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Recent research has shown that the navigability of tag-
ging systems leaves much to be desired. In general, it
was observed that tagging systems are not navigable if
the resource lists of the tagging system are limited to a
certain factor k. Hence, in this paper a novel resource
list generation approach is introduced that addresses this
issue. The proposed approach is based on a hierarchical
network model. The paper shows through a number
of experiments based on a tagging dataset from a large
online encyclopedia system called Austria-Forum, that
the new algorithm is able to create tag network structures
that are navigable in an efficient manner. Contrary
to previous work, the method featured in this paper
is completely generic, i.e. the introduced resource
list generation approach could be used to improve the
navigability of any tagging system. This work is relevant
for researchers interested in navigability of emergent hy-
pertext structures and for engineers seeking to improve
the navigability of tagging systems.
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1. Introduction

With the emergence of modern Web 2.0 hyper-
text systems such as Flickr, Delicious, CiteU-
Like or LastFM, tagging systems have emerged
as an interesting alternative to traditional forms
of hypertext navigation and browsing. Tagging
systems allow the user to use a free-form vocab-
ulary to annotate resources with the so-called
tags [13, 23]. This is done either for seman-
tic reasons (for example, to enrich information
items with additional meta data), conversational

reasons (for example, for social signaling) [3] or
for organizational reasons (for example, to cat-
egorize information) [21]. Regardless of why
people tag [26, 29, 28], tags are typically visu-
alized as the so-called tag clouds [3]. Basically,
atag cloud is a selection of tags related to a par-
ticular resource. Upon clicking on a tag in the
tag cloud, a list of resources related to the tag is
presented to the user. Thus, in addition to tra-
ditional browsing (through a hierarchal taxon-
omy) and searching (by entering search terms),
tags, respectively tag clouds, provide users with
a third orthogonal form of navigation within a
collection of resources.

In previous work [15, 16, 7], it was observed that
the navigability of tagging systems leaves much
to be desired. In particular, in [15, 16] we found
that the most common resource list generation
approach used these days in tagging systems
generates network structures which are per se
unnavigable [15, 16]. The issue is this: Limiting
the resource list to a certain factor k, due to inter-
face space restrictions, fragments the bipartite
tag network of a tagging system into large iso-
lated network clusters. This renders the network
unnavigable from a network-theoretical point of
view. However, in [15, 16] we suggested an
approach to overcome this issue by applying a
simple greedy resource generation strategy. The
“trick” is to select, for every click on a particular
tag in the tag cloud, the k related resources at
random. In common tag cloud algorithms, for
every tag click the same result list is generated.

*This article is partly based on the work “Enhancing the Navigability of Social Tagging Systems with Tag Taxonomies”
published in the Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies,

ACM, 2011.
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Since different resources are selected, this leads
to the effect that the tag network becomes con-
nected (even for small values of k) and in theory
navigable again. However, as we have shown
in [15], this simple strategy does not lead to tag
networks which are “good” or even “efficiently”
navigable. Therefore, we have investigated in
our recent work more sophisticated strategies to
generate a k-limited resource list for a particu-
lar tag in the tagging system. In [32] we have
shown that it is possible, at least in theory, if
we apply a hierarchical network model [20] to
select the k resources for the resource list. The
idea is to place the resources in the collection
within a hierarchical taxonomy and to use this
taxonomy to generate a probability function to
select the k resources in the resource list [32].

In [14] we introduced a hierarchical decentral-
ized search approach. In [32] we used the
searcher to simulate a user navigating a tag-
ging system. In short, simulations were able
to demonstrate that the hierarchical resource
list generation approach generates tag networks
which are significantly more navigable than tag
networks generated by the most popular re-
source list generation approach — the reverse
chronological sorting resource list generation
algorithm [32]. However, these results can only
be approximate, as long as there is no research
into how people really navigate within a tag-
ging system. Hence, a formal experiment was
conducted to validate these results empirically.

In [31] we presented results of a formal exper-
iment. The experiment confirmed the results
from the simulations and showed that the hier-
archical resource list generation approach cre-
ates network structures which are significantly
more navigable than networks relying on the
most commonly used resource list generation
algorithm. Although the experiment was suc-
cessful, it also confirmed one important limita-
tion of the approach. In particular, the experi-
ment proved the theoretical assumption that the
algorithm performs poorly if the underlaying
resource taxonomy has high branching factors
[20]. For the experiment in [31], a more or
less high branched resource taxonomy from a
tagging system called Austria-Forum [33] was
used. Hence, in this paper we present an en-
hanced version of the algorithm. Contrary to
the approach in [32], the method introduced in
this work is able to generate a fixed branched re-
source taxonomy and corresponding “resource

trails” autonomously, i.e. it is independent of
any given resource taxonomy. Moreover, the
presented approach is generic and can therefore
be used to improve the navigability of any given
tagging system.

The paper is structured as follows: In Section
2 the hierarchical resource list generation algo-
rithm is presented. In Section 4 the approach is
evaluated and in Section 5 the approach is dis-
cussed. Finally, in Section 6, the conclusions
are presented.

2. Hierarchical Resource List Construction

The hierarchical resource list generation algo-
rithm is a novel approach for resource list gen-
eration in a tagging system [32]. To put it sim-
ply, the approach places the resources into a
hierarchical taxonomy and reuses the hierarchy
to generate a probability function to select the
resources in the tagging system. If the taxon-
omy provides a constant branching factor b, the
emerging tag network is efficiently navigable.
The idea for this algorithm was originally de-
rived based upon the work by J. Kleinberg [20]
who has investigated structural clues of small
world networks. Kleinberg showed [20] that if
the nodes of a network can be organized into
a hierarchy with a constant branching factor
b, then such a hierarchy provides a probabil-
ity distribution for connecting the nodes in the
network to generate a network that is then effi-
ciently navigable.

In detail, the algorithm works as follows: For
each click on a tag #(r), where r is a resource
in the tagging system, the algorithm returns a
k-limited resource where the resources r(¢(r));
in the list are selected randomly according to a
probability function p that is calculated from a
given resource taxonomy 7. p is calculated as

e—dist(r(t(r)),r(l(r))i) (1)
The distance dist(r(t), r(¢);) is calculated as

h(r(1)) + h(r(1)i)) = 2h(r(2), r();) ~ (2)

where h(r(t)), h(r(z);) are the heights of r(7) and
r(t); in a given resource taxonomy 7" and where
h(r(z), r(t);) is the height of the least common
ancestor of r(¢) and r(¢); in the resource taxon-
omy T [32] (see Algorithm 1).
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Figure 1. Sample resource taxonomy and corresponding hierarchically constructed resource list for tag “car”. The
green nodes are the resources in the taxonomy that have the tag “car” applied. In the middle of the Figure the
resulting probability function is presented and on the right side the generated resource list is shown.

In Figure 1 an illustrative example of a resource
taxonomy and the corresponding hierarchically
constructed resource list for the tag “car” is
given. Note that the orange node in Figure 1
represents the resource that is currently viewed
by the user. The green nodes are the resources
in the taxonomy that have the tag “car” applied.
The resulting probability function is presented
in the middle of Figure 1 and the generated re-
source list is shown on the right side.

2.1. Resource Taxonomy Generation
Algorithm

To overcome the issue of a given resource tax-
onomy, Algorithm 1 has been extended to gen-
erate a fixed branched resource taxonomy au-
tonomously. In related work, [17] Heymann et
al. (see also [3]) describe an algorithm to gen-
erate a tag taxonomy from tagging data. The
input for the algorithm is the so-called tag sim-
ilarity graph, i.e. an unweighted graph where
each tag is a node in the graph, and two nodes
are linked to each other if their similarity is
above a predefined similarity threshold. In the
simplest case, the threshold is defined by tag
overlap, i.e. tags need to share at least one re-
source to be linked with each other. The second
prerequisite for the algorithm is the ranking of
nodes in a descending order according to how
central the tags are in the tag similarity graph.
In particular, this ranking produces a general-
ity order where the most general tags from a
dataset are highly ranked. The algorithm starts
with the most general tag as the root node of the
tree. The algorithm then proceeds by iterating
through the generality list. For each tag in the

tree it adds the current processed tag as a child
to its most similar tag. [14]

In this work, a similar algorithmic approach is
developed. Contrary to the algorithm of Hey-
mann et al. the algorithm is able to generate
a fixed branched taxonomy without defining a
predefined similarity threshold. In Algorithm 2
the actual algorithm is presented. In words, the
algorithm works as follows (see also [35]):

Algorithm 1. Hierarchical Resource List
Generation Algorithm

INPUT: tag ¢, resource r, max. resource list size k,
resource taxonomy 7'

OUTPUT: resource list RS

R(1) < get all resources r(1)\r

D «— new HashMap[new Array|]]

for each r(¢); € R(r) do
dist < h(r) + h(r(t);) — 2h(r,r(t);) — 1
/* h(r), h(r(z);) are the heights of the resource nodes
rr(t); in T, h(r,r(¢);) is the height of the least
common ancestor of r, r(¢); in T */
Dldist].add(r(1);)

end for

Jj+=0

RS «— new Array||

thile sizeof (RS) < k && sizeof (RS) < sizeof (D)
o

RS[]] — DLpexpapuni]
/* Dexp 18 @ random number with exponential dis-
tribution in the interval 0 < x < sizeof (D), puui is

a random number with uniform distribution in the
interval 0 < x < sizeof (D[pexy]) */

end while
sort RS by dist in descending order
return RS
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Algorithm 2. Resource Taxonomy Generation
Algorithm

INPUT: Tag Dataset D, Branching Factor b
OUTPUT: Resource Taxonomy T
C — new HashMap|]
T «— new Tree|]
for each r; € F do
Clri] < calculate degree centrality
end for
sortByValues(C)
/*sort C by values in descending order* /
T[0] < CJ0]
SIM «+— new HashMap
for i =0; i < sizeof (T); i++ do
/*get all similar resources of T[i] and store the re-

sources as key values and the similarity values into
SIM*/

SIM «— getMoreLikeThis(T|i])
for each r; € SIM do
T[r;] < T[ri] - C[ri]

end for

/*sort the resources in SIM by values in descending
order*/

sortByValues(SIM)
for j = 0;j < sizeof (SIM) and j < b; j-++ do
T[i].append(SIM[i])
end for
end for
return T’

The algorithm takes a tag dataset and the desired
taxonomy branching factor as input parameters.
Since the algorithm should generate a resource
taxonomy with the most general resource of the
tagging system as root node and related and
less general resources as children, the algorithm
in the first step calculates degree centrality for
all resource of the supplied tagging dataset and
stores the centrality-resource pairs into amap C.
Degree centrality was chosen since, on the one
hand, it is computed fast, and on the other hand,
it was observed in previous research [6] that
degree centrality in tagging systems is highly
correlated to sophisticated centrality measures
such as closeness or betweenness centrality. In
the next step, the algorithm sorts the resources
in C according to their centrality values in de-
scending order.

Subsequently, the algorithm takes the first el-
ement of C (i.e. the most general resource)
and sets that resource as the root node of the
resource taxonomy. Thereafter, the algorithm
starts iterating through the elements (resources)

already present in resource taxonomy. For each
resource in the resource taxonomy the algo-
rithm calculates the most similar resources (see
getMoreLikeThis in Algorithm 2). Our algo-
rithm calculates cosine similarity between all
co-occurring resources taking also the z#f - idf
values of the tag concepts into account. Ad-
ditionally, the function returns only resources
that are not already part of the constructed re-
source taxonomy. The results of this function
are stored into a map SIM, with the resources as
key values and with the provided similarity val-
ues as corresponding map values. To account
for resource generality we multiply resource
similarity values with their corresponding cen-
trality values. The final scores are normalized
to fall into the range of [0...1]. After that, the
resources in SIM are sorted by the scores in
descending order. This procedure ensures that
the resources in SIM are not only similar to the
currently processed resource, but also sorted by
their generality values. Thereafter the algorithm
appends a maximum of b resources to the cur-
rently processed resource. The algorithm stops,
if no more similar resources can be found.

Note, due to the fixed branching factor b the
algorithm does not guarantee that all resources
of the tagging dataset are contained in the re-
sulting resource taxonomy. However, as it will
be shown in Table 1, the probability that one
or even more resources are missing is rela-
tively small due to the high number of existing
links between the resources of the resource-to-
resource network of a given tag dataset. On
the other hand, in a tag taxonomy the probabil-
ity that one concept is missing is significantly
higher. The reason for this behavior is the fact
that the tag-to-tag network of a tagging system
is typically substantially less connected.

Figure 2 shows the branching factor distribu-
tion for a tag-resource taxonomy with branch-
ing b = 5 generated from the Austria-Forum
tag dataset. For branching factor b = 5 the al-
gorithm does not generate a complete b — tree
(from levels 1 to 4 the resulting tree is com-
plete, for levels > 4 the tree is not complete).
The reason for this behavior is the fact that in tag
networks there are resources which are just con-
nected to a few resources, i.e if the branching
factor b is beneath this threshold, the resulting
taxonomy becomes incomplete.
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Figure 2. Branching factor distribution for a resource
taxonomy with maximum branching b = 5 generated
from a tagging dataset in Austria-Forum [33].

2.2. Resource Taxonomy Labeling
Algorithm

In order to give the user information about how
the resources are structured in the tagging sys-
tem, tag/title trails are attached as additional
information for each resource of the tagging sys-
tem (see Figure 2). In an experiment [31] con-
ducted recently, resource trails were attached to
the resources in the result lists of the tagging
system. In other words, in [31] we observed
that all 24 participants of the experiment were
using resource trail information for orientation
rather than tag information to navigate the tag-
ging system.

However, since resource trails extracted from
a resource taxonomy would be impossible for
humans to read, a labeling algorithm is intro-
duced to make the resource taxonomy readable
by humans. The basic idea of the algorithm is it
to use tag and title information to label a partic-
ular resource in the resource taxonomy and to
use the resulting taxonomy to generate tag/title
trails which are attached to the resources in the
resource list (see Figure 3), i.e. we attempt to
contextualize the resources.

In general, it is a labeling algorithm taking a
given resource taxonomy and a tagging dataset
as input parameters. Tag information is used as
label data. The algorithm tries to apply labels to
the given resource taxonomy in such a way, that
they are uniquely distinguishable and the most
descriptive for the given resource. The can-

didate tags are thereby ranked by the method
of tag co-occurrence. However, since it can
happen that resources in the resource taxonomy
have the same tags in their parent tag trail, due
to the lack of available tags in the tagging sys-
tem, additional meta-data is taken into account.
We use title information of the resources as an
additional way for differentiation. In words, the
algorithm works as follows (see also [35]):

In the first step the algorithm calculates, for each
resource in the resource taxonomy, a list of co-
occurring tags of all resource tags and stores this
list sorted in descending order into a map. After
that, the algorithm traverses the resource taxon-
omy in left-order. In this loop the actual labeling
procedure is performed. In detail, the labeling
process looks as follows: For each resource in
the resource taxonomy the corresponding co-
occurrence vector is consulted and the first la-

Algorithm 3. Resource Taxonomy Labeling
Algorithm

INPUT: Resource Taxonomy 7, Tag Dataset D
OUTPUT: Tag-resource Taxonomy
COTAGS «— new HashMap[newArray|)]
fori=0;i < sizeof(T); i++ do
Ts — getTags(T[i], D)
for j = 0;j < sizeof(Ts); j++ do
cotags «— getCoocTags(Tslj], D)
sort(cotags)

remove all tags from cotags that are not
contained in T7i]

COTAGS|T]i]]-add(cotags)
end for
end for
trails < new HashSet]]
for eachr; € T do
/*T is traversed in left-order* /
pl — getParentLabels(r;)
for each [; € COTAGS|r;] do
if !pl.contains(l;) then
if !(trails.contains(pl.toString() + I;)) then
T[ri].applyLabel(pl)
trails.add(pl.toString() + I;)
end if
end if
if T[r;] has no label then
T|r;].applyLabel(getTitle(r;))
end if
end for
end for
return T
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Figure 3. A Sample of a hierarchically constructed resource list with attached tag/title trails (on the left) and
corresponding resource taxonomy with applied tag/title labels (on the right). Note, compared to a pure tag taxonomy
(see [14] for instance), in a labeled resource taxonomy, terms can occur more than once. The orange node in the
resource taxonomy (again) denotes the resource currently viewed by the user.

bel, i.e. the most frequent tag, is tried to be ap-
plied to the currently processed resource. If the
currently used candidate tag is already part of
the tag trail of the currently processed resource
(see variable trails in Algorithm 2) the next el-
ement, i.e. the next frequent tag label is chosen
as candidate tag. If no uniquely distinguishable
tag trail can be constructed, i.e. the candidate
tag label from the co-occurrence vector is al-
ready present in the tag trail of the resource,
additional meta data is considered. We use title
information of the currently processed resource
for this purpose. Note, since tag and title infor-
mation can be identical, the proposed method is
not completely free of collisions. However, to
fix this issue, one can include additional meta
data information or other methods to generate
a unique label such as appending an iterative
number for each label that occurs more than
once. The algorithm stops if all resources of the
given resource taxonomy are labeled.

3. Dataset

The experiments described in this paper are
based on the tag dataset from a system called the
Austria-Forum [4, 33]. Basically, the Austria-
Forum is a large online encyclopedia similar
to Wikipedia providing the user with approxi-
mately 180,000 resources related to Austria. In

contrast to Wikipedia, Austria-Forum structures
articles into a taxonomy and provides an inte-
grated tagging system [33, 34, 30|, which allows
users to assign tags to resources and to navigate
to related resources via tag clouds. As of Oc-
tober 16, 2010 the Austria-Forum tag dataset
contains 97,908 tag assignments, 13,314 tags,
and 19,430 resources.

4. Experiments

In order to evaluate the proposed hierarchical
resource list generation approach, five different
experiments were conducted. In this section,
the experiments are described and results are
presented.

Name | | b | n TTLyax | TTLyean
Res2 2 | 19,430 17 12.45
Res5 5 | 19,430 10 5.93
Res10 || 10 | 19,430 8 4.44

b = branching factor, n = number of nodes in the
resource taxonomy, 7TL,,,, = maximum Tag/Title Trail
Length, TTL,.q, = mean Tag/Title Trail Length

Table 1. Tag/title lengths for different branching factors.
As expected the resource taxonomy with the smallest
branching factor b = 2 generates the longest trails
RTL,,,. = 17 and the resource taxonomy with highest
branching factor b = 10 the shortest RTL,,,, = 8.
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4.1. Measuring Average and Maximum
Tag/Title Trail Lengths

In the first experiment, we investigated the av-
erage and the maximum resource taxonomy
depths for different branching factors b. Since
the resulting resource taxonomies generated by
Algorithm 2 are incomplete neither the average
nor the maximum depth could be estimated by
formulas. Hence, these values were conducted
empirically through an experiment. For the ex-
periment, three different resource taxonomies
named Res2, Res5 and Res10 with three dif-
ferent branching factors » = 2,5 and 10 were
generated. In order to compare the resulting tax-
onomies against a golden standard taxonomy,
the DMOZ Open Directory Project [10] (ODP)
taxonomy was consulted. This experiment was
conducted to determine whether or not the re-
sulting tag/title trails will be in length usable
for humans (see also [18, 36, 24]).

As shown in Table 1 and as expected, the re-
source taxonomy with the smallest branching
factor b = 2 generates the longest tag /title trails
TTL,. = 17 and the resource taxonomy with
the highest branching factor » = 10 generates
the shortest TTL,,,x = 8. For b = 5 the maxi-
mum tag/title trail length is TT L, = 10. On
average, when branching factor b = 2, the trail
length is TTLeqn = 12.45. For b = 5, the
mean trail length is TTLeqn = 5.93 and for
b = 10 the mean trail lengthis TT L0, = 4.44.
The ODP Taxonomy has a mean depth of 6.86
[2]. The maximum depth is 13 [2]. Hence, com-
pared to the ODP taxonomy, the resource tax-
onomy with branching factor » = 5 maps more
closely to a human crafted taxonomy. However,
the resource taxonomy with branching factor
b = 10 is most usable [18, 36, 24] since it gen-
erates the shortest trails of all taxonomies. The
resource taxonomy with branching factor b = 2
is, in our opinion, not usable.

4.2. Measuring Labeling Collision Rate

In the second experiment, we measured the
number of “collisions” which occurs when la-
beling a given resource taxonomy with different
branching factors b (with the labeling Algo-
rithm introduced in Section 2). As explained,
the labeling algorithm is not 100% collision
free. Hence, the experiment should reveal how

many collisions occur in general if labeling a re-
source taxonomy with a given branching b. For
this experiment the three resource taxonomies
from the prior experiment were used. To show
the potential of using tag and title information
together to label a given resource taxonomy, we
also conducted an experiment for which we only
used tag information to label the three given re-
source taxonomies. As shown in Table 2, for
branching factor b = 2 the collision rate is
CR;; = 0.1%, for b = 5 the collision rate is
CR;; = 0.2% and for b = 10 the collision rate
is CRy; = 0.2%. The collision rate is signifi-
cantly increased if taking only tag information
into account. For b = 2 the collision rate is
CR;, = 8.5%, for b = 5 the collision rate is
CR; = 12.9% and for b = 10 the collision rate
1s CR;, = 15.9%. All in all, one can observe
that the higher the branching factor, the higher
the collision rate.

4.3. Measuring Semantic Structure of the
Labeled Resource Taxonomy

The third experiment investigated the quality
of the semantic structure of the three labeled
resource taxonomies from the previous experi-
ment. For that purpose, two different semantic
measures were consulted — the Taxonomic F-
Measure [8] and the Taxonomic Overlap [22].
Both measures assess the quality of a given tax-
onomy against a gold standard over common
concepts. The Taxonomic F-measure (=TF) is
defined as the harmonic mean of the Taxonomic
Recall and Precision (see [8] for more details).
The Taxonomic Overlap (=TO0) is defined as
TO = TF/(2 — TF) [8]. As a gold standard
for this experiment the Germanet [12] ontology

Name || b | n | CR, (%) | CR; (%)
Res2 2 | 19,430 0.1% 8.5%
Res5 5 | 19,430 0.2% 12.9%
Res10 || 10 | 19,430 0.2% 15.9%

b = branching factor, n = number of nodes in the
resource taxonomy,
CR;, = Collision Rate with tag/title information,
CR, = Collision Rate with tag information only

Table 2. Collision rates for different resource
taxonomies with different branching factor b. As shown,
the higher the branching factor, the higher the collision
rate. The collision rate is drastically increased if taking
only tag information for labeling into account.
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Figure 4. Results of the semantic evaluation of the generated resource taxonomy with applied tag/title labels using

the Austria-Forum tag dataset. As shown in the resource taxonomy, Res5 generates the lowest TF and 7O values of
all measured taxonomies. However, the TF and TO values increase with the higher branching factor . For b = 10
the semantic structure of the labeled resource taxonomy Res10 is nearly as good as the K — Means tag taxonomy.

was used (the Austria-Forum tag dataset con-
tains only German tags).

Since the idea of a labeled resource taxonomy
with attached tag/title labels could be best com-
pared with a tag taxonomy, we compared the
approach with four different famous tag tax-
onomies generated by the following popular
tag taxonomy induction algorithms: Hierarchi-
cal K-Means [9], Affinity Propagation [11, 27],
Heymann [17] and Deg/Cooc [14, 5]. In the
experiment, 7F and 7O values were measured
for all seven taxonomies generated and bench-
marked against each other. The goal of the ex-
periment was to determine if the labeling algo-
rithm generates semantic structures which are
more useful than the structures generated by
the popular tag taxonomy induction algorithms
such as Hierarchical K-Means, Affinity Prop-
agation, Heymann or Deg/Cooc [14]. Note,
since a label in a resource taxonomy (compared
to tag taxonomy) can occur more than once,
the average semantic cotopy values (see [8]) for
calculating TF and TO values for the resource
taxonomies Res2, Res5 and Res10 were calcu-
lated, i.e. for each label we measured the se-
mantic cotopy values and averaged them when
there was more than one label present in the
taxonomy (see [8] for more details).

In Figure 4, results of the semantic evaluation
of the experiment are presented. As shown,

the resource taxonomy with a branching factor
b = 2 generates the lowest TFF = 19% and
TO = 11% values of all measured taxonomies.
However, the semantic values of the resource
taxonomies increase with the higher branching
factor. Forb =5, TF = 29% and TO = 17%.
For b = 10, TF = 34% and TO = 20%. As
shown in Figure 4, the resource taxonomy with
braching factor b = 10 generates higher TF
and 7O values than a tag taxonomy based on
the tag taxonomy induction approach such as
Affinity Propagation (TF = 30%, TO = 18%)
and Heymann (TF = 25%, TO = 14%). How-
ever, it performs worse than tag taxonomy based
on an induction algorithm such as Deg/Cooc
(TF = 39%, TO = 24%) and Hierarchical K-
Means (TF = 35%, TO = 21%). The resource
taxonomy with a branching factor b = 5 per-
forms better than the Heymann tag taxonomy,
but worse then all others. All in all, one could
say that resource taxonomies with branching
factors between b = 5 — 10 perform on av-
erage as good as “pur” tag taxonomies based
on a Affintity Propagation tag taxonomy induc-
tion algorithm. Or, in other words, the result-
ing tag /title trails of a resource taxonomy with
branching factors between b = 5 — 10 are in
average as good as the tag/title trails of the tag
taxonomy generated by the Affinity Propaga-
tion tag taxonomy induction algorithm.
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4.4. Measuring Navigability

In order to evaluate the navigability of the tag
networks resulting from the proposed hierar-
chical resource list generation approach, three
different types of tag networks were generated.
They all varied in how the the resource lists were
calculated. In the following list, we describe the
tag networks as they were generated and used
for our further experiments:

Network CHRON: This is the type of tag net-
work as typically found in tagging systems such
as Delicious, CiteULike or Flickr. The tag net-
work relies on a resource list generation algo-
rithm that returns for each click on a particular
tag ¢ in the tagging dataset a k-limited resource
list that is sorted in reverse chronological or-
der. Contrary to the hierarchical resource list
generation approach, the resource lists are stat-
ically calculated, i.e. no mater what resource in
the tagging system is currently viewed by the
user it always shows the same resource list for
a particular tag ¢ calculated [32, 15, 16].

Network RAND: This type of tag network re-
lies on the resource list generation algorithm
that returns for a particular tag ¢ a different and
randomly sorted k-limited resource list. Con-
trary to the chronological approach, the resource
lists are not statically calculated, i.e. for each
click on a tag #(r), a different resource list is
generated.

Network HIERx: This type of tag network re-
lies on the hierarchical resource list generation
approach as introduced in Section 2. For our
experiments in this paper, three separate tag net-
works of this type were generated. They all vary
in the way in which resource taxonomies were
used to generate the resulting tag networks. As
input resource taxonomies, the three resource
taxonomies Res2, Res5 and Res10 from Section
4.1. were chosen. The resulting networks are
called Network HIER2, HIERS and HIER10.

In order to determine whether the generated
tag networks are navigable, network proper-
ties such as the size of the largest strongly-
connected component (LSCC) and the effec-
tive diameter (ED) were calculated. From a
network-theoretic perspective, Kleinberg [20]
showed that a navigable network can be for-
mally defined as a network with a low diameter
[25] bounded by log(n), where n is the number

of nodes in the network, and an existing giant
component, i.e. a strongly connected compo-
nent containing almost all of the nodes. For
that experiment the maximum resource list size
k was also varied to k = 10 and k = 50. This
was done to observe whether or not different
values of k influence the navigability of the dif-
ferent tag networks. The overall goal of this
experiment was to determine whether or not
the tagging system relaying on a hierarchical
resource list generation algorithm produces tag
networks which are more navigable than tag net-
works generated by a chronological or random
resource list generation approach.

Name |k |Nodes | Links |ED |LSCC
CHRON [[ 10 [ 19,430 | 660,457 |4.22]0.77
RANDy, |10 ] 19430 | 678,623 [4.00 | 0.99
HIER2y || 10 ] 19430 619,641 [4.29]0.99
HIERSy, [[ 10 ]19,430[ 622,554 [3.99 ] 0.99
HIER10y [[ 10 [ 19,430 [ 625,512 [4.30 | 0.99
HIERSy, [[ 10 [ 19,430 [ 622,554 [3.99 | 0.99
CHRONs || 50 | 19,430 | 2,156,133 | 3.95 | 0.90
RANDsy |50 | 19,430 | 2,191,483 [ 3.87 | 0.99
HIER2s, || 50 | 19,430 [ 2,086,978 [ 4.05 | 0.99
HIERSs, || 50 | 19,430 [ 2,093,926 [ 3.90 | 0.99
HIER10s || 50 | 19,430 | 2,097,897 | 3.86 | 0.99

LSCC = Largest Strongly Connected Component, ED
= Effective Diameter

Table 3. Tag network statistics. According to Kleinberg
[19, 20] networks RAND and HIERx are navigable
networks. Network CHRON is unnavigable [19, 20], i.e.
not (nearly) all nodes of the network are contained in
the giant component of the network.

In Table 3, the network statistics of all four tag
networks are shown. According to Kleinberg
[19, 20] networks RAND and HIER are navi-
gable networks. In network CHRONq, 23%
and in network CHRONj5), 10% of all resources
are not within the giant component of the tag
network. Hence network CHRON is unnaviga-
ble [19, 20]. These results go along with the
observations made in [15, 16].

4.5. Measuring Efficiency

In the concluding experiment, we measured the
efficient navigability of the tag network with
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Figure 5. Success rates of the hierarchical decentralized for tag networks RAND and HIERx and different values of
k. As shown, the hierarchically constructed tag networks outperform the random networks most. As also shown in
Figure 4, tag network HI/ER? 1s most navigable. Regardless of which branching factor, the searcher is able to find

nearly 100% of all nodes in this network. According to Kleinberg’s definition [19, 20] tag networks HIER2 and
HIERS are also efficiently navigable network.

a hierarchical decentralized searcher [1] as in-
troduced in [14]. As defined by Kleinberg, an
efficiently navigable network is a network for
which a decentralized searcher exists that is able
to navigate to all nodes of the network in log(n)
or at least in sub-linear to n time, where n are the
number of nodes in the network. In [14] we have
introduced a searcher that is able to search a tag-
ging system in log(n). However, contrary to the
searcher in [14], the searcher in this work uses as

Algorithm 4. Hierarchical Decentralized
Searcher [14]

INPUT: resource resource graph R, resource taxonomy
T, start node v, target node w, max hops hops,ax

hops — 0
while v! = wdo
if +-+hops >= hops,.. then
break
end if
R(v) « get all resources from v € R
dist i, < 00
for eachr; € R(v) do
dist — h(r;,T) +h(v,T) — 2h(r;,v,T) — 1
if dist < dist,,;, then
dist,;, < dist
V1T
end if
end for
end while

background knowledge the resource taxonomy
which was utilized to generate the tag network
(see Algorithm 4). Additionally, the searcher
in this work is able to walk along a directed tag
network. In [14], it was limited to a bipartite
tag network. In Algorithm 4, the pseudo code
of the implemented searcher is presented. Note
that the searcher is using as input parameters
a directed resource-resource tag network, a re-
source taxonomy, a start and target node and a
maximum number of hops parameter that de-
fines how many resources the searcher should
at maximum visit before giving up. For an input
taxonomy the searcher is taking the correspond-
ing resource taxonomy, i.e. for Network HIER?2
resource taxonomy RES? is taken, for Network
HIERS resource taxonomy RESS is taken, for
Network HIER10 resource taxonomy RES10 is
taken and for network RAND a random resource
taxonomy was generated.

In order to acquire statistically significant re-
sults, 100,000 random searches (with a maxi-
mum of 10 hops) for each of the networks were
performed. The start and target nodes were se-
lected uniform at random. For the experiment,
only resource pairs were considered for which
a path was present in the network. If the tar-
get node could not be found in at least 10 hops
or the searcher was caught in a cycle (we did
not recover the searcher in that case), this was
counted as an error. It is important to note that
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both searchers were given the exactly same start
and target nodes for all four networks.

In Figure 4 we present the success rate plots
of the hierarchical decentralized searcher for
tag networks RAND and HIERx and different
values of k. As shown, the hierarchically con-
structed tag networks outperform the random
networks significantly. As also shown in Figure
4, tag network HIER?2 is most navigable. Re-
gardless of which branching factor, the searcher
is able to find nearly 100% of all nodes in this
network. According to Kleinberg’s definition
[19, 20] tag networks HIER2 and HIERS are
also efficiently navigable network.

5. Discussion

However, even if the experiments showed that
the proposed resource list generation approach
is able to generate tag networks that are effi-
ciently navigable, the experiments also revealed
that the proposed approach has also limitations.
In particular, the experiments revealed that there
are limitations regarding the generated resource
taxonomy. For instance, in the first experiment
it was observed that it is not useful to gener-
ate a resource taxonomy with small branching
factors since the resulting tag/title trails could
grow too long to be usable. In the second exper-
iment it was shown that a resource taxonomy
with higher branching factors led to tag/title
trails that have a higher probability of not being
uniquely distinguishable any more. In the third
experiment, it was shown that a resource taxon-
omy with low branching factors would lead to
tag /title trails which are semantically less useful
than the trails of a labeled resource taxonomy
with higher branching factors. In experiment
five, it was shown that a smaller branched re-
source taxonomy will lead to tag networks that
are more navigable.

However, the experiments also showed that,
there is distinctive branching factor b for which
a good trade-off between usability, semantics
and navigability is given. Our experiments
showed that for the Austria-Forum tag dataset
the optimal branching factor would be approxi-
mately b = 5 in order to produce resource lists
containing usable tag trails and to generate effi-
ciently navigable tag networks.

6. Conclusions

In this paper, a novel approach for resource list
generation for tagging systems was presented.
In particular, the paper presented a resource list
generation approach that is based on a hierarchi-
cal network model. A number of experiments
showed that the approach is able to generate tag
network structures which are efficiently navi-
gable. Contrary to previous work, the proposed
approach is completely generic, i.e. the intro-
duced hierarchical resource list generation ap-
proach could be used to improve the navigability
of any tagging system.
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