
Journal of Computing and Information Technology - CIT 19, 2011, 1, 11–23
doi:10.2498/cit.1001762

11

RESETting Timed Machines

Ariel Stulman
Computer Science Department, Jerusalem College of Technology, Jerusalem, Israel

Many real-time applications enable RESET to account for
all kinds of unexpected problems, or to accommodate
for a users’ want of restarting. Additionally, some
software testing techniques must allow for resetting
timed-Implementations Under Test (t-IUT). Dedicated
internal logic is probably the most common of solutions
for accomplishing such tasks. There are situations,
however, where such a privilege doesn’t exist; thus, it
cannot be built upon. Testing pre-engineered timed-IUTs
is one such case. In this paper we wish to present
an algorithm for the direct generation of timed RESET
sequences from the timed-IUT specification, such that it
should be optimal w.r.t. to execution time.

Keywords: D.2.4 [Software Engineering]: Software/-
Program Verification – Formal Methods; F.1.1 [Theory
of Computation]: Models of Computations – Automata;
D.2.m [Software Engineering]: Miscellaneous – Real-
time systems

1. Introduction and Related Work

Many algorithmswere devised for specific tasks
within the conformance testing envelope (status
messages [10], separating family of sequences,
distinguishing sequences [13], UIO sequences
[1],[28], characterizing sequences [11],[19],[25],
and identifying sequences [19]; a survey of the
main methods can be found in [24]). The abil-
ity to reset the implementation under test (IUT)
to its original state, however, must also be part
of the algorithmic suite when testing a system
or some communication protocol. This is true,
whether we are interested in testing a specific
state transfer or when verifying complete con-
formance to specification. Not always can we
rely on the existence of somemagical RESET but-
ton for this purpose. Therefore, a special type
of sequence, a RESET sequence (a.k.a. synchro-
nizing sequence) was devised. It is a sequence
that uses inherent transfers within the IUT to

achieve its purpose. See Kohavi’s book [19] for
basic algorithm and results.

Due to the wide use of finite state machines
(FSM) as the modeling technique for the IUTs,
its inherent flaw was automatically projected
into system testing. Standard FSMs do not take
into account temporal constraints that may in-
fluence the IUT; and as such, most methods de-
veloped for system testing were not applicable
to real-time systems. With the proposal of Alur
and Dill’s ‘Timed automata’ [3] in 1994, an en-
tirely new field of system testing for real-time
(reactive) systems emerged. It soon became the
prevalent model for real-time systems, and the
underlying theory behind many model check-
ing tools; e.g., UPPAAL [23] and KRONOS [8].
The emerging field quickly became a thriving
research area with many diverse sub-topics (see
[5],[6],[7],[9],[21],[22],[26]],[27],[28], and many
others).

Papers dealing specifically with state identifi-
cation sequences, however, were not concerned
with actually producing algorithms for usage
on an IUT with timing constraints (t-IUT). Their
main objectivewas in demonstrating howa t-IUT
can be transformed into a regular, un-timed IUT,
forwhich all necessary algorithms pre-exist (see
[7],[18],[20],[29] and others). A few papers did
provide algorithms for direct generation of such
sequences ([30],[31]). There, however, the no-
tion of defining optimality as a function of the
sequence length (as was done with un-timed
machines) is retained. For real-time systems,
however, defining optimality as minimal execu-
tion time would gain many advantages [14].

In this paper we describe an algorithm for gen-
eration of a synchronizing sequence while con-
forming to execution time optimality. We do so
while retaining the direct generation algorithm

12 RESETting Timed Machines

given in [30]. This algorithm will be extended
as to provide the ability of RESETting a timed
IUT without insertion of explicit reset logic as
would be required otherwise. Thus, the con-
tribution of this paper is twofold: development
of timed synchronizing sequence optimal with
respect to execution time, and extension of the
algorithm as to provide for an internal RESET
logic where possible.

2. Preliminaries

2.1. Modeling time

The notion of time can be described as discrete
or dense [3]. In a discrete timing model, time
increases monotonically by some constant de-
cided upon a priori (usually 1) every cycle of
the system. When such is the case, there is no
need for a real clock. A variable that represents
the current “time” is sufficient. Using such a
model limits the accuracy with which physical
systems can be modeled.

Amore natural model for physical processes op-
erating over continuous time is the dense-time
model. When we talk about “real” timing of
systems, we must have a clock that keeps the
time. The advancement of the clock is irrespec-
tive of the cycle time of the system, and can
increase monotonically without bound.

Assumption 1: We use a discrete-time model
in the rest of this discussion. This will allow us
to use numerical values in the examples and dis-
cussions. This assumption will be lifted later, in
Section 4.8. [Justification: Physical hardware
of computer systems functions in discrete cy-
cles, so the use of a discrete-time model is more
in-tune with hardware. In addition, by choosing
a very small granulation value, we can approx-
imate a physical system to within any accuracy
level.]

2.2. I/O Automata

There are many variants of FSM used to model
systems. The majority of the state identifica-
tion techniques discussed in the literature are
based on the Mealy machine [16]. This fact is
based upon the ability of the Mealy machine to
exchange messages (input and output) with its

environment. A deterministic transition is stim-
ulated by input from the environment, and as a
consequence, the machine can return an output
message back to the environment (a reactive
machine). Since a black box testing model [17]
– where one cannot see the internal structure of
the IUT, but has access to its input and output
ports – is the basic premise of checking exper-
iments, the Mealy machine [19] is a suitable
candidate for representing the internal logic of
an IUT.

Definition 1 (Mealy Machine). A Mealy ma-
chine, M is a 6-tuple 〈 S, s0, I, O, , 〉 , where:

• S is a finite set of states.

• s0 ∈ S is the initial state of the system.

• I is a finite set of input events
(I = {1, 2, . . . , p}).

• O is a finite set of output events
(O = {o1, o2, . . . , or}).

• is the state-transfer function
(: S × I → S).

• is the output function (: S × I → O).

For simplicity, we extend the state transfer func-
tion, , from single input symbols to input
strings as follows: for some initial state s1,
let the input sequence = 1 · 2 · . . . · k
take the machine successively through the states
sj+1 = (sj,j), where j = 1, 2, . . . , k, such
that the final state of (s1,) = sk+1. In
the same manner we extend the output func-
tion, , from a single output to an output string
such that: (s1,) = 1 · 2 · . . . · k, where
j = (sj,j) with j = 1, 2, . . . , k. Obviously,
sj ∈ S, j ∈ I and j ∈ O.

2.3. State uncertainty

It may be the case that some state information of
an IUT is missing. The state uncertainty of the
IUT is defined as the set of states that may ade-
quately complete the missing state information
[19]. If the initial state of the IUT is unknown,we
speak of an initial state uncertainty; a set con-
taining all possible states that may constitute
the IUTs initial state. For example, consider the
automata in Figure 1 representing a simplified
internal logic of a sender using the alternating
bit protocol (ABP) for data-link layer network
communication [4,15]. It shows the four states

RESETting Timed Machines 13

of the machine, the possible transfers between
these states, and the output (o ∈ O) generated
by a transfer triggered by input (∈ I) in the
form of /o on its label. If the machine can
begin in any of the four states, we say that the
initial state uncertainty is {ABCD}.

Figure 1. Automata representation of alternating bit
protocol.

When the current state of the IUT is unknown,we
speak of a current state uncertainty set. Sup-
pose, for example, that =ack1. After in-
putting of into the IUT in Figure 1, {ABC}
will be the current state uncertainty.

2.4. Successor tree

A successor tree is a tree representing the states
that can be reached by the IUT based on all possi-
ble input combinations. The purpose of the tree

is to graphically display the nth successors of the
root; constituting an aid in the selection of the
most suitable input sequence to meet required
goals.

The root of the tree contains the initial state of
the IUT. When it is not known,we associatewith
the root an initial state uncertainty vector. Tree
edges represent input to the IUT. Every node is
associated with a current state uncertainty vec-
tor representing accumulated state uncertainty
knowledge until that point, with being the
concatenation of labels on the edges that form
the path from the root to the node. For exam-
ple, a partially extended successor tree for the
automata in Figure 1 with an initial state uncer-
tainty of {ABCD} is shown in Figure 21.

Since the degree of the tree is |I|, the number
of acceptable inputs in the language of the au-
tomata, at level j (0 ≤ j ≤ ∞) we may have |I|j
nodes. It is quite obvious that in order to reduce
the size of the successor tree, some restrictions
must be placed (avoid redundancy, etc.).

2.5. Timed I/O Automata

In this work we define a timed automaton as
a Mealy machine with the addition of tempo-
ral constraints on the transition function . A
transition cannot fire, and hence no output or in-
ternal state change can occur if the clock guard

Figure 2. Partially extended successor tree for alternating bit protocol.

1 Nodes in the tree were grayed when redundancy was found. We didn’t extend those nodes as one can tell how these sub-trees
will develop from similar nodes elsewhere in the tree.

14 RESETting Timed Machines

on the transition is not satisfied. Intuitively, a
clock or set of clocks must be included within
the system to allow for the definition of time.

Definition 2 (Clock Constraint). Let a clock
constraint, , over an internal set of clocks, C,
be defined as a Boolean expression of the form
c op z, where c ∈ C, op is a classical relational
operator (=,≤,≥, >, <, 	=), and z ∈ Z≥0.

Definiton 3 (Clock Guard). Let a clock guard,
 , over C be a conjunction of clock constraints
over C: (= 1 ∧ 2 ∧ . . . ∧ m). Let be
the set of possible clock guards pertaining to
the system, and k ⊆ be the set of all clock
guards that contain at most k clock constraints.

Definition 4 (Clock Assignment). Let a clock
assignment, , over C be a conjunction of as-
signments of values to some (or all) of the
clocks in C, and let be the set of all such con-
junctions: = {c1 = r1 ∧ . . . ∧ cm = rm | ci ∈
C′ ⊆ C∧ri ∈ Z≥0∧1 ≤ m ≤ |C|∧∀ci, cj i 	= j}.
Definiton 5 (Timed I/O Automata). A timed
i/o automata, TA, is a tuple
〈 S, s0, I, O, C,, , 〉 , where:

• S is a finite set of states.

• s0 ∈ S is the initial state of the system.

• I is a finite set of input events
(I = {1, 2, . . . , p}).

• O is a finite set of output events
(O = {o1, o2, . . . , or}).

• C is a finite set of clocks.

• is the set of clock guards pertaining to the
system (see definition 3).

• is the state transfer relation
(: S × I × → S).

• is the output relation
(: S × I × → O ×).

Assumption 2. For simplicity, we assume that
if TA receives k ∈ I at instant t, it will also
output the corresponding ob ∈ O at that ex-
act instant. [Justification: In essence, output is
produced on a transition generated by the in-
put. Reducing transition time to be infinitely
small, we may consider the input and output as
occuring at the same instant.]

Assumption 3. For simplicity, we assume that
|C| = 1, that : S × I × 1 → S and that
 : S × I × 1 → O × 2. The single clock
limitation will be lifted in Section 4.7.

2.6. Sequence generation environment

There are many possible environments within
which we can develop a timed-RESET algorithm.
The current work, however, is concerned with
the black box model in which we will not have
access to the internal logic of some IUT. We
only have its specification model in terms of
TA, so we must deduce the required information
from it so it can be applied to an implementa-
tion. Use of this environment is chosen partially
because the sequence we are interested in also
pertains to conformance testing, for which use
of this environment is quite common.

In addition, given the following definitions:

Definition 6 (Fully specified). There exists
a definition for each state, sj ∈ S, and every
input, k ∈ I [and for TA for all h ∈];
i.e.: (sj,k) and (sj,k) [(sj,k,h) and
(sj,k,h) – resp.] are defined ∀(sj, k) ∈
S × I [∀(sj, k,h) ∈ S × I × – resp.].

Definition 7 (Strongly connected). For every
pair of states, si, sj ∈ S, there exists an input se-
quence [timed input sequence], ij [t-ij – resp.],
which takes the automata [TA – resp.] from si to
sj; i.e. (si,ij) = sj [(si,k,h) = sj – resp.].

Definition 8 (Reduced). For every pair of
states, si, sj ∈ S, there exists an input sequence,
, which distinguishes them; i.e.: (si,) 	=
 (sj,) or (si,) 	= (sj,) [for TA:
 (si,,h) 	= (sj,,h) and the state ele-
ments of (si,,h) and (sj,,h) are not
equal] for some .

Definition 9 (Deterministic). Within Mealy
machines determinism is inherent. To define TA
as deterministic it must hold that ∀(sj, k,h)
(sj, k,g) ∈ S× I×, h and g are mutually
exclusive; i.e., h ∧ g is unsatisfiable.

Assumption 4. We assume that in the current
context sequence generation and possible test-
ing is performed on a fully specified, strongly

2 This says that we will talk about a TA that has a single clock and that each clock guard on its transfers contains at most one
clock constraint.

RESETting Timed Machines 15

connected, reduced and deterministic IUT or t-
IUT. [Justification: This is very common as-
sumptions made in literature dealing with the
basic problem (see [25], [29], [5] and others).
Obviously, there are works that deal with lifting
any or all of these assumptions.]

3. RESET Sequence – Problem
and Solution

3.1. Problem description

During the lifetime of most machines or soft-
ware, the need for (self) RESETing is widely
acceptable. Within the context of protocol or
system testing this feature must also be avail-
able. One cannot begin execution of any test
sequence without first bringing the IUT to some
identified state from which we know how to
proceed. The state must be unequivocally iden-
tified, regardless of the current state of the IUT.

This RESET option can be realized using a spe-
cific transfer of the machine from every possible
state to a predefined state; thus, achieving RE-
SET. This solution will add an additional trans-
fer in our automaton from every state, compli-
cating circuit or programming logic as a conse-
quence. We wish to construct a RESET sequence
that will utilize existing transfers within the ma-
chine while achieving an identical solution.

Definition 10 (RESET Sequence). An input
sequence, RSk , is said to be a RESET sequence
(RS) of machine M, if the final state of M after
insertion of RSk is s0 (or some other state des-
ignated as a RESET state) regardless of the initial
state prior to initiation of RSk . Let RSk be the
set of all RSS accepted by M as a solution to the
RESET problem; thus RSk ∈ RS.

Definition 11 (Optimal Reset Sequence). We
classify a RS for machine M as optimal, RSop , if
for all RSS, RS, accepted byM, RSop is shortest.
i.e. {|RSop| ≤ |RSk | ∀RSk ∈ RS}.

3.2. Sequence generation

The RESET sequence can be easily generated
by extending the well known synchronizing se-
quence (SS) (which brings the machine to some

known state) [19] concatenated with an addi-
tional sequence to compensate for the transfer to
the RESET state. This method, however, doesn’t
necessarily foster the development of the opti-
mal solution, RSop . We could, however, utilize
and extend the algorithm described in [19] for
generating a SS using a truncated successor tree
to reach an optimal solution as well:

Definition 12 (Synchronizing Tree). A syn-
chronizing tree (ST) is a successor tree in which
we deem a node as terminal (leaf) when one of
the following occurs:

1. The loop rule: The current uncertainty as-
sociated with the node was already associ-
ated with a node in a preceding level.

2. The redundancy rule: The current uncer-
tainty associated with a node is also asso-
ciated with other nodes on the same level.
One is chosen as a non-terminal candidate
for future expansion of the tree; the others
are deemed terminal.

Using a breadth first search (BFS) algorithm, we
look for a non-terminal node (leaf) that contains
a singleton. The SS is constructed by concate-
nating the labels on the edges of the ST leading
from the initial uncertainty (root) to the first
node found satisfying the search criterion.

Clearly the length of the SS is equal to the depth
of the solution nodewithin the ST. Since the first
node that can guarantee a solution was used, by
the definition of BFS no other node exists at a
higher level of the tree that can also satisfy our
requirements. This implies that there is no SS
with a shorter path; thus, the SS found is an
optimal synchronizing sequence.

Continuing the BFS as the method for tree ex-
pansion – until we encounter a node containing
the singleton considered as the RESET state (s0
in Definition 5) - will also solve for the optimal
RESET sequence for programs or circuits.

[19 §13.1] showed that the length of the syn-
chronizing sequence, assuming it exists, is no

longer than
1
2
(n − 1)2n. Since we can aug-

ment the SS with a reset directing sequence of
no longer than (n− 1) to reach the RESET state,
we are guaranteed that the sequence is no longer

than
1
2
(n−1)2n+(n−1). Thus, our algorithm

is bound (in the worst case), by this value3.

3 Actually, this bound isn’t tight. [19 §Appendix 13.1] showed that the tight bound is
1
6
n(n − 1)(n + 1), which is better than the

above by a constant factor.

16 RESETting Timed Machines

3.3. ST Example

To demonstrate the usage of this method, we
will use the alternating bit protocol of Figure 1.
It was suggested that “the protocol may be ini-
tialized by sending bogus messages and acks
with sequence number 1. The first messagewith
sequence number 0 is a real message”. [2] Using
the tree in Figure 2, it is easy to deduce that the
sender can be initialized (brought to state A) us-
ing input of ’m.ack0.m.ack1’ (with ’m.ack0.m’
also being a synchronizing sequence – to state
D).

4. RESET Sequence for Timed Machines –
Problem and Solution

The problem of RESETting a TA is essentially the
same; mainly, to optimally bring the TA to some
pre-defined RESET state (normally s0) without
the use of a specific RESET logic. In contrast
to regular automata, we must take into account
the timing constraints that restrict transitions.
Some transitions may be applicable only at spe-
cific times and inapplicable at others. The RS
must contain the timing of the inputs as well,
so we can coordinate the input to meet the con-
straints on transitions.

4.1. Context and contribution

As mentioned earlier, previous related work
dealt mainly with the transformation of TAs into
regular automata for which solutions pre-exist
([7],[18],[29] and others). In [20], for example,
the transformation is done in a three step pro-
cess: (1) compute the product of the automaton
with a Tick automata which models the tester’s
timing. The result of this combination (2) is
used to generate a time-abstracting bisimula-
tion quotient graph, which is similar to the well
known region graph presented in [3]. Lastly, this
graph is transformed into a non-deterministic
Mealy machine for which all algorithms already
exist. Only [30] provided an algorithm for the
direct generation of synchronizing sequences
for TAs. The idea was to adapt STs for the extrac-
tion of optimal timed-synchronizing sequences
by introducing the timing parameters into the
tree itself.

The main drawback with the above algorithm,
however, was the use of the old definition for
sequence optimality; mainly, minimal sequence
length. Optimality for TAs state identifica-
tion experiment sequences should be defined in
terms of execution time [14]. When a time con-
straint is attached to every input event, equal
length sequences do not necessarily complete
within the same amount of time. It is quite pos-
sible that longer sequences complete faster than
shorter ones. Does it really matter if we have
fewer inputs if the total time for execution is
elongated?

In addition, especially when RESETting systems
is in question, the basic premise that is to be
done during its’ execution. Generating a se-
quence that is optimal on paper, is by no means
optimal for the system users.

4.2. Optimal t-RS w.r.t. execution time

Definition 13 (Timed- RESET Sequence). A
timed- RESET sequence (t-RS), t−RSm , is a RS
that includes timing of input. t−RSm is of the
basic form 1[1] · 2[2] . . .k[k]; where,
p ∈ I and q ∈ . Let t−RS be the set of all
timed RSs accepted by a TA as a solution to the
RESET problem; thus, t−RSm ∈ t−RS.

Definition 14 (SequenceExecution time). The
execution time of a sequence, , is determined
by the minimum4 time that must elapse before
a sequence can be inputted in its entirety.

Definition15 (Optimal timed-RESET sequence).
A timed RESET sequence, t−RSop , is considered
optimal w.r.t. execution time if
{t−RSop

≤ t−RSm
|∀t−RSm ∈ t−RS}.

Consider, for example, a RESET sequence
t−RS1 = 1[c < 2] · 2[c ≥ 7]. This se-
quence must allow for clock c ∈ C to reach
7 before it can terminate (t−RS1

= 7). A
second solution sequence, t−RS2 = 1[c =
1] · 2[c < 3] · 3[c ≥ 3] · 4[c = 6], must
terminate when c ∈ C reaches 6 (t−rs2

= 6).
By definition 15, t−RS2 is optimal even though
|t−RS2| > |t−RS1|.

4 We used the term minimum because constraints can be composed of inequalities that allow for flexibility of input
synchronization. When calculating the execution time, we attempt to enter input events as quickly as possible; hence, minimum
time.

RESETting Timed Machines 17

4.3. Points to notice

The nature of applying the RESET sequence to a
timed machine would stipulate that it is insuffi-
cient to bring the machine solely to its original
state (s0, for example). Rather, the clocks of the
machine must also be brought to their original
values as well.

Our first attempt at a possible solution is com-
posed of some RESET sequence that brings the
machine to its initialized state (SRS) and has
a special input (RS) that will give the clocks
their initial value as well (RS). This will allow
for that addition of a single edge to the machine
(see Figure 3), as opposed to numerous edges
proportional to the number of states.

Figure 3. Additional clock reset edge.

If possible, we would like to avoid even such
a minute addition to the machine. This can be
accomplished if and only if an edge exists from
some state sk to sRS such that it consists of some
arbitrary output and the clock assignment RS.
We can search for a timed synchronizing se-
quence to state sk, and then concatenate the last
transfer to sRS

5. If a number of such edges exist,
we must find the optimal one so that the entire
sequence can be declared optimal.

4.4. Generating t−RSop

In order to generate a timed RESET sequence,
we can adapt the synchronization algorithm for
extraction of sequences. We are required, how-
ever, to do a major overhaul if it’s to be used for
optimality w.r.t. execution time. Even though
the first node found during a BFS represents the
shortest sequence (see 3.2 and [30]), it does
not necessarily represent the fastest executing
sequence. Consequently, a different tree ex-
pansion algorithm must be used. In addition,
the rules governing efficiency vis-à-vis the tree
pruningmechanism must also change to tolerate
future possible run-time developments:

Definition 16 (Timed Successor Tree). A
timed successor tree is a successor tree with the
addition of time constraints on its edges [30].

These time constraints are inequalities that group
similarly behaving time values. The use of in-
equalities allows for the avoidance of node/state
explosion (see [27] and [29] pertaining this is-
sue). These inequalities must be extracted from
the constraints on the TA’s edges. Technically,
we must have a coupling of possible input with
each possible constraint in order to allow for all
possible input/time combinations. Practically,
however, we can group constraints based on in-
put, which further reduces the possible combi-
nations needed.

For example, in the TA of Figure 4, the inequali-
ties that “cover” the different possible groupings
are c ≤ 2, 2 < c < 3, c = 3, 3 < c < 4 and,
c ≥ 4. All other groupings might introduce
non-determinism into our model. If we group
the constraints based on inputs, however, we
can minimize the possible combinations with-
out introducing non-determinism. Thus, we get
c < 3, c = 3, 3 < c < 4 and, c ≥ 4 for the
input of 0, and c ≤ 2 and c > 2 for the input of
1 – these values are used in Figure 5.

Similarly to their task in regular successor trees,
nodes in a timed successor tree represent the
state of the TA. Edges, representing the stimula-
tion of the TA through input, are marked with an
input literal and paired with an associated time
constraint. To achieve TA stimulation, literals
must be inserted in compliance with the asso-
ciated time constraint. For example, an edge
labeled 0[c = 3] would represent the input of 0
when clock c = 3, while a label of 1[c < 17]
would allow for the input of 1 anytime before
c = 17.

In order to allow for the comparison for opti-
mality between sequences represented by two
paths in the tree vis-à-vis their execution time,
we must allow them knowledge of their cumu-
lative run-time information.

Definition 17 (Traversal Latency). We de-
fine the traversal latency from one node in the
timed successor tree to its immediate descen-
dant (son), as the difference between the clock
value when reaching the node and the value of
the constraint that must be satisfied on the edge
to its son. Thus, this value quantifies the time

5 For this work, the transfer from sk to sRS must be available (as far as the clock guards that constrain the transfer) after the
machine arrives at sk. Otherwise, this transfer will not be applicable.

18 RESETting Timed Machines

we must wait before we can traverse towards the
next node in the tree. Let us denote this value
as ni =⇒ nk , where ni is the father of nk.

Assumption 5. We assume a minimal latency
of 1 within a node, before the next tree traversal
can be executed. Thus, to each latency value
we must add 1 to accommodate for this addi-
tional time [Justification: Although transitions
within the TA were assumed instantaneous (see
Assumption 2), latency within states was not. If
we assume that at every state the minimal pos-
sible work is done, we must allow for a minimal
traversal latency, a latency of 1].

Definition18 (ElapsedTime): Wecan general-
izeDefinition 17 for an arbitrary descendant k of
node j, by accumulating the latency times on the
path from j to k. This valuewill constitute the to-
tal time that must elapse during the descent of a
timed successor tree from node j to node k while
conforming to the timing constraints on the
tree’s edges. Let j =⇒ k =

∑
(ji =⇒ ji+1 + 1)6,

where the path from j to k is composed of nodes
j = j1, j2, . . . jn = k. Thus, the time to reach
node k from the root of the tree is root =⇒ k.

For example, in the marked node of the tree
in Figure 5, the elapsed time is the summa-
tion of delays collected on its path from the
root. Traversing from the root, the node marked
as 1 can be executed immediately, as it’s as-
sumed the clocks are initialized. Assumption
5, however, requires a minimal delay before
the next traversal can be executed; hence, the
node is marked with a latency of 1. Next we
need to traverse to the node marked by 2. As-
suming (for the sake of this example) that the
clock was not (re)set on the last transfer, the
total latency time for the node marked 2 is:
root =⇒ 1+1+1 =⇒ 2+1 = 0+1+3+1 = 5.

Now we can develop a timed synchronizing tree
suited for our needs:

Definition 19 (Timed Synchronizing Tree). A
timed synchronizing tree (t-ST), is a timed suc-
cessor tree pruned for efficiency by one of two
rules:

1. The loop rule: the current state uncer-
tainty associated with a node k is also asso-

ciated with another node, j, and root =⇒ j <

root =⇒ k.7 k is pruned.

2. The redundancy rule: the current state un-
certainty associated with a node k is also
associated with other non-terminal nodes as
well (regardless of their level in the tree), and
root =⇒ j = root =⇒ k. Arbitrarily8, one is
selected for future tree extension; the others
terminated.

For expansion of the t-ST until a solution is
found, we examine the non-terminal with the
lowest elapsed time for an uncertainty vector
that contains a singleton; the concatenation of
the labels on the path from the root to the afore-
mentioned node is a timed synchronizing se-
quence, t−ssop , optimal with respect to exe-
cution time. With each input literal in t−ssop

we associate the timing constraint with which
it was coupled on the edge in the t-ST. Using
these constraints, we can synchronize the input
of sequence literals into the TA (and when test-
ing is concerned, into the t-IUT) to reach a viable
synchronizing solution.

If, however, the node with the lowest elapsed
time value does not constitute a viable solution,
we stem a single level sub-tree with the afore-
mentioned node as its local root, and associate
with each new node its respective uncertainty
vector and root =⇒ node. We repeat the process
with a new non-terminal leaf node containing
the lowest elapsed time value until a solution is
found.

In theory, extending this algorithm to be a RE-
SET sequence for a program or circuit can be
accomplished by terminating only when a node
with the singleton SRS is found. It does not suf-
fice, however, to find SRS in order to achieve
optimality. As long as the clocks are not reset
to their initial values (RS), we haven’t fully RE-
SETted the system. Assuming the existence of a
RESET transfer (see Figure 4 – transfer marked
RS/−[RS] – grayed to portray that it might not
actually exist), it does not suffice to concatenate
t−ss(op) ∪ RS, as there might be a better solu-
tion using a different path (possibly through the
transfermarked 1/ [RS] from C toA). To over-
come these shortcomings, we must continue the

6 The addition of 1 at every level is in order to accommodate for Assumption 5.
7 It is possible that a node will become terminal even though when created it was not deemed so. This can occur if a node is

created on another sub-branch of the tree with the same current state uncertainty yet having a lower elapsed time value.
8 It is plausible that the wisest selection would be the node located highest in the tree. This would allow for the solution, given

that it passes through one of these nodes, to be optimal with respect to length of sequence as well.

RESETting Timed Machines 19

search using non-terminal leaf nodes until we
find a solution node (containing SRS as single-
ton) that the edge in the tree leading into the
node was associated with the clock RESET out-
put. This will guarantee (assuming it exists)
that the solution is actually optimal.

Figure 4. Description of a single clock TA.

4.5. Example for t-ST

Figure 59 shows the t-ST for the machine of
Figure 4. A solution sequence of t−ss(op) =
1[c ≤ 2] · 0[c < 3] · 1[c ≤ 2] can be determined
by the tree.

Assuming state A in the RESET state (SRS), the
tree must be further extended so as to find a node
with the singleton A. One is found on the third
level of the tree, 0[c = 3] · 1[c > 2]. RESET of
clocks, however, is not necessarily achieved10.
If the reset transfer (RS/ − [RS]) does exist,
one possible solution would be its concatena-
tion to the mentioned sequence. This, however,
doesn’t unequivocally constitute the optimal so-
lution. As a matter of fact, adding the untimed
input of 1 to t−ss(op) will achieve the optimal
solution;

1[c≤2]·0[c<3]·1[c≤2]·1 = 4 < 0[c=3]·1[c>2].RS
= 6.

Figure 5. Timed synchronization tree for Figure 4.

9 There are three points that need to be clarified about this figure:
a) The labeling of each node contains the state uncertainty and the minimal latency accumulated down the path from the root to the
node.
b) As defined in Definition 18 and based on Assumption 5, the minimal accumulated latency times include an additional 1 per level
traversed.
c) The nodes labeled NR (not relevant) are, as their name suggests, irrelevant at this point in the discussion. They were included
for the sake of showing nodes if a dense time model were to be used – see Section 4.8.

10 If we actually came from node C, the clocks were RESET. If, however, we really transferred from node B, they were not.

20 RESETting Timed Machines

4.6. Proof of optimality

In order to prove optimality of the timed syn-
chronizing sequence, hence, the timed RESET
sequence extracted using the above algorithm,
we must first prove two sub-theorems:

Proposition I:

A descendant node necessarily has a higher ex-
ecution time than all of its ancestors (des >
anc).

Proof: Inherent from their name, the path to
node Ndes (descendant node) passes through
node Nanc (ancestor node). Time must elapse
until we can reach Ndes from Nanc; namely,
ans =⇒ dec > 011. If the time that must elapse
in order to reach Nanc is root =⇒ anc > 0, the to-
tal time needed to reach node Ndes, root =⇒ des,
is root =⇒ anc + ans =⇒ des; a value obviously
greater than root =⇒ anc. �

Proposition II:

The length of time that must elapse before we
can reach a node j in the t-ST, root =⇒ j, is equal
to the execution time of the [sub-]sequence the
node represents, j .

Proof: This theorem evolves directly from the
method used for timed synchronizing sequence
extraction and construction. �

Now the proof of execution time optimality is
direct:

Proposition III: A timed synchronizing se-
quence [timed RESET sequence, resp.] con-
structed from a non-terminal leaf node in a t-ST
with the lowest eplased time is optimal, t−ssop

[t−RSop , resp.], as defined in definition 15.

Proof (by negation): Let us assume the exis-
tence of a timed synchronizing sequence,
t−sspossible , that executes faster than the sequence
found, t−ssfound ; specifically,
t−sspossible

< t−ssfound
. By Proposition II,

root =⇒ possible < root =⇒ found for nodes
Npossible and Nfound representing t−sspossible and
t−ssfound , respectively.

Since until the first acceptable solution Nfound
was found, only non-terminal nodes with the

lowest elapsed time were selected for inspec-
tion,Npossible must either be another non-terminal
leaf node such that root =⇒ possible<root =⇒ found
or one of their future descendants satisfying the
same inequality.

By method of node selection and Proposition II,
at any point in time the non-terminal leaf node
with the lowest elapsed time represents a [sub-]
sequence that executes at least as fast as [sub-]
sequences represented by the other non-terminal
leaf nodes and all of their future descendants;
thus, Npossible cannot represent a faster execut-
ing timed synchronizing sequence than Nfound
(t−sspossible

≥ t−ssfound
). �

4.7. Multi-clock t-IUT

Based on Assumption 3, the discussion so far
only contained constraints based on a single
clock. We can, however, relax that assump-
tion and still use the same algorithm to find an
optimal t-SS, t−ssop [t-RS, t−RSop]. As with a
single clock, we must find time boundaries that
define time regions (for multiple clocks regions
are polyhedrons of order N =number of clocks)
and insert them into the tree12. Once we have
the time constraints, the remainder of the algo-
rithm functions in the similar manner to what is
described above.

4.8. Laxing Assumption 1

Although we believe that the use of a discrete
time model is well justified for real machines,
for presentation completeness we wish to show
that this assumption isn’t crucial within the cur-
rent work.

The discrete time model allowed us to limit the
discussion to integer value clock constraints.
Use of inequalities as boundaries of ranges,
however, expands the range of allowed timing
to real values as well. By grouping similarly
behaving time values into a single edge on the
automaton and matching timed successor tree,
we can easily apply the algorithm to real (dense)
time.

11 It is inconsequential if Ndes is a direct descendant of Nanc or an indirect one. In either case we denoted the time that elapses
to reach Ndes from Nanc by Nanc =⇒ Ndes .

12 See [27] and [29] for the method used for finding time regions and the criteria for including or excluding regions.

RESETting Timed Machines 21

We do need, however, to change some of the
definitions presented in this paper. Every defi-
nition that uses the set of non-negative integers,
Z≥0, should be replaced with the set of non-
negative reals, R≥0 (see for example Definition
2 andDefinition 4). Thiswould allow the clocks
to accommodate for all possible real values; a
simple consequence of a dense time model. As
far as the time regions are concerned, we must
take into account regions that are not limited to
integral values. The region limits can be any
real value of clocks. This does not impact our
method, as the mathematical use of inequali-
ties is not constrained to integers alone. There
will be, however, regions that were excluded as
non-relevant13 when a discrete time model was
used, that must be included when a dense model
is used.

4.9. Discussion

The method presented uses a search method
based on minimum elapsed time to find a so-
lution. This might lead to the notion that ter-
mination isn’t guaranteed. To show termination
is indeed achieved, we distinguish between two
cases: when a solution exists and when one does
not.

We begin with the case where a solution is lack-
ing. It is obvious that an exhaustive tree spread
must occur before we can quit with a negative
result. As we are talking about finite automata
with a finite set of states, input alphabet and re-
gions in region graph, there are only a finite set
of combinations we can go through before we
encounter combinations already previously ex-
panded in the tree. The pruning mechanism of
Definition 19 would eliminate any node in the t-
TS that was examined and extended previously.
Thus, the lack of a solution would be discovered
when there are no more non-terminal nodes to
expand. Given the termination is guaranteed
by exhaustive search and combination options
ruled out, it follows that if a solution does indeed
exist, it will be discovered before all options are
depleted.

The last issue that needs to be addressed is the
complexity of the generation algorithm; specif-
ically, on the bounds of the size of t-ST.

As mentioned in Section 2.4, the size of ST
would be |I|j at level j. In a worst case scenario,
the depth of TS is given by the longest synchro-

nizing sequence possible, is
1
2
(n − 1)2n (see

section 3.2); thus, the tree size is highly expo-

nential relative to number of nodes (O(|I|n3
)).

Our algorithm would be exponential as well,
having (|I| ∗ |rg|)j; where |rg| is the number of
regions in the region graph eluded to in section
4.7. This values negatively impacts the feasi-
bility of this class of algorithms (both original
and proposed), limiting its practical use to very
small problem sets.

5. Conclusion and Future Work

There are many usages for RESET sequences,
and most devices as we know them actually pro-
vide such a capability. Albeit, it is accomplished
in a crude manner: shutting down and rebooting
or providing internal dedicated logic. RESET se-
quences were developed to provide an elegant,
controlled solution to the problem. Our method
gracefully extends this algorithm to timed de-
vices (circuits), systems, or development soft-
ware (such as testing software); albeit, to only
a small problem set due to space complexity
issues.

There are a number of points, however, that
deserve further exploration, including: the in-
troduction of delays into transfers – laxing As-
sumption 2, adding non-determinism, partially
specified machines, or laxing any other of the
assumptions in Assumption 3. In addition, the
algorithm presented in this paper assumed that
the delay, or work, performed within all states
is minimized to the absolute minimum; hence
a maximum common latency of 1 for all nodes
(see Assumption 5). In a real system some
nodes require more execution times than oth-
ers. Further work must be done to the order
of constructing an optimal RESET sequence that
also takes the varying delay within states into
account. Finally, a direct sequence generation
method for large systems that can be executed
within acceptable time and space costswould be
desirable. We leave these to further research.

13 See, for example, the nodes marked as NR (or not-relevant) in Figure 5 – as it is impossible in a discrete model for the clock
to be in the range 3 < c < 4

22 RESETting Timed Machines

References

[1] A. V. AHO, A. T. DAHBURA, D. LEE, M. U. UYAR,
An Optimization Technique for Protocol Confor-
mance Test Generation Based on UIO Sequences
and Rural Chinese Postman Tours. IEEE Trans.
Commun., 39 (1991), pp. 1604–1615.

[2] ALTERNATING BIT PROTOCOL. (2008, March 28). In
Wikipedia, The Free Encyclopedia. Retrieved from
http://en.wikipedia.org/w/index.php?
title=Alternating bit protocol&oldid=
201625945

[3] R. ALUR, D. DILL, A Theory of Timed Automata.
it Theoretical Computer Science, 126 (1994), pp.
183–235.

[4] K. A. BARTLETT, R. A. SCANTLEBURY, P. T.
WILKINSON, A note on reliable full-duplex
transmission over half-duplex links. Commun.
ACM, 12, 5 (May 1969), pp. 260–261.
DOI=10.1145/362946.362970.

[5] G. BEHRMANN, P. BOUYER, K. G. LARSEN, R.
PELÁNEK, Lower and upper bounds in zone-based
abstractions of timed automata. Int. J. Softw. Tools
Technol. Transf. (STTT), 8 (2006), pp. 204–215.

[6] G. BEHRMANN, K. G. LARSEN, J. I. RASMUSSEN,
Optimal scheduling using priced timed automata.
SIGMETRICS Perform. Eval. Rev., 32 (2005), pp.
34–40.

[7] S. BLOCH, H. FOUCHAL, E. PETITJEAN, S. SALVA,
Some Issues on Testing Real-time Systems. Int. J.
of Comp. and Info. Science, 2 (2001), pp. 230–239.

[8] M. BOZGA, C. DAWS, O. MALER, A. OLIVERO, S.
TRIPAKIS, S. YOVINE, Kronos: A Model-Checking
Tool for Real-Time Systems. In Proceedings of the
10th international Conference on Computer Aided
Verification (June 28–July 02, 1998). A. J. Hu
and M. Y. Vardi, Eds. Lecture Notes In Computer
Science, vol. 1427. Springer-Verlag, London, pp.
46–550.

[9] R. CARDELL-OLIVER, T. GLOVER, A Practical and
Complete Algorithm for Testing Real-Time Sys-
tems. Proceedings of the 5th International Sympo-
sium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, Lyngby, Denmark, (September
14–18, 1998), pp. 251–261. Lecture Notes in Com-
puter Science, 1486, Springer-Verlag, London.

[10] W. Y. CHAN, C. T. VUONG, M. R. OTP, An improved
protocol test generation procedure based on UIOs.
SIGCOMM Comput. Commun. Rev., 19 (1989), pp.
283–294.

[11] T. S. CHOW, Testing Software Design Modeled by
Finite State Machines. IEEE Trans. Software Eng.,
SE-4 (1978), pp. 178–187.

[12] D. EPPSTEIN, Reset Sequences for Monotonic Au-
tomata. SIAM J. on Computing, 19(3) (1990), pp.
500–510.

[13] G. GONEC, A Method for the Design of Fault De-
tection Experiment. IEEE Trans. on Comp., C-19
(1980), pp. 551–558.

[14] A. HESSEL, K. G. LARSEN, B. NIELSON, P. PET-
TERSSON, A. SKOU, Time-Optimal Test Cases for
Real-Time Systems. Formal Modeling and Analysis
of Timed Systems: First International Workshop,
FORMATS 2003, Marseille, France, (September
6–7, 2003), pp. 234–245.

[15] G. J. HOLZMANN, Design and Validation of Com-
puter Protocols. Prentice-Hall, 1990.

[16] J. E. HOPCROFT, J. D. ULLMANN, Intoduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, USA
1979.

[17] E. P. HSIEH, Optimal Checking Experiments for
Sequential Machines. IEEE Trans. on Computers,
C-20 (1971), pp. 1152–1166.

[18] A. KHOUMSI, L. OUEDRAOGO, A new method for
transforming timed automata. Proceedings of the
Brazilian Symposium on Formal Methods (SBMF),
Recife, Brazil, (Nov. 29–Dec. 1, 2004), pp. 101–
128. Elsevier.

[19] Z. KOHAVI, Switching and Finite Automata Theory.
2nd ed, McGraw-Hill Higher Education (1978).

[20] M. KRICHEN, S. TRIPAKIS, State identification prob-
lems for timed automata. Proceedings of the 17th
IFIP Intl. Conf. on Testing of Communicating Sys-
tems, Montreal, Canada, (May 31–June 2, 2005),
pp. 175–191. LNCS, 3502, Springer, Berlin.

[21] K. G. LARSEN, F. LARSSON, P. PETTERSSON, W.
YI, Compact Data Structures and State-Space Re-
duction for Model-Checking Real-Time Systems.
Real-Time Systems, 25 (2003), pp. 255–275.

[22] K. G. LARSEN, M. MIKUCIONIS, B. NIELSEN, A.
SKOU, Testing real-time embedded software using
UPPAAL-TRON: an industrial case study. Pro-
ceedings of the 5th ACM international Conference
on Embedded Software, Jersey City, NJ, USA,
(September 18–22, 2005), pp. 299-306. ACM, New
York.

[23] K. LARSEN, P. PETTERSSON, W. YI, Uppaal in a
Nutshell. International Journal on Software Tools
for Technology Transfer, 1(1) (1997), pp. 134–152.

[24] D. LEE, M. YANNAKAKIS, Principles and Methods
of Testing Finite State Machines – a Survey. Proc.
of the IEEE, 84 (1996), pp. 1090–1123.

[25] G. LUO, G. VON BOCHMANN, A. F. PETRENKO, Test
Selection Based on Communicating Nondetermin-
istic Finite State Machines Using a GeneralizedWp-
method. IEEE Trans. Software. Eng., 20 (1994), pp.
149–162.

[26] K. NAIK, B. SARIKAYA, Protocol Conformance Test
Case Verification using Timed – Transition. Pro-
ceedings of the 14th International Symposium on
Protocol Specification, Testing and Verification,
Vancouver, Canada, (1995) pp. 103–118. Chapman
& Hall, Ltd. London, UK

RESETting Timed Machines 23

[27] E. PETITJEAN, H. FOUCHAL, From Timed Automata
to Testable Untimed Automata. 24th IFAC/IFIP
International Workshop on Real-Time Program-
ming, Schloss Dagstuhl, Germany, (May 30–June
2, 1999).

[28] K. K. SABNANI, A. T. DAHBURA, A Protocol Test
Generation Procedure. Comp. Networks ISDN Sys.,
15 (1998), pp. 285–297.

[29] S. SALVA, H. FOUCHAL, S. BLOCH, Metrics for
Timed Systems Testing. 4th OPODIS International
Conference on Distributed Systems, Paris, France,
(December 20–22, 2000), pp. 177–200. Suger,
Saint-Denis, rue Catulienne, France.

[30] A. STULMAN, S. BLOCH, H. G. MENDELBAUM, Op-
timal Homing Sequences for Machines with Timing
Constraints. WSEAS Transactions on Systems, 9
(2004), pp. 2793–2801.

[31] A. STULMAN, S. BLOCH, H. G. MENDELBAUM, Op-
timal Synchronizing Sequences for Machines with
Timing Constraints. ESA’05 International Confer-
ence on Embedded Systems and Applications, Las
Vegas, NV, USA, (June 27–30, 2005), pp. 45–52.

Received: November, 2009
Revised: December, 2010

Accepted: March, 2011

Contact address:

Ariel Stulman
CS Department

Jerusalem College of Technology
Jerusalem, Israel

e-mail: stulman@jct.ac.il

ARIEL STULMAN received his bachelor’s degree in technology and ap-
plied sciences from the Jerusalem College of Technology, Jerusalem,
Israel, in 1998. He then went on to get his masters from Bar-Ilan Uni-
versity, Ramat-Gan, Israel, in 2002. In 2005 he achieved a Ph.D. from
the University of Reims Chanpagne-Ardenne, Reims, France. As of
2006 he holds a position at Computer Department of the Jerusalem Col-
lege of Technology. His research interests are in the fields of software
testing, formal methods, real-time systems, and web technologies and
testing.

Dr. Stulman is a member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

