models that help us to un-
derstand physical defects. A fault model is a
representation of the effects of defects on chip
behaviours. A fault model may be described
at logic, circuit, or physical levels of abstrac-
tion. Examples of fault models include stuck-at
faults, bridging faults, stuck-open faults, and
path delay faults [13]. Several defects can be
mapped to a single fault model. Some defects
may also be represented by more than one fault
model. In view of the fact that faults are models,
they may not really be a perfect representation
of the defects, but are useful for detecting the
defects. There are so many fault models for
representing defects at behavioural, functional
or structural levels. The most commonly used
fault model at the structural level is single stuck
at fault (SSA). This is a situation whereby a line
in a circuit is permanently at logic 1 or 0 levels.
So we say that a line has a fault stuck-at-1 or
stuck-at-0. Though SSA fault has been used
widely for defects representation, it has become
increasingly imperative to use other models, es-
pecially with the current complexity of digital
circuits. Examples of SSA include a short be-
tween ground (s-a-0) or voltage (s-a-1) and a
signal; an open on a unidirectional signal line;
any internal fault in the component driving its
output that it keeps a constant value.

4.2. Fault Simulation

Fault simulation consists of simulating a circuit
in the presence of faults. Comparing the fault
simulation results with those of the fault-free
simulation of the same circuit simulatedwith the
same test applied, we can determine the faults
detected by that test. Faults are simulated in
order to achieve the following:

• To evaluate the quality of a test set (i.e. to
compute its fault coverage)

• Reduce the time of test pattern generation.
A pattern usually detects multiple faults and
simulation fault simulation is used to com-
pute the faults accidentally detected by a par-
ticular pattern

• To generate fault dictionary. This is neces-
sary for post test diagnosis.

• To analyze the reliability of a circuit.

4.3. Example of Fault Detection and Test
Pattern Generation

In order to illustrate how SSA fault model can
be used to detect defects and possibly use the
patterns to locate them, we shall use a 2-input
XOR gate. Figure 3, Table 1 shows the function
of an XOR gate under various conditions. Col-
umn 2 of the table shows the normal response
for fault free nodes, whereas column 3 upwards
show faulty responses of the gate under faulty
conditions. A fault is said to have occurred
when the circuit’s normal response is different
from the faulty response for the same set of in-
put combinations i.e. F �= Ff . This can also be
shown as expression (11):

F ⊕ Ff = 1.

With the above expression in mind and closely
looking at the table, we realize that faults are
not always observable. For instance, with lines
A/0, for input combinations 00 and 01 F = Ff .
The only time the fault free response differs
from the faulty response was when the input
combinationsAB=10 andAB=11were applied
on the circuit. These input combinations can be
considered as the test pattern that detects line

Figure 3. XOR Gate.

Inputs
Fault
Free

Response
Faulty Response

A B F A/0 B/0 F/0 A/1 B/1 F/1
Ff

0 0 0 0 0 0 1 1 1
0 1 1 1 0 0 0 1 1
1 0 1 0 1 0 1 0 1
1 1 0 1 1 0 0 0 1

Table 1. XOR Gate responses under various conditions.
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A stuck-at-0. Because the two patterns detect
A/0, either AB=10 or AB=11 can be chosen as
the test pattern. Let us now consider faults that
are detected by specific input combinations.

AB= 00 detects A/1, B/1 and F/1
01 detects A/1, B/0 and F/0
10 detects A/0, B/1 and F/0
11 detects A/0, B/0 and F/1

From the above we can see that the same in-
put combination detects more than one fault.
The first test pattern from the above is AB=00
which covers faults A/1, B/1 and F/1. The
next pattern is 01 which detects A/1, B/0 and
F/0. With these two patterns we have detected
five faults namely A/1, B/0, B/1, F/0 and F/1.
We are left with one fault i.e. A/0 to be detected.
Any of the patterns AB=10 or AB=11 detects
this fault. The set of test vectors that will detect
all SSA faults for a 2-input XOR gate are: 00,
01 and 11. This means that if we want to test
a 2-input XOR gate, it is sufficient to apply all
three of these patterns on the inputs of the gate.
The fault coverage in this case is 100%. It is
important to observe that this example is a triv-
ial one indeed, an oversimplification of testing
and test pattern generation procedure.

In practice it is a more daunting task as we have
to deal with circuits with millions of gates and
different interconnection structures. Test pat-
tern generation for sequential circuits is very
tedious and less straightforward than for com-
binational circuits. There are many techniques
for test pattern generation, but their discussion
is beyond the scope of this paper.

4.4. Fault Coverage, Yield and Defect Level

Fault coverage is a measure employed generally
to determine the quality of tests. It is expressed
as a ratio of faults detected (covered) by a test
pattern to the total number of faults possible for
a given fault model. Because of the difficulty in
testing ICs exhaustively, some of the faulty ones
may escape detection, leading to yield and de-
fect level problems. Process yield is a fraction
of the manufactured ICs that is defect-free. The
process yield is approximated by the ratio of the
good ICs to the total number of ICs. Process
variations, such as impurities in wafer material
and chemicals, dust particles on masks or in

the projection system, mask misalignment; in-
correct temperature control, etc. affect the pro-
cess yield. It suffices to note that testing can-
not improve process yield. However, process
diagnosis and correction can improve process
yield. This method involves locating defects
in the failed parts and tracing them to specific
causes, such as defective material, faulty ma-
chines, incorrect human procedures, etc. Once
the cause is eliminated, the yield improves.

When some of the faults escape detection for
some components or parts the defect level in-
creases. Defect level is the fraction of faulty
chips among the chips that pass the test, ex-
pressed as parts per million (ppm). A defect
level of 100 ppm or lower represents high qual-
ity. This means that among the so-called good
parts or ICs there are bad ones. It is a well
known fact that the quality is a function of user’s
satisfaction. To a user the highest quality prod-
uct is one that meets requirements at the lowest
possible cost. Testing (functional) checks to
ensure that final product conforms to its require-
ments and the reduction of cost is achieved by
enhancing the process yield. The fault coverage
(FC) and yield (Y) are given by expressions
(12) and (13) respectively. The relationships
between FC, Y and defect level (DL) are shown
in expression (13):

FC = m/n (12)

Y = (1 − p)n (13)

DL = 1 − Y(1−FC) (14)

where:
n is the total number of faults
m is the number of detected faults m ≤ n
p is the probability of any fault occurring.

The following assumptions were made.

1. Stuck-at-fault (SAF) model is assumed,

2. The probability (p) of any fault occurring is
independent of the occurrence of any other
fault. That is to say that the faults are mutu-
ally exclusive.

Formore detailed information on how theywere
derived, please refer to page 15 of [11]. With
100% fault coverage as in the Example 4.3 the
defect level is 0, meaning that none of the com-
ponents that passed the test is defective. If the
coverage is less than 100% it then means that
some faults may still exist.
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5. Making Designs Testable

Testing is an expensive activity in terms of
generating the test vectors and their applica-
tion to the digital circuit under test. Because
of the complexity of testing processes, design
for testability (DTF) approach was developed.
This design approach is aimed at making digi-
tal circuits more easily testable such that these
circuits are more controllable and observable
by embedding test constructs into the design.
There is no formal definition for testability. An
interesting attempt was given in [9] as: “A dig-
ital IC is testable if test patterns can be gener-
ated, applied, and evaluated in such a way as to
satisfy predefined levels of performance (e.g.,
detection, location, application) within a prede-
fined cost budget and time scale”. One of the
key words is “cost”. It is probably the cost of
testing that deters semiconductormanufacturers
from doing as much testing as is really needed
to ensure reliable products [10].
There are many facets to this cost, such as the
cost of:

1. Test pattern generation (automatic and/or
manual) time. Test pattern generation is an
NP-complete problem since it is difficult to
find a polynomial solution.

2. Fault simulations and generation of fault lo-
cation information,

3. Test equipment (AutomaticTest Equipment).
4. Test application which includes the process

of accessing appropriate circuit lines, pads or
pins, followed by application of test vectors
and comparison of the captured responses
with those expected; time required for de-
tecting and/or isolating a fault.

5. Undetectable faults; unpredictable produc-
tion schedules and an uncertain level of prod-
uct quality delivered to the customer. When
many actual faults are not detected by the
derived tests, it is often reflected in terms of
loss of customers.

The cost associated with undetected fault could
be high, see Figure 1, but sometimes difficult
to quantify. Although this fault is difficult to
quantify, it influences the other costs by impos-
ing high fault coverage requirement to ensure
that fault escape is kept below an acceptable
threshold [11].
In view of the fact that these costs can be exorbi-
tant and in most cases exceed design costs, it is

therefore, necessary to keep them within accept-
able limit [2]. And this is the reason why design
for testability has become imperative. It is a
proven way of reducing testing costs. A fault
is testable if there exist a well-specified proce-
dure to expose it, which can be implemented
with a reasonable cost using current technolo-
gies. And a circuit is testable with respect to a
fault set when each and every fault in this set
is testable. As there is price for everything in
this world, DFT carries its own penalty – silicon
real estate and performance penalties. This is
mainly because of the extra circuitry employed
for implementing the DFT.

Testability, on the other hand, is introduced at
the design stage, where it dramatically lowers
the cost of test and the time spent at test. Prop-
erly managed, testability heightens your assur-
ance of product quality and smoothes produc-
tion scheduling.

5.1. DFT at the Design Stage

Modern design approach has brought test en-
gineering closer to the design activities in that
the test program development for an electronic
circuit occurs at an early stage in the product
development process and requires a basis in de-
sign. This overcomes the problems encoun-
tered when design and test activities were sep-
arate and distinct, an unnecessary barrier be-
tween two interrelated activities. In this DFT
approach, test activities can influence how a de-
sign is created by identifying testability issues
and improving test access to specific circuitry
within the design. Specialist engineers in both
design and testing are supported by a generalist
DFT engineer, shown in Figure 4, who bridges

Figure 4. Integrated designs for testability.
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the gap between them. The need for special-
ists is based on the need for in-depth knowledge
of specific design and test issues, roles which a
single person could not realistically be expected
to undertake. [5]

5.2. DFT Methodology

There are several methods of making designs
testable. None of thesemethodologies can solve
all VLSI testing problems nor can a single tech-
nique guarantee effectiveness of testing for all
kinds of circuits. Generally, DFT techniques
have the capability to increase the circuit real
estate on chip, which results in complexity of
logic circuits. Increased complexity leads to
increase in power consumption and decrease in
yield. With all these challenges in mind, there is
a need to select a technique for a particular kind
of circuit that balances these trade-offs (bene-
fits and challenges). If a circuit is modified to
increase its testability by the addition of extra
circuitry, it therefore means that another mode
of operation apart from the normal mode has
been included. This new mode of operation is
called test mode. In this mode the circuit is con-
figured for testing alone. DFT methods include
the following:

• Ad-hoc methods

• Scan, full and partial

• Boundary scan

• Built-In Self-Test (BIST)
The goal of DFT is to increase controllabil-
ity, observability and/or predictability of a cir-
cuit. The DFT discipline started with the ad-hoc
technique which involves the insertion of test
points, counters/shift registers, partitioning of
large circuits, logical redundancy and breaking
of global feedback paths. Many of these ad-hoc
techniques were developed for printed circuit
boards and some are applicable to IC design.
These methods are referred to as ad hoc (rather
than algorithmic) because they do not deal with
a total design methodology that ensures ease of
test generation, and they can be used at the de-
signer’s option where applicable. The detailed
description of these techniques can be found in
[8]. Scan path is a scheme that facilitates the
testing of finite state machines (FSM). Auto-
matic test pattern generation for sequential cir-
cuits is very tedious and in most cases do not

achieve the required test coverage. This arduous
task is as a result of the difficulty in controlling
and observing the inputs and output states of
the flip flops respectively. In this technique the
flip flops (FF) or latches are designed and struc-
tured in such a way that allows the circuit to be
operated in either of the two modes (normal or
scan). Figure 5 shows the structure of the FFs
when the circuit is operated in the normal mode.

Figure 5. General model of FSM.

In the test or scan mode, all the FFs are discon-
nected and reconfigured as one or more shift
registers called scan chains or scan registers. In
the test mode all the state inputs (y1, y2, . . . , yk)
become pseudo-primary inputs to the circuit.
The state inputs to the combinational circuit are
the present states of the FFs and the state outputs
of the combinational circuit (Y1, Y2, . . . , Yk) are
the next states of the FFs. When developing
tests for the FSM, you assume that there is only
combinational circuit with the following inputs:
x1, x2, . . . , xn and y1, y2, . . . , yk; and outputs:
z1, z2, . . . , zm and Y1, Y2, . . . , Yk.

During test application, the FFs are initialised to
put them in a known state. After initialisation,
the test patterns are applied to the primary in-
puts of the circuit, the results are latched at FFs
and they are propagated to the output by placing
the circuit in the test mode and clocking enough
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times to capture the results. This configuration
makes the pseudo primary inputs as control in-
puts and the input (pseudo outputs) to a FF an
observation point. To switch between normal
operation and shift modes, each flip-flop needs
additional circuitry to perform the switch.

Boundary scanmethodwas developed primarily
for the testing of circuit boards and is defined by
the core reference IEEE standard 1149.1-2001
“Test Access Port and Boundary-Scan Archi-
tecture”. The idea to bring back the access
to device pins by means of an internal serial
shift register around the boundary of the device
is accredited to European test engineers under
the aegis JETAG (Joint European Test Action
Group). When North American test engineers
joined the group it was named JTAG (Joint Test
Action Group). It was this group that con-
verted the ideas into an International standard,
the IEEE 1149.1-1990 Standard first published
in April 1990. The ICs that are compliant to
this standard must incorporate extra hardware
(Shift-Registers – Boundary scan registers) to
facilitate communication between them and the
board during testing. This idea is illustrated in
Figure 6.

Figure 6. Generic boundary scan architecture.

It is important to note at this point that the use of
boundary scan has found their ways in internal
testing and running of BIST. Apart from BISTs,
boundary scan is very useful in testing System
on chips (SoC) in a new testing environment
that enables systems with IP cores to be easily
tested.

Up to this point the techniques that require ex-
ternal generation and application of test patterns
by an external device like automatic test equip-
ment (ATE) have been considered. BISTs are
true DFT technique. It encompasses test gener-
ation, test application and response verification.
It is very useful for current technology which
requires testing at speed with due consideration
to interconnect delays. Where SAF model fails,
BIST succeeds. BISTs can detect faults that
otherwise would not have been detected using
SAFmodels – delay faults. In thismethodology,
test patterns are generated and test responses are
analyzed on-chip.

The test pattern generator (TPG) in a BIST is
implemented with linear feedback shift regis-
ters (LFSR) [2] which is a finite state machine.
It is a shift register with feedback from the last
stage and other stages. The outputs of the flip-
flops form the test pattern. It consists of FFs
and XOR gates. The number of FFs and XOR
gates depends on the characteristic polynomial
of the LFSR. The generic BIST architecture is
shown in Figure 7. The responses of the circuit
under test (CUT) could be large. Consequently
the output responses are compacted by the re-
sponse compactor (RC) to generate a signature
at the end of the test application since the inter-
est has been on how the circuit responded to the
various test patterns from the LFSR.

Figure 7. General BIST architecture.

The generated signature is compared with the
reference signature (signature of the fault-free
circuit) to know whether the CUT is faulty or
not. The detailed information on test generation
and response compaction is beyond the scope of
this paper. For more detailed information refer
to [1], [8], [10] and [11].
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6. A Simple Example of DFT Technique
Using Scan Chain Methodology

As earlier mentioned, DFT techniques help in-
crease the testability of fabricated circuit by en-
hancing the controllability and observability of
various nets of the circuit. To show how DFT
enhances the testability of a circuit, let us con-
sider a simple counter circuit as shown in Fig-
ure 8. The circuit is divided into two parts: com-
binational and sequential. The part containing
the AND and XOR gates is the combinational
circuit. The circuit has the following parts ac-
cessible to the outside world: outputs q0 to q2,
Clock, Enable and Clear inputs. As it is now,
it will be difficult to properly test this circuit
since you have no access to the internal nodes.
If node n4 is stuck-at 1 or 0, there is no way
one can know about this since one can neither
control nor observe the node.

Figure 8. A simple counter circuit.

Tomake this circuit testable one has to introduce
some extra hardware and increase the number
of the input and output ports. Firstly, replace
the three flip-flops (FF) with a different type of
FFs that has a multiplexer at the D input. By this
action, additional three ports have been added
namely: Scan-In, Scan-Out and Scan enable.
The new sequential circuit is shown in Figure 9.

With the new configuration the FFs form a shift
register. Bit sequence can be shifted into the
FFs through the scan-in input pin with the scan-
enable signal set to high (logic 1) and the bits
shifted out of the shift register can be observed

Figure 9. A simple counter circuit with DFT.

at the scan-out output pin. Under normal op-
eration of the sequential circuit the scan-enable
signal is set to low (logic 0). The only change
here is that our circuit can operate in two modes
– normal and test modes. One can now develop
and generate tests pattern for the combinational
part to test the whole circuit the FFs inclusive.
Let us assume that the node n4 is stuck-at-0.
You can control input lines ‘a’ and ‘b’ to logic
‘1’ and set n5 to ‘0’ and observe the output at
scan-out pin. The purpose of setting n5 to ‘0’ is
to propagate the fault n4 stuck-at-0 to the output
d2 of the XOR gate. Let us now look at how
one can detect the fault stuck-at-0 at line n4.

Reset all FFs to 0
Set line ‘a’ =1 by setting enable input =1 and

n0=0 (FF0 was earlier reset to 0) d0=1,
subsequently FF0 output will be set to 1.
With enable=1 and FF0=1 → n2=1

Set line ‘b’ =1, by setting FF1 output to 1.
If n2=1, then d1=1 → FF1=1.

Set n5=0. Since n5 is the same as the FF2
output n5 is already 0.

With the above settings you are supposed to
have logic 1 at the output. If, however, the
output is 0, then node n4 is stuck-at-0.

It is important to note that the functionality of
the sequential circuit is not affected by the ex-
tra circuitry that implements theDFT technique.
The major advantage of this modification is that
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testing of this circuit has become a combina-
tional problem rather than a sequential one. The
down side is that the circuit area has been in-
creased, though not significantly. In [3], it was
observed that scan-based DFT technique leads
to long test application time and it is less useful
for at-speed testing.

7. Conclusion

In this paper it has been shown that product
quality depends to a greater extent on the thor-
oughness of verification and testing processes
during its development. Testing of digital com-
ponents/system is time consuming, expensive
and can negatively affect time to market. The
example given in this paper has clearly demon-
strated that design for testability greatly eases
the process of testing without a serious con-
sequence on the area and delay issues of the
would-be chip.
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