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Ad hoc network consists of a set of identical nodes that
move freely and independently and communicate among
themselves via wireless links. The most interesting fea-
ture of this network is that they do not require any existing
infrastructure of central administration and hence is very
suitable for temporary communication links in an emer-
gency situation. This flexibility, however, is achieved
at a price of communication uncertainty induced due to
frequent topology changes. In this article, we have tried
to identify the system dynamics using the proven con-
cepts of time series modeling. Here, we have analyzed
variation of link utilization between any two particular
nodes over a fixed area for different mobility patterns un-
der different routing algorithm. We have considered four
different mobility models — (i) Gauss-Markov mobility
model, (ii) Manhattan Grid Mobility model and (iii)
Random Way Point mobility model and (iv) Reference
Point Group mobility model. The routing protocols
under which, we carried out our experiments are (i) Ad
hoc On demand Distance Vector routing (AODV), (ii
Destination Sequenced Distance Vector routing (DSDV
and (iii) Dynamic Source Routing (DSR). The value
of link load between two particular nodes behaves as a
random variable for any mobility pattern under a routing
algorithm. The pattern of link load for every combination
of mobility model and for every routing protocol can be
well modeled as an autoregressive model of order p i.e.
AR(p). The order of p is estimated and it is found that
most of them are of order 1 only.

Keywords: ad hoc network, mobility modeling, link
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1. Introduction

Multi-hop wireless networks [1, 2], commonly
referred to as ad hoc wireless networks do not
require a fixed infrastructure because a mobile
node can relay packets to another node without

using base stations. The nodes are mobile and
changing locations regularly. A node in mobile
ad-hoc network (MANET) is moving and its
neighborhood varies constantly with time and
place. Due to change of this neighborhood the
link between two nodes is sometimes available
and sometimes not. When the link is up, the
number of packets transmitted through that link
varies with time. If the link is down, all pack-
ets sent through that link are lost. The number
of packets transmitted through a link at a par-
ticular instance indicates the congestion of that
link and, in this article, we term it as link load.
The link load is an important index used for
congestion control, QoS routing etc. In this ar-
ticle, we have modeled the variation of number
of packets transmitted through a particular link
between two nodes over time. If we look at
the previous link loads of a particular link, we
may find that variation of link load shows a spe-
cific pattern and this pattern may be modeled in
terms of time series. This time series modeling
may be used for the purpose of prediction of
future link loads. The predicted values of link
loads may help us in designing QoS routing al-
gorithms. Let N = {N;|1 < i < n} represents
the collection of nodes in the system. A duplex
link LY is formed between two nodes say N;
and N; if and only if N; is neighbor of N; and

N; is neighbor of N;. The link load LL; of a
link between node N; and N; is changing con-
stantly with time ¢. At every instant some new
nodes are coming into the transmission range
of N; and N; whereas some old neighbor nodes
are leaving the transmission range of N; and
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N; thereby leading to change in the load of the

link. Say, link LY has LLY number of packets
at ¢ instance of time. After a small duration of
time say At unit i.e. at time ¢ + At, this number

becomes LLij+ As LLij+ Ar i1s a function of the
previous link load LL;, LLY , , and so on down

to some early lags. The reason is that some
old nodes have left, some new nodes have come
into the transmission range with some old nodes
still remaining. The link load is highly depen-
dent upon the mobility pattern [3, 4] followed by
node N;, N; and their surrounding nodes and the
routing protocol used. The number of control
packets sent due to use of reactive and proactive

. . . . ij
routing algorithm s different. We defineLL; ,,

as a function of LLY, LL?_ A LL;']'_ 5, and so on.
ij — ij ij ij
LL A = f(LL;, LL .- LLt_p A,) for some

function characteristic f and integer p such that
1 < p < oo. The autocorrelation properties of
LL may also depend on speed and transmission
range.

Currently, we have considered four mobility
models — (i) Gauss Markov mobility [5], (ii)
Manhattan Grid Mobility, (iii) Random Way
Point mobility [6, 7] and (iv) Reference Point
Group mobility [8] models for our experiment.
A survey of the most frequently used mobility
models is presented in [3]. The main motiva-
tion of the present work is to find a relationship
among the link loads values of a particular link
LLY between two nodes N; and N; in an ad
hoc network. This information can be utilized
in other areas such as augmenting the perfor-
mance of existing routing protocols to include
QoS parameters. However, these issues are kept
out of the purview of present endeavor in order
to avoid shift in the focus of the present article.

The rest of this paper is organized as follows.
Section 2 contains a brief survey of the relevant
works. Section 3 covers our proposal for using
autoregressive model of order p (AR(p)) and the
relevant discussion. In Section 4, we provide the
simulation results to supplement our proposal of
modeling the link load dynamics using AR(p)
model. Section 5 describes the techniques to
find the order p of AR(p) model. The forecast
values to the AR model are also described in that
section. In Section 6, we conclude and suggest
future directions.

2. Related Works

MANETS are expected to be deployed in myri-
ads of scenarios having complex node mobility
and connectivity dynamics. For example, in a
MANET on a battlefield, the movement of the
soldiers will be influenced by the commander.
In a city-wide MANET, the node movement is
restricted by obstacles or maps. The node mo-
bility characteristics are very application spe-
cific. Widely varying mobility characteristics
are expected to have a significant impact on the
performance of the routing protocols like DSR
[9], DSDV|10] and AODV[11]. Bai et al. [12]
proposed a framework for analyzing the Im-
pact of Mobility on the Performance Of RouT-
ing protocols in Adhoc NeTworks abbreviated
as (IMPORTANT) framework. Through this
framework they illustrated the importance of
mobility modeling in routing performance and
understanding the mechanism of ad hoc routing
protocols. They gave a reasonable explanation
as to why some routing protocols behave dif-
ferently under different mobility patterns. To
show this difference and supplement their ar-
gument, they used a number of useful metrics
such as degree of spatial dependence, degree of
temporal dependence, connectivity graph, link
duration etc. They also give a reasonable expla-
nation as to why mobility effects routing per-
formance. However they failed to give a sat-
isfactory explanation for why routing protocols
behave differently even for the same mobility
pattern. Helmy et al. [13, 14] tried to answer
the question "why routing protocols behave dif-
ferently even for the same mobility pattern"?
They tried to answer this question by decom-
posing a protocol into its protocol mechanistic
building blocks. They used reactive protocols
like DSR [9] and AODV [11] to explain this. In
their work, they decomposed a protocol into its
mechanistic building blocks where each mech-
anistic building block is used to implement a
specific function. Then the effect of different
mobility patterns on each building block is eval-
uated. Their approach provides a methodology
to justify the contribution of each mechanistic
building block on overall protocol performance
under various mobility patterns.

Time series [15, 16] modeling is drawing a lot
of attention in the modeling of internet traffic,
wireless sensor and ad hoc network traffic. Basu
et al. [17] model the internet traffic using the
Autoregressive Moving Average Model of order
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pand g (ARMA(p, q)) model. Using this model,
they forecast the traffic which was generated by
a TCP source using Fiber Distributed Data In-
terface (FDDI) protocol. Fiber Distributed Data
Interface (FDDI) is a set of ANSI and ISO stan-
dards for data transmission on fiber optic lines
in a local area network that can extend up to
a range of 200 km. The FDDI is a token ring
based protocol. They also develop a system to
generate synthetic traffic which could be useful
for simulation studies of internet traffic and in
resource management algorithms.

Singh and Dutta [18, 19] pointed out the impor-
tance of neighbor count of a mobile node and
modeled that information using autoregressive
model. They showed through extensive sim-
ulation that the distribution of neighbor count
of a node N; under a threshold value of speed,
range and sampling time for different mobility
models are well correlated and can be repre-
sented by AR(p) model for suitable choice of
p. However, beyond that threshold value, the
autocorrelation of node distribution does not re-
main significant enough. They also calculated
the order of autoregressive model and used that
model to predict the neighbor count values.

3. Proposed Model

As we pointed out in Section 2, the link count
LLY between node N; and N; is changing with
time and is a function of the values of link load
LLY at previous instances. Our first concern
was to study whether the link load under a spe-
cific mobility scenario varies for different rout-
ing protocols. If they did so, we tried to find
out the amount of variation and correlation for
the link load under a specific mobility model
using different routing protocol. We have also
attempted to answer as to why and how they are
varying. We have tried to identify the system
dynamics using the proven concepts of time se-
ries in this section. A time series [15, 16] is
a sequence of observations that are arranged
according to the time of their outcome. By
recording and analyzing the data of a time se-
ries, we can gain a better understanding of the
data generating mechanism and make a predic-
tion of future values. The main characteristic of
a time series is that the data are often governed
by a trend and they have periodic components.
An important part of the analysis of a time se-
ries [15, 16] is the selection of a suitable model

(or class of models) fitting that data. Natu-
rally, the more appropriate the model selection
is, the better is the expected prediction. Lag
represents as to how many previous values does
the current value of a time series depend on.
If the lag value is large, then the current value
depends on a large number of previous values.
With increase in lag, the number of parameters
involved increases too, and as a result the esti-
mation of these parameters becomes time con-
suming. Nodes change their locations accord-
ing to underlying mobility models. Based on
the physical locations of the nodes, the links are
formed. Hence, the mobility models determine
how many previous values the current speed and
direction should depend on. The link count LLY
between nodes N; and N; is a parameter varying
with time that appears to be a suitable candidate
for such modeling. The relation of LL with the
previous values is also supported with the auto-
correlation function or the autocorrelogram of
nodes. The experimental data confirms that the
autocorrelation is very high at initial lags and
is constantly decreasing with higher lags. This
implies that the current link count LL can be
modeled as a function of values of LLY on pre-
vious instances with a white noise with mean
zero and known variance 6. This behavior of
data can be well represented by an AR(p) model
[15, 16]. The AR(p) model can be defined as

rr = Qot+@1ri—1+@ar o+ . -‘|‘¢p”t—p‘|‘az (1)

where p is a non-negative integer and ¢; € Re
are parameters of the AR(p) 0 < i < p model.
a, 1s a white noise sequence with mean zero and
variance 62 and is independent of r; Vi, t — 1 <
i <t — p. This model suggests that the past
pvaluesr,_; : (i = 1,...,p) jointly determine
the conditional expectation of the past data. The
series we used through our experiment is sta-
tionary since the following two conditions hold
[15]:

1. E(r;) = u which is a constant and indepen-
dent of ¢

2. Cov(ry, ri—j) = ¥/ only depends on lag j, and
not on time 7.

Since the series is stationary, the mean and the
variance of this series is governed by the for-
mula

do

l=¢1=pr—...— ¢

provided that the denominator is not zero.

E(r;) =

(2)
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The auto-covariance of the series of equation
(1) is given by equation (3) as follows:

|

The associated polynomial equation of the AR (p)
model, called characteristic equation, is given
by

¥ g, =0 (4)

Another condition of stationarity is that if all the
characteristic roots of equation (4) are less than
unity in modulus, then the series r; is stationary
[15]. The characteristic equation indicates that
the plot of the autocorrelation, known as au-
tocorrelation function, (ACF) of AR(p) model
shows a mixture of damping sine and cosine
patterns and exponential decays depending on
the nature of its characteristic roots. This is in
strong conformity with our experimental data.
One major hurdle in representing data using
AR(p) model is finding the appropriate value of
p and solving the AR coefficients. We have used
the Yule-Walker equations to determine the AR
coefficient for the arbitrary p. The Yule-Walker
equation in matrix form is given as

Y ey Y =12,
QY'Y Gy =0
(3)

ry 1 X1 - XAN—1 al
r X1 X2 - XN-2 as
r3 | = X2 X3 - XN-3| x |43 (5)
N XN_1XN—2 - 1 an

where x; represents the autocorrelation coeffi-
cient at lag d. We can find the x; values by the
following method. Let us consider the general
AR(p) model once again, as given in equation

1= Qo+ o1r—1+¢ri—o+. . A1 pta; (6)

Multiplying both sides of the equation by r;_
gives

P
=Y (G i) +roiat o (7)

t=1

where j and ¢ are term and time indices respec-
tively. Considering expectations on both sides

E[rr;—1] 22f21(¢jE[”trt—j+l])

+E[ri—1a;] + E[r;—1]¢o

(8)

where the ¢; values are kept outside the purview
of the expectation because they are parameters
rather than random variables. It is to be noted
that E[r,—1a;] = 0 and E[r;—1]¢o = O because
the random perturbation a of the current time is
statistically uncorrelated with the previous val-
ues of the process. Therefore, we get

p

Elrir] = Z(%‘E[”zrt—jﬂ]) 9)

=1

Next, dividing by (N — 1) throughout and using
the evenness of the auto-covariancei.e. ci=c_q,
we get

(10)

p
L= E dici—1
=1

Finally, dividing throughout by c(, we get

p
X1 =) i (11)
=1

which gives x; in terms of 1, xy,---,xy_1. Re-
peating the same process, we get x, in terms of
X1,X2,Xx3 -+, xy—2 and so on. Finally writing
all this together gives the Yule-Walker equation
given in equation 5 which can be solved to get
the coefficients of AR(p) model. We can also
get partial autocorrelation function using Yule-
Walker equation. To find the order p of the
AR(p) model, we have used the partial autocor-
relation function (PACF). Finally Akaike Infor-
mation Criterion (AIC) [16] is used to confirm
the choice of p suggested by partial autocor-
relation function. The link interference is the
total useless signals transmitted by the nodes
within their interference ranges. Interference
leads to collisions and packet losses, resulting
in retransmissions and more energy consump-
tion. It becomes one of the most important
factors affecting the performance of networks.
As pointed by Xu et al. [20], the interference
range of a mobile node is 1.78 times the trans-
mission range. The nature of interference surely
depends on the mobility model under consider-
ation. However, in respect of the present scope
of investigation, our suggested model does not
incorporate the issue of interference within its
purview.
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4. Simulation Results

Our first concern was to study whether the link
load under a specific mobility scenario varies
for different routing protocol. If they do so,
we tried to find out the amount of variation and
correlation for the link load under a specific mo-
bility model using a different routing protocol.
We also attempted to determine why and how
they are varying.

We have used Bonn-Motion [21] for generat-
ing mobility scenarios. We have generated four
mobility patterns with 50 nodes moving in an
area of 1000m X 800m for a period of 1000
s. While generating the movement patterns, we
ignore the first 3600 seconds of movement and
then store the next 1000 seconds of mobility pat-
tern. It has been observed that with the Random
Way Point mobility model, nodes have a higher
probability of being near the center of the simu-
lation area, while they are uniformly distributed
over the simulation area initially. Similarly, in
Manhattan Grid Mobility model, all nodes start
from (0,0) and then they get distributed over the
simulation area. So, we skip 3600 seconds at
the beginning to mitigate the boundary effects
of node movement simulation. The maximum
speed V4 of a node is set to Sm/s, 10m/s,
20m/s 30m/s, 40m/s 50m/s, and 60 m/s re-
spectively. The minimum speed v,,;;, of a node
is always set to 0.5m/s. The v,,;,, was set to a
positive value because Yoon and Liu [22] proved
mathematically that the average speed of the
nodes using Random way point mobility model
decrease constantly and would eventually reach
zero. One of their suggestions for getting rid
of this problem was to use non zero minimum
speed. This is what we followed here. Gauss
Markov mobility model is characterized by the
twin parameters viz. speed s and direction d.
The value of speed and direction at n" instance
is calculated based upon the value of speed and

direction at the (n — 1)* instance using equa-
tions 12 and 13.

su= 05, + (1= a)s+q(l—o)sy,_, (12)

(13)

where s, and d,, are the new speed and direc-
tion at time interval n and o : 0 < @ < 11is
the tuning parameter used to vary the random-
ness. s and d are constants representing the
mean value of speed and direction as n — oo.

dy=0tg_ +(1—a)d+q(1 —a?)d,, |

sy, , and dy , are random variables from Gaus-
sian distribution. For our experiment, we have
taken ¢ = 0.75 whereas s, _, and dy,_, are cho-
sen from N(0,1) distribution. The cbrgen tool
which is a part of ns-2 [23] distribution is used
to generate Constant Bit Rate traffic for 1000s
with 1 packet/sec per source. The number of
sources and destinations were chosen randomly
by cbrgen tool. We have used ns-2 [23] for
network simulation and traces are generated in
new trace format. The link load values for each
time period are calculated from those trace files
using some AWK scripts. The computed val-
ues of link load are then taken to Minitab for
further analysis. We tested the pattern of link
loads for stationarity and then determined the
autocorrelation function (ACF) and partial au-
tocorrelation function (PACF).

We have analyzed the link load for four mobility
models (i) Gauss Markov, (ii) Manhattan Grid,
(iii) Random Way Point [6] and (iv) Reference
Point Group Mobility models. We studied the
link loads under three different routing proto-
cols (i) AODV, (ii) DSDV and (iii) DSR.

4.1. Analysis under Gauss Markov
Mobility Model

Our first experiment deals with finding the re-
lationship between the autocorrelation of LLY
for Gauss Markov Mobility model for different
routing algorithms. As can be seen from Fig-
ure 1, the average link load is higher for AODV
compared to DSR and DSDV. The operation
of both AODV and DSR has two phases: (i)
Route setup phase and (ii) Route Maintenance
phase. Global flooding is the basic mechanism
used to propagate the route request messages
for finding a route to destination. DSR uses
a non-propagating direct neighborhood inquiry
whereas AODV uses expanding ring search be-
fore applying global flooding. Both protocols
also use caching to reply the route request based
on the cached routing information. DSR mon-
itors the link status at the MAC layer whereas
AODV uses Hello messages to monitor the link
status. The different ways of handling the link
status account for the change of different link
loads in those protocols. In route maintenance
phase, the unstable links are repaired. DSDV
is a table driven protocol and hence uses peri-
odic updates to maintain routes. At low speed,
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Link Load

Figure 1. Time series plot of link load for a different
routing protocol using Markov Mobility pattern.
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Figure 2. Autocorrelations of link load values for
AODV routing protocol using Markov Mobility pattern.
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Figure 3. Autocorrelations of link load values for DSDV
routing protocol using Markov Mobility pattern.
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Figure 4. Autocorrelations of link load values for DSR
routing protocol using Markov Mobility pattern.

the route changes are low and hence DSDV per-
forms better than AODV and DSR. The autocor-
relation function of link load values for nodes
using AODV [11] routing protocol and moving
with Gauss Markov Mobility pattern is shown
in Figure 2. Figure 3 illustrates the autocorrela-
tion function of link load values for nodes using
DSDV [10] routing protocol and moving with
Gauss Markov Mobility pattern. The autocor-
relation function of link loads values for nodes
using DSR [9] routing protocol and moving with
Gauss Markov Mobility pattern is shown in Fig-
ure 4. It is evident from Figures 2, 3 and 4 that
the Link Load values LLY between node i and
J show a strong autocorrelation with high peaks
at initial lags, but decrease at higher lags. The
characteristics of the autocorrelation functions
shown in Figures 2, 3, and 4 confirm that the
LLY between node i and j values for nodes mov-
ing under Gauss Markov Mobility model can be
fitted to AR(p) model with suitable value of p.

4.2. Analysis under Manhattan Grid
Mobility Model

The second experiment deals with finding the
relationship between the autocorrelation of LLY
for Manhattan Grid Mobility model for differ-
ent routing algorithms. As can be seen from
Figure 5, the average link load is higher for
AODV compared to DSR and DSDV, as was the
case with Gauss Markov Mobility model. But
this time the differences in the link load values
across routing protocols are not so prominent.
This is because, in Manhattan Grid Mobility
model, the nodes move in a restrictive lane and
hence the overhead of link break is compara-
tively low. The autocorrelation function of link
load values for nodes using AODV [11] rout-
ing protocol and moving with Manhattan Grid
Mobility pattern is shown in Figure 6. Figure
7 illustrates the autocorrelation function of link
loads values for nodes using DSDV [10] rout-
ing protocol and moving with Manhattan Grid
Mobility pattern. The autocorrelation function
of link loads values for nodes using DSR [9]
routing protocol and moving with Manhattan
Grid Mobility pattern is shown in Figure 8. In
case of Manhattan Grid Mobility model, the link
load values LLY between nodes i and j show a
strong autocorrelation with peaks at initial lag,
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Figure 5. Time series plot of link load for a different
routing protocol using Manhattan Mobility pattern.
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Figure 6. Autocorrelations of link load values for AODV
routing protocol using Manhattan Grid Mobility pattern.
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Figure 7. Autocorrelations of link load values for DSDV
routing protocol using Manhattan Grid Mobility pattern.
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Figure 8. Autocorrelations of link load values for DSR
routing protocol using Manhattan Grid Mobility pattern.

as shown in Figure 8. Hence, the link load
values LLY between nodes i and j moving un-
der these mobility models can also be modeled
using AR(p) model with suitable p.

4.3. Analysis under Reference Point Group
mobility Model

The third experiment deals with finding the re-
lationship between the autocorrelation of LLY
for Reference Point Group mobility model for
different routing algorithms. As can be seen
from Figure 9, the average link load is higher
for AODV compared to DSR and DSDV. The
autocorrelation function of link loads values for
nodes using AODV [11] routing protocol and
moving with Reference Point Group Mobility
pattern is shown in Figure 10. Figure 11 illus-
trates the autocorrelation function of link loads
values for nodes using DSDV [10] routing pro-
tocol and moving with Reference Point Group
Mobility pattern. The autocorrelation function
of link loads values for nodes using DSR [9]
routing protocol and moving with Reference

Link Load

Figure 9. Time series plot of link load for a different
routing protocol using RPGM Mobility pattern.

1.0 Autocorrelation Function for aodv_rpgm
0.8 (with 5% significance limits for the autocorrelations)
0.64
0.44
0.24
ool I P :
0.2
0.4
-0.64
0.8
-1.04

Autocorrelation

Lag

Figure 10. Autocorrelations of link load values for
AODV routing protocol using RPGM Mobility pattern.
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Figure 11. Autocorrelations of link load values for
DSDV routing protocol using RPGM Mobility pattern.
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Figure 12. Autocorrelations of link load values for DSR
routing protocol using RPGM Mobility pattern.

Point Group Mobility pattern is shown in Figure
12.

4.4, Analysis under Random Way Point
Mobility Model

The fourth experiment deals with finding the

relationship between the autocorrelation of LLY
for Random Way Point Mobility model for dif-
ferent routing algorithms. As can be seen from
Figure 13, the average link load is higher for
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Figure 13. Time series plot of link load for a different
routing protocol using Random Way Point Mobility
pattern.

AODV compared to DSR and DSDV. The au-
tocorrelation function of link loads values for
nodes using AODV [11] routing protocol and
moving with Random Way Point Mobility pat-
tern is shown in Figure 14. Figure 15 illustrates
the autocorrelation function of link loads values
for nodes using DSDV [10] routing protocol and
moving with Random Way Point Mobility pat-
tern. The autocorrelation function of link loads
values for nodes using DSR [9] routing protocol
and moving with Random Way Point Mobility
pattern is shown in Figure 16.
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Figure 14. Autocorrelations of link load values for
AODV routing protocol using Random Way Point
Mobility pattern.
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Figure 15. Autocorrelations of link load values for
DSDV routing protocol using Random Way Point
Mobility pattern.
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Figure 16. Autocorrelations of link load values for DSR
routing protocol using Random Way Point Mobility
pattern.



Temporal Modeling of Link Characteristic in Mobile Ad hoc Network

151

5. Discussion

As evident from the previous simulation results,
for a specific transmission range the link load
LL data shows strong autocorrelation with high
peaks at initial lags which decreases at higher
lags. This property of data confirms that it is
justified to model the link load LL data with au-
toregressive model. Autoregressive modeling
requires the order p of the model to be deter-
mined. In the next section, we outline the pro-
cess for evaluating the order p of AR(p) model.

AIC value | Order of AR model
374.794 1
374.627 2
376.592 3
377.215 4

Table 1. Finding the order of Autoregressive Model
using AIC for link load using DSR routing under Gauss
Markov Mobility pattern.

The chosen AR(p) model is then used to predict
the next value of the link load.
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Figure 17. Partial correlation function of link loads using (a) AODV protocol, (b)DSDV protocol, (¢)DSR protocol
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protocol moving under Random Way Point Mobility pattern.
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5.1. The Order of AR

To find out the order p of AR process, we have
to determine the PACF, which gives an indica-
tion of the probable values of p. Then we use
AIC to confirm that. The Akaike Information
Criterion (AIC) is a way of selecting a model
from among a set of models. The chosen model
is one that minimize the Kullback-Libler dis-
tance metric between the models and the truth.
AIC not only rewards goodness of fit, but also
imposes a penalty that is an increasing func-
tion in respect of the number of estimatable pa-
rameters. This penalty discourages over fitting.
To apply AIC in practice, we start with a set
of candidate models, and then find the mod-
els corresponding to AIC values. We identify
the model with the minimum AIC value. Mod-
els having their AIC values in the range of 1
and 2 of the minimum have substantial support
and should be considered in making inferences.
This is how we fix order p of our model. The
least square method finds the best estimate of
unknown parameters, given a specific model.
Here, the question is different. Here our prob-
lem is of fixing the most suitable model based
on available data. Least square regression does
not serve the purpose as that offered by AIC.
The PACF of the LL values for nodes moving
with speed 1.5 m/sec is depicted in Figure 17.
The AIC values of data set representing link
loads LLY of link between nodes i and j moving
under Gauss Markov Mobility model and using
DSR as routing protocol are tabulated in Table
1. The PACEF of the data set representing link
loads LLY of link between nodes i and j moving
under Gauss Markov Mobility model and using
DSR as routing protocol shown in Figure 17 (¢)
tells us that this data can be modeled using an
AR(1) process. When we find the AIC values,
the value is smaller for 2, but the difference is
very low. Thus, it is justified to take the value
of p to be 1. We have used our model to fore-
cast the next LL value. We have selected the
link load data set moving under DSR routing
protocol and following Gauss Markov Mobility
model for forecasting. We have modeled the
said data set using autoregressive model of or-
der 1, as discussed in Section 5.1. We used the
said model to forecast the next 10 values of the
data set. The comparison of forecast and orig-
inal data obtained is shown in Figure 18. The
actual data and the forecast data values are very

70
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Figure 18. Forecast value of LL made by AR(1) model
for DSR routing with Gauss Markov Mobility pattern.

close to each other, as evident from Figure 18.
We have formulated the following two hypothe-
ses based on the observed and expected data to
validate our point statistically that the forecast
values are indeed close to actual value.

Ho: The expected values and predicted values
match.

Hj: The expected values and predicted values
do not match.

We have used 2 test to test the hypothesis. The

_p)2
test criterion for %2 test is )(g = Z?:I (G EiEl) .

Here O; refers to the observed values and E;
refers to the expected values. For the data shown
in Figure 18, the computed x(% value is 6.14
which is much smaller than the critical value
of %(%.05.9 with 9 degrees of freedom at 5% sig-
nificance level. Thus the hypothesis that the
forecast value is similar to actual value may be
accepted with 95% confidence.

6. Conclusion

In this article, we have modeled the link load
distribution of a link between two nodes using
an Auto-regressive AR(p) model used in sta-
tionary time series analysis. We found through
our experiments that link load distribution be-
tween two nodes for all four mobility models
considered in this article are well correlated and
can be represented by AR(p) model for suitable
value of p. We have also predicated the link
loads between two nodes in future time frames
and found that the prediction is close enough
to the real values. These predicated values of
link loads may be used for routing with qual-
ity of service parameters. It is doubtless that
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transmission delay is caused by the presence
of interference. The nature of interference de-
pends on the mobility model under considera-
tion. However, in respect of the present scope
of investigation, our suggested model does not
incorporate the issue of interference within its
purview. Any suggestion of reviewers is well
taken with due gratitude and appreciation as a
future scope. This is kept outside the purview
of the present article, otherwise the focus of the
present investigation might have shifted. Cur-
rently, the authors are engaged in exploring the
effect of the present findings on complete path
from a source node to destination nodes under
various routing protocols. We are also trying to
supplement the existing routing protocols with
more information with the finding of the present
work.
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