
Journal of Computing and Information Technology - CIT 17, 2009, 3, 217–228
doi:10.2498/cit.1000873

217

Path Finding and Collision Avoidance
in Crowd Simulation

Cherif Foudil1, Djedi Noureddine1, Cedric Sanza2 and Yves Duthen2

1LESIA, Department of Computer Science, University of Biskra, Algeria
2VORTEX, IRIT, Toulouse, France

Motion planning for multiple entities or a crowd is a
challenging problem in today’s virtual environments. We
describe in this paper a system designed to simulate
pedestrian behaviour in crowds in real time, concentrat-
ing particularly on collision avoidance. On-line planning
is also referred to as the navigation problem. Additional
difficulties in approaching navigation problem are that
some environments are dynamic. In our model we
adopted a popular methodology in computer games,
namely A∗ algorithm to find the first itinerary of each
entity. The idea behind A∗ is to look for the shortest
possible routes to the destination, not through exploring
exhaustively all possible combinations, but utilizing all
possible directions at any given point. In order to deal
with collision avoidance problems, priority rules are
given to some entities as well as some social behaviour.
These rules solved the problem of disorder in the crowd
movement.

Keywords: path finding, collision avoidance, behavioural
animation, crowd simulation

1. Introduction

The autonomy of a virtual human is defined by
its capacity to perceive, act and decide about
its actions. The behaviour is usually described
through several simple skills that can be mixed
to generate a more complex and credible be-
haviour. One of the most important skills is the
ability to navigate inside a virtual environment
as it is part of a large number of behaviours. Re-
producing this fundamental behaviour requires
to address different topics such as the topolog-
ical model of the environment, path planning
and collision avoidance techniques.

In order to animate a crowd of pedestrians in
real-time, each of these techniques should be

optimized without leaving out behavioral stud-
ies. A crowd is not only a group of many in-
dividuals: crowd modelling involves problems
arising only when we focus on crowds. For in-
stance, collision avoidance among a large num-
ber of individuals in the same area requires dif-
ferent resolving strategies in comparison with
the methods used to avoid collisions between
just two individuals. Also, motion planning
for a group walking together requires more in-
formation than needed to implement individual
motion planning. An important guideline for
our work is that, as in real life, each virtual
pedestrian should be an autonomous, intelligent
individual. More explicitly, each pedestrian
should be able to control itself across percep-
tual, behavioural and cognitive levels, just like
real people, it should be an autonomous agent
that does not require any external, global coor-
dination whatsoever, including control by any
real human animators in order to cope with its
highly dynamic environment.

In this article, we propose a general model, in-
spired by studies on human behaviour, to sim-
ulate the navigation process in dynamic envi-
ronments. We focus our work on the meth-
ods of collision avoidance between pedestrians.
We will demonstrate that the use of these rules
solved the problem of disorder in the pedestrian
movement.

2. Related Works

The simulation of behaviour has been studied
since the earliest days of computer graphics
research. Early work concentrated on animal

218 Path Finding and Collision Avoidance in Crowd Simulation

behaviour, with birds a popular choice, but re-
cently there has been a lot of work on human
behaviour. Techniques for simulating a crowd
as a single entity have been proposed, as well as
those which consider each person in the crowd
separately. In the virtual environments commu-
nity, the most common approach to simulating
group movement is to use flocking. The con-
cept of flocking was introduced by Reynolds
[15]. His boids-model described behaviour of
the units in a group using only local rules for the
individual units. Later, Reynolds extended the
technique to include autonomous reactive be-
haviour [16]. The idea is that units steer them-
selves in such a way that they avoid collisions
with other units in the environment, while at the
same moment, they try to align themselves with
other units and try to stay close to them.

In open areas this leads to rather natural group
behaviour as can be observed in flocks of birds
or schools of fish. When we also give the units
a goal, they will move toward the goal together.
The big drawback of this approach is that the
units act based on local information which eas-
ily gets them stuck in cluttered environments.
Also, the combined steering behaviour can eas-
ily lead to the group breaking up.

Another widely used technique is grid search-
ing in which the environment is divided into a
grid that can be searched for a free path using
A* like approaches [17]. Different units try to
find a path through the grid while avoiding colli-
sions with each other. This easily leads to units
getting stuck in ways that can only be resolved
by rather unnatural motions (or cheating, like
penetrating the walls).

The social potential field technique [14] defines
potential force fields between units of the group.
Desired behaviour is then created by defining
the correct force fields. However, the same
problem as in flocking arises because only local
information is taken into account.

Kamphuis andOvermars [9] developed amethod
for planning the motion of a coherent group of
units using a multiphase algorithm. First, a path
is planned for a deformable rectangle, represent-
ing the group shape. Second, the internal mo-
tion of the units inside this deformable rectangle
is calculated using social potential fields. Third,
the global and local paths are combined to give
the total motion of the units. Although the tech-
nique guarantees coherence, it lacks complete-

ness. The approach also generates unnatural
behaviour when a group enters or leaves a nar-
row passage.

Bayazit, Lien and Amato [4] have combined
the probabilistic roadmap approach (PRM) ap-
proach with flocking techniques. The units use
the roadmap created by PRM to guide their mo-
tion toward the goal while they use flocking to
act as a group and avoid local collisions. While
this indeed leads to better goal finding abilities,
groups still split up easily.

Li and Chou [12] developed an approach that
allows dynamic structuring of the units such
that the centralized planning of the motions is
greatly improved. Again, this approach lacks
the ability of guaranteeing coherence.

Crowd simulation also investigates the move-
ment of large numbers of units in a virtual en-
vironment. This research area has received vast
amounts of attention over the last few years,
such as [13],[20]. Although related to our re-
search, the area has a different goal. The global
idea behind crowd simulation is to have virtual
units behave in a natural way, interacting with
each other, based on (social) rules. The emer-
gent behaviour of the units is then studied.

Other work in this area is by Feurtey [6], who
uses a space-time approach to predict collisions
with other actors, Helbing and Molnar [8], who
use a social force model to simulate move-
ment based on motivations, Blue and Adler
[5], who use a cellular automata model, Gillies
and Dodgson [7], who concentrated on obstacle
avoidance and the simulation of attention, and
Lamarche and Donikian[10], whose work on
path finding also includes ideas on behaviour
simulation.

Other recent work is done by Rymill and Dodg-
son [18] simulating human behaviour in crowds
in real-time, concentrating particularly on colli-
sion avoidance. The algorithms used are based
heavily on psychology research and their ap-
proach gives better results than conventional
methods.

Shao and Terzopoulos [19] address the difficult
open problem of emulating the rich complex-
ity of real pedestrians in urban environments.
Their artificial life approach integrates motor,

Path Finding and Collision Avoidance in Crowd Simulation 219

perceptual, behavioral, and cognitive compo-
nents within a model of pedestrians as individu-
als. They represent the environment using hier-
archical data structures, which efficiently sup-
port the perceptual queries of the autonomous
pedestrians that drive their behavioral responses
and sustain their ability to plan their actions on
local and global scales.

3. The Problem of Path Finding

Path planning consists of finding an optimal
path (generally the shortest one) between a
starting point and a destination point in a virtual
environment, avoiding obstacles. Traditionally,
path planning has been solved using a heuristic
search algorithm such as A* [1],[3] directly cou-
pled with the low-level animation of the agent.
The use of A* for path planning is based on a
two step process. The virtual environment is
first discretised to produce a grid of cells. This
grid is formally equivalent to a connectivity tree
of branching factor eight, as each cell in the
discretised environment has eight neighbours.
Searching this connectivity tree with A* using a
distance-based heuristic (Euclidean distance or
Manhattan distance) produces the shortest path
to the destination point. This path is calculated
offline, as A* is not a real-time algorithm, and
the agent is subsequently animated along this
path. As a consequence, this method cannot
be applied to dynamic environments. This di-
rect integration of A* with low-level animation
primitives is faced with a number of limitations.

In order to let an object or character move inside
a scene from one location to another, a path has
to be planned that guarantees a collision-free
translation from the start to the goal position.
Hence, the whole task of path planning is usu-
ally broken down into three sub-problems:

• First, one has to find a suitable discretiza-
tion of the ground on which one can build
a graph. This can be done offline in a pre-
processing step. The resulting graph should
be as lean as possible to allow a fast search.
If the graph is too large, the search will be
significantly slowed down. One the other
hand, the discretization should be as fine as
possible so that the areas corresponding to
graph nodes are not too large. This would

lead to an approximation error which ends
up in suboptimal paths.

• Then, the graph has to be searched for a so-
lution which connects the found nodes. For
static environments, as expected, the A* al-
gorithm is commonly used.

• Afterwards, the resulting sequence of graph
nodes needs to be transferred back to the
original environment.

4. A∗ Algorithm

The standard search algorithm for the shortest
path problem in a graph is A*. It is a directed
breadth-first search and combines the advan-
tages of uniform-cost and greedy searches using
a fitness function:

f (n) = g(n) + h(n);

where g(n)denotes the accumulated cost from
the start node to node n and h(n) is a heuris-
tic estimation of the remaining cost to get from
node n to the goal node.

During the search the A* algorithm maintains
two lists of nodes: The open list contains the
nodes that have to be considered next and the
closed list which contains the nodes already vis-
ited. The algorithm itself consists of expanding
the one node from the open list, whose fitness
function is minimal. Expanding a node means
putting it into the closed list and inserting the
neighbours into the open list and evaluating the
fitness function. The algorithm stops, when the
goal node gets expanded.

The choice of a good heuristic is necessary in or-
der to achieve both quality and efficiency of the
search. As long as the heuristic underestimates
the real cost, the shortest path is guaranteed to
be found. Nevertheless, underestimating can
easily lead to an expansion of too many nodes.
But when the heuristic is allowed to overesti-
mate the remaining cost, faster results can be
achieved because fewer nodes get expanded.
If overestimating the distance to the goal, the
A* algorithm tends to expand nodes that lie on
the direct path to the goal before trying other
nodes. But this can also lead to significantly
slower searches if the final path contains direc-
tions that lead away from the goal [11].

220 Path Finding and Collision Avoidance in Crowd Simulation

5. System Overview

This section discusses various aspects of our
solution. First, we present how to create the
virtual environment and how to discretizate the
scene into cells in order to form a graph. Sec-
ond, we present our modified algorithm of A∗ in
order to be used in dynamic environment. This
algorithm is used by every individual inside its
visible region. Then we focus our discussion on
collision avoidance types and situations. The
individuals must avoid collisions with the envi-
ronment and with each other.

Given a pedestrian’s current location and a tar-
get destination, it exploits the topological map
at the top level of the environment model. By
applying path search algorithms within the path
maps associated with each region, the pedes-
trian can plan a path from the current location
to the boundary or portal between the current
region and the next. The process is repeated in
the next region, and so on, until it terminates at
the target location.

5.1. Scene Modelisation

In our problem setting we are given a virtual
environment in which individuals must move
from a given start point to a given goal position.
The information to be given are:

• The number and position of the obstacles in
order to form the desired environment.

• The number of agents, the position and the
goal point for each agent. More than one
agent could have the same goal position.

5.2. Discretization

Our approach is a cell decomposition approach
which uses a modified A∗ to find paths for a
set of agents. The first task is to discretize the
scene into obstacle-free regions. Each agent
occupied one cell, but an obstacle can occupy
several cells in the environment.

5.3. Path Finding

Autonomous pedestrians are capable of auto-
matically planning paths around static and dy-

namic obstacles in the virtual environment. Af-
ter the discretization of the scene, each agent
computes its path by applying the A∗ algorithm
in its visible region. The boundary or portal be-
tween the current region and the next becomes
the intermediate target location. At this stage
the algorithm takes into account only the static
obstacles.

The next stage of the simulation is the pedes-
trian’s movement. So, for each frame of the
behavioural animation and before getting to the
next position, each agent must process the colli-
sion prediction to avoid collision with the other
agents in the environment.

5.4. Collision Prediction

In each frame of the simulation, every agent
needs to check for future collisionswith all other
agents in the scene. If a collision has been pre-
dicted, the type of collisionmust be determined.
Every pedestrian has its itinerary saved in the
data structure. This itinerary was computed by
the path finding module using the A* algorithm.
This algorithm produces for each agent a list of
nodes which formed its initial itinerary. These
itineraries are free of static obstacles.

A vector represents the mapping from a present
agent position to a desired moving direction.
The agents determine their moving direction by
referring to this vector at the present location.
This strategy is well suited to design a com-
plex flow pathway. The moving direction is
determined according to the positional relation
among the agents.

The trajectory of each pedestrian will be used
in the collision avoiding process. The pedestri-
ans have to deal with two situations of collision
prediction: the first situation when two agents
reach the same cell and the second one, when
the agents reach the cell of each other (Figure
1).

After an agent has successfully avoided a col-
lision, it should return to its original path. The
path is represented by an order list of nodes, but
it should also not suddenly change direction to
do so, as this would look unnatural. If the agent
goes away from its initial itinerary, we propose
that the agent calculates a new path using the
A* algorithm.

Path Finding and Collision Avoidance in Crowd Simulation 221

If a collision has been predicted, then the type of
collision must be determined. There are three
possible types of collision, which will be called
Toward, Away and Glancing.

The behaviour in the next frame of each agent
depends on the type of collision prediction and
the type of collision avoidance. The detail will
be described in Figure 3.

In real life, there are three possible types of col-
lision, called Toward, Away and Glancing; they
are shown in Figure 2.

• Toward collision : or face-to-face, occurs if
the agents are walking toward each other;

• Away collision: or rear, when the agent is
behind the collidee (another agent or an ob-
stacle);

• Glancing collision: is a side-on collision
between two agents walking in roughly the
same direction;

a) Two agents reach the same cell.

b) The agents reach the cell of each other.

Figure 1. Collision prediction types.

5.5. Collision Avoidance

Collision avoidance between agents can involve
some problems that only appear when we deal
with many agents. A method to avoid col-
lision between individuals can be inefficient
when we have several ones. There are more

constraints and variables when a complex en-
vironment (with fixed obstacles, mobile obsta-
cles, and small regions to walk) includes many
virtual human agents. Yet, if the structure of
the group has to be preserved, this adds another
parameter in the complexity of crowd collision
avoidance.

First, consider how we avoid collisions in our
human life for collision avoidance. It is very
complex, but it can be defined by some sim-
ple rules. In general, one is reluctant to be far
away from one’s path. Therefore, one just goes
ahead if the other goes out of the way to avoid
ahead-on collision. In case of overtaking, one
prefers a wide side or follows the other if obsta-
cles (or other characters) exist somewhere near.
In case a collision occurs while proceeding in
a different direction, people pass on the back-
side or speed up; otherwise speed down or wait
generally [2].

Figure 2. The three collision types.

5.5.1. Toward Collisions

The first stage is to determine whether the col-
lidee is to the left or right of the agent. People
will prefer to pass on the side with least devi-
ation from their path. Observations show that
the agent has three different ways of avoiding
the collision:

• Changing direction only;

• Changing speed only;

• Changing direction and speed;

If no behaviour has been found that will avoid
collision, the agent simply stops walking. This

222 Path Finding and Collision Avoidance in Crowd Simulation

will allow the other agent involved in the colli-
sion to avoid the subject, who can then resume
walking.

5.5.2. Away Collisions

An away collision is one where the collidee is
in front of the agent, but the agent is walking
faster than the collidee, so it will bump into the
rear of the collidee. To deal with this situation,
the agent has two choices:

• Slow down to the same speed as the collidee
and walk behind it.

• Walk faster and overtake the collidee by
choosing the appropriate side.

5.5.3. Glancing Collisions

This type of collision is dealt with in a similar
way as with toward collisions.

Each agent has a goal trying to reach it by fol-
lowing its initial path. After avoiding collision,
the agent should return to its path smoothly in
order to look natural, or change the path com-
pletely.

6. System Avoidance Behaviours

As we have seen before, each collision avoid-
ance needs different behaviour and different
treatment. The list of behaviours that can be
used in collision avoidance are:

• moving forward,

• changing directions (left or right)

• waiting

• speeding up

• slowing down

• moving back.

Each agent has a priority and several ones could
have the same priority. These priorities are
taken from the sociology and psychology of
the human society (the priority is given to old
humans, the handicapped, pregnant women,
etc. . .) [21].

For each agent apply A* to find its itinerary.

For each frame of animation do

For each agent do

Collision prediction

If not collision then

the agent goes on its way.

Else

Apply the collision

avoidance agent to

agent algorithm.

End if

End for

End for

Figure 3. Overview of the system.

A second level of priority is given to the be-
haviours. These are complex phenomena be-
cause they depend on the type of collision and
the avoidance collision situations: (two indi-
viduals, crossing groups, queuing in an exit,
queuing in two directions, crowded environ-
ment, etc. . .). In order to validate our system,
we have chosen these situations. Some of them
have been described by Winnie and Serge [22].

The process of collision avoidance is similar for
all these situations by applying the above algo-
rithm for each pair of agents in collisions. The
process is described in Figure 4. The overview
of the system is described in Figure 3.

We can summarize the treatment of collision
avoidance by using the priority rules in the Ta-
ble 1. For example, if we are in a toward col-
lision, the two agents reach the same cell, the
first agent goes forward and the second agent
moves to the right. The priority one is given to
this situation.

We pass to the priority two if there is no space
for the second agent to move, and so on.

If our environment is crowded, we can arrive
at a deadlock situation in the actual frame. So
the two agents have to wait until there is a free
space to move. This situation occurs only when
a group of agents are closer to each other.

Path Finding and Collision Avoidance in Crowd Simulation 223

For each pair of agents do

If toward collisions, then

If agents have the same priorities, then choose one agent in random way

If collision 1, then (two agents reach same cell Figure 1)

- Agent 1 moves forward, agent 2 changes direction to the right if there is space to move

else changes direction to the left

- Agent 1 changes direction to the right, agent 2 moves forward

- Agent 1 changes direction to the left, agent 2 moves forward

- Agent 1 moves forward, agent 2 waits.

Else (collision 2 agents reach the cell of each other Figure 1)

- Agent 1 moves forward, agent 2 change direction to the right if there is space to

move, else changes direction to the left

- Agent 1 changes direction to the right, agent 2 moves forward

- Agent 1 changes direction to the left, agent 2 moves forward

- Agent 1 waits, agent 2 waits (these agents are blocked)

End if

Else begin with the agent which has the higher priority and process the treatment as in

the same priorities.

End if

Else if away collisions then (agent 2 behind agent 1)

- agent 1 moves forward, agent 2 changes directions right, left to overtake, or slows down

else (glancing collisions)

- Agent 1 moves forward, agent 2 changes direction to the right if there is space to move

else changes direction to the left

- Agent 1 changes direction to the right, agent 2 moves forward

- Agent 1 changes direction to the left, agent 2 moves forward

- Agent 1 moves forward, agent 2 waits.

End if

End if

End for

Figure 4. Agent to agent collision avoidance algorithm.

6.1. Crossing Groups

This situation is found in a crowded environ-
ment, when two groups of agents moving in
opposite directions try to avoid each other. In
real life, they form opposite lines consisting of
pedestrians with the same direction. (Figure
5.1)

In case of collision, the agent-to-agent colli-
sion avoidance algorithm is applied. The col-
lision avoidance behaviours used are: moving
forward, changing directions, waiting and mov-

ing back. The last behaviour is used in the case
of blocking when there is no space to move for-
ward.

6.2. Bottlenecks (Queuing in an Exit)

Bottlenecks or passing direction of pedestrians
is found in applications such as the entrance into
corridors, staircases, subways, or doors. In real
life, the priority is given to the nearest one to
the centre of the bottleneck. The A* algorithm
resolves directly this situation and in case of

224 Path Finding and Collision Avoidance in Crowd Simulation

Collision type Agent1 Agent2 Priority Remarks

forward right 1

forward left 2

Collision1 right forward 3

Toward left forward 4

collision forward wait 5

forward right 1

forward left 2

Collision2 right forward 3

left forward 4

wait wait 5 Deadlock for this frame

Away forward Overtake by right 1

collision Collision2 forward Overtake by left 2

forward slowing down 3

forward right 1

Glancing Collision1 forward left 2

collision right forward 3

left forward 4

forward wait 5

Table 1. Priority rules in collision avoidance.

collision the agent-to-agent collision avoidance
algorithm is applied. The collision avoidance
behaviours used are: moving forward, chang-
ing directions, and waiting (Figure 5.2).

6.3. Queuing in Two Directions

Pedestrians form queues in front of exits or
doors of vehicles. When a vehicle arrives,
pedestrians wait for the inside passengers to get
off the vehicle and then get on it. This type
of movement can be seen in elevator halls, on
platforms of railway stations, at bus stops, and
so on (Figure 5.3).

There will be two types of situations: pedes-
trians gather in front of the entrance without
leaving the way for inside passengers to get off
the vehicle and pedestrians leave the way for
inside passengers to get off the vehicle.

In our system a priority is given to the agents of
one direction, the others wait until there is a free
space to move. In case of collision the agent-to-
agent collision avoidance algorithm is applied.
The collision avoidance behaviours used are:
moving forward, changing directions, waiting

and moving back. The last behaviour is used
when the passage is blocked; there is no space
to move. The agents of less priority have to
choose between two possibilities: moving back
to leave passage to the other agents or applying
the A* to find a new path if it is possible.

6.4. Narrow Passage

This situation is observed inside corridors, in
pavements, or pedestrian’s passages. Gener-
ally, the pedestrians form line segregation, each
group takes a direction and the choice of the
direction is taken from the sociological be-
haviours of the pedestrian. In almost all so-
cieties the pedestrians take their right (right or
left). We have given the priority one to this sit-

Figure 5.1. Crossing groups.

Path Finding and Collision Avoidance in Crowd Simulation 225

Figure 5.2. Bottlenecks.

Figure 5.3. Queuing in two directions.

Figure 5.4. Narrow passage.

uation. The agent will first check on its right.
The A* algorithm provides the path to be fol-
lowed by just changing direction to overtake, in
case of away collision. (Figure 5.4)

7. System Results and Discussion

The behavioural algorithms described above
have been implemented in C++ using the
OpenGL library. The system is a 3D software
designed to be used in real time, so different
ideas and situations can be simulated. A crowd
of about 640 agents can be simulated at an ac-
ceptable time on a Pentium IV, 3 GHz with 256
Mo of main memory.

The user interface has been designed to allow
easy testing: the simulation can be paused at
any time, and replayed at any speed, or frame
by frame, meaning that a collision can be viewed
from a variety of angles. The user can create his
virtual scene in different ways, by placing the
obstacles and the agents wherever he wants; He
can also choose the destination of each agent.
The system can simulate any type of collision
situations.

An environment with agents and obstacles or
without obstacles, a populated environment, a
narrow space to produce a large number of po-
tential collisions, agents acting as bottleneck,
crossing groups, queuing in twodirections, etc. . .

Figure 5 shows some results of our system. The
colored cells are the goals of the agents.

Our algorithm is used for all the collision avoid-
ance situations, with minor changes in the pri-
orities of the agents and the behaviors. We have
separated them in order to better understand and
to compare the results of the system with the real
life Figure 6.

The combination of A∗ with the application of
the behaviors of collision avoidance gave good
results, similar to the everyday life. The agents
moving back could use the A∗ to compute the
new optimum path from the actual position to
the destination target. After avoiding colli-
sion, the agent has two choices: to return to
its itinerary or compute a new path to its goal
from that position.

The use of priority rules solved the problem of
disorder in the crowd movement. The traversed
time depends on several parameters, amongst

Agents With
priority rules

Without
priority rules

1 39 39

2 51 54

3 27 47

. . .

10 49 47

11 37 44

. . .

21 23 24

22 34 36

23 24 28

. . .

30 24 38

31 27 31

. . .

48 15 20

49 26 30

50 34 34

Table 2. Traversed time in seconds in narrow passage.

226 Path Finding and Collision Avoidance in Crowd Simulation

Agents
With

priority rules
Without

priority rules

1 45 55

2 39 59

3 49 60

4 56 50

5 33 43

6 32 34

7 44 59

11 40 54

12 34 55

13 15 18

15 20 35

16 25 25

Table 3. Traversed time in seconds in queuing in two
directions.

other things, the density of crowd and the meth-
ods of collision avoidance. We have tested the
system with these priority rules and without
them. And in almost all situations the traversed
time is better with the use of these rules. Table
2 and Table 3 show this difference in two situa-
tions, for example narrow passage and queuing
in two directions. We used in the first simu-
lation about 50 individuals and in the second
simulation about 15 individuals.

The traversed time depends on many parame-
ters of the environment: such as density of the
crowd, initial position, obstacles, collision situ-
ations and finally the process of collision avoid-
ance. We can see in the simulation tables that
some individuals have the same traversed time
(2%) and sometimes have better time without
priority rules (1%). But in most situations the
traversed time is better with the use of these
rules (97%).

To validate the performance of our system we
must consider the realism of simulation but not
the traversed time.

8. Conclusion and Future Works

This paper has presented useful ideas toward a
system that can simulate human behavior based
on theories from sociology and psychology [21]
of a human being. We concentrate our dis-
cussion on techniques for collision avoidance

as well as the path finding in dynamic envi-
ronment. These two techniques add realism
to the simulation. The system can simulate a
large number of agents in real time (about 640
agents).
The use of priority rules solved the problem of
disorder in the crowd movement and in most
situations the traversed time is better with the
use of these rules.

Our model could be used as a framework to sim-
ulate real situations such as: the rise and descent
of a subway or a bus, the walk in pavement, the
entry or the exit of a supermarket. . .

A similar work has been done by Feurtey [6]
using an agent-to-agent algorithm. He has used
a critical density to differentiate the high and
the low density of the crowd. The reaction of
the agent depends on the distance ranges; close,
near, and far. So the agent’s reaction is not the
same according to this range. The second prob-
lem is in the way that his virtual environment
has been represented.

Our agent-to agent model can be used in differ-
ent types of crowd; high or low density, just by
applying a small set of rules depending on the
collision types and the priority rules. A second
advantage of our model resides in the way that
we have calculated the path of each agent free
of obstacles.

The system implements a number of features
that make it more realistic than existing sim-
ulations [6],[18]: we have included almost all
the behaviours of avoiding collisions, concen-
trating our research on the real life behaviours.
We have translated these behaviours to simple
collision avoidance rules.

There are many ideas for future work to improve
the realism of the simulation:

• Improve the individualmodelisation andmove-
ment by using professional 3D animation
software such as 3DMAX or others.

• Actually, all agents move through the scene
on their own, furtherworkwould allowagents
to move in small groups.

• Currently each agent is assigned a goal to
move toward; a better system would involve
the agent being given a plan rather than a
simple goal. For example, an agent could be
told to visit all the sites in a museum, get out
of the scene etc...

Path Finding and Collision Avoidance in Crowd Simulation 227

• The notion of groups should improve the re-
alism of the simulation by performing group
avoidance rather than individual avoidance
and it will allow modelling both group and
individual behaviours.

• More time would have enabled work on

Figure 6a. Open area with obstacles.

Figure 6b. Narrow passage; the path is shown by lines.

Figure 6c. Queuing in two directions before starting
animation.

Figure 6d. Queuing in two directions: during the
animation.

some other aspects of natural human inter-
action. We are interested actually in inte-
grating sociological and psychological rules
to improve the realism of the simulation.

References

[1] N. BADLER, C. PHILLIPS, B. WEBBER, Simulating
Humans: Computer Graphics Animation and Con-
trol. Oxford University Press, New York, NY, 1993.

[2] S.BAEK, I. K. J. INHO, LeeMotionGenerationUsing
Motion Mining System. International Conference
on Artificial Reality and Telexistence ICAT2003,
Japan, 2003.

[3] S. BANDI, D. THALMANN, Space Discretization for
Efficient Human Navigation. Computer Graphics
Forum, 17(3), pp. 195–206, 1998.

[4] O. B. BAYAZIT, J. M. LIEN, N. M. AMATO, Better
flocking behaviors using rule-based roadmaps. In
Algorithmic Foundations of Robotics V, Springer
Tracts in Advanced Robotics 7, Springer-Verlag
Berlin Heidelberg, pp. 95–111, 2004.

[5] V. BLUE, J. ADLER, Cellular automata model of
emergent collective bi-directional pedestrian dy-
namics. In Artificial Life VI, the Seventh Interna-
tional Conference on the Simulation and Synthesis
of Living Systems, 2000.

[6] F. FEURTEY, Simulating theCollisionAvoidanceBe-
havior of Pedestrians. Master’s thesis, Department
of Electronic Engineering, University of Tokyo,
2000.

[7] M. F. P.GILLIES, N. A. DODGSON, Attention based
obstacle avoidance for animated characters. In Vir-
tual Reality. To appear.

[8] D. HELBING, P. MOLNR, Social force model for
pedestrian dynamics. Physical Review, 51, pp.
4282–4286, 1995.

228 Path Finding and Collision Avoidance in Crowd Simulation

[9] A. KAMPHUIS, M. H. OVERMARS, Motion planning
for coherent groups of entities. In IEEE Int. Conf. on
Robotics and Automation. IEEE Press, San Diego,
CA, 2004.

[10] F. LAMARCHE, S. DONIKIAN, Crowd of virtual hu-
mans: a new approach for real time navigation in
complex and structured environments. In Computer
Graphics Forum, vol. 23, pp. 509–518, 2004.

[11] C. NIEDERBERGER, D. RADOVIC, M. GROSS,
Generic Path Planning for Real-Time Applications,
Computer Graphics International (CGI’04), pp.
299–306, 2004.

[12] T. Y. LI, H. C. CHOU, Motion planning for a crowd
of robots. In International Conference on Robotics
and Automation (ICRA). IEEE Press, San Diego,
CA, 2003.

[13] S. R. MUSSE, D. THALMANN, Hierarchical model
for real time simulation of virtual human crowds.
IEEE Transactions on Visualization and Computer
Graphics, 7(2), pp. 152–164, 2001.

[14] J. REIF, H. WANG, Social potential fields: A dis-
tributed behavioral control for autonomous robots.
In K. Goldberg, D. Halperin, J. C. Latombe, and
R. Wilson, editors, International Workshop on Al-
gorithmic Foundations of Robotics (WAFR), A. K.
Peters, Wellesley, MA, pp. 431–459, 1995.

[15] C. W. REYNOLDS, Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4), pp. 25–34, 1987.

[16] C. W. REYNOLDS, Steering behaviors for au-
tonomous characters. In Game Developers Con-
ference, 1999.

[17] S. RUSSELL, P. NORVIG, Artificial Intelligence: A
Modern Approach. Prentice Hall, 1994.

[18] S. J. RYMILL, N. A. DODGSON, A Psychological-
based Simulation of Human Behaviour. Theory
and Practice of Computer Graphics. EG UK, pp.
229–236, 2005.

[19] W. SHAO, D. TERZOPOULOS, Autonomous Pedestri-
ans. Eurographics / ACM SIGGRAPH Symposium
on Computer Animation. USA. pp. 19–28, 2005.

[20] B. ULICNY, D. THALMANN, Crowd simulation for
interactive virtual environments and vr training sys-
tems.

[21] M. WOLFF, Crowd Notes on the behaviour of pedes-
trians. In People in Places: The Sociology of
the Familiar, Birenbaum A., Sagar E., New York:
Praeger, pp. 35–48, 1973.

[22] W. DAAMEN, SP. HOOGENDOORN, Experimental re-
search on pedestrian walking behavior. In Trans-
portation Research Board annual meeting 2003.
Washington DC: National Academy Press, pp.
1–16, 2003.

Received: May, 2006
Revised: May, 2009

Accepted: June, 2009

Contact addresses:

Cherif Foudil
LESIA Laboratory
Biskra University

BP 145, RP
Biskra

Algeria
e-mail: foud cherif@yahoo.fr

Djedi Nouredddine
LESIA Laboratory
Biskra University

BP 145, RP
Biskra

Algeria
e-mail: djedi nour@yahoo.fr

Cédric Sanza
VORTEX, IRIT

Toulouse
France

e-mail: Cedric.Sanza@irit.fr

Yves Duthen
VORTEX, IRIT

Toulouse
France

e-mail: Yves.Duthen@irit.fr

DR. CHERIF FOUDIL is currently working as an Associate Professor of
computer science at Computer Science Department, Biskra University,
Algeria. Dr. Cherif holds PhD degree in computer science. The topic
of his doctoral dissertation was Behavioral Animation: simulation of
a crowd of virtual humans. He also possesses B. Sc. (engineer) in
computer science from Constantine University 1985, M. Sc. in com-
puter science from Bristol University, UK 1989. He is currently the
head of “animation and artificial life” team in LESIA laboratory. His
current research interest is in artificial intelligence, artificial life, crowd
simulation, behavioural animation.

DR. DJEDI NOUREDDINE is currently working as a Professor of computer
science at Computer Science Department, Biskra University, Algeria.
Dr. Djedi holds Ph. D. degree in computer science. He also possesses B.
Sc. (engineer) in computer science from USTHB University 1986. He
is currently the head of LESIA laboratory. His current research interest
is in artificial intelligence, artificial life, crowd simulation, behavioural
animation.

DR. CÉDRIC SANZA has been an Assistant Professor in computer graph-
ics at the University of Toulouse since 2002. He works in the Vortex
team at the IRIT laboratory. His current research interests include
learning classifier systems, behavioural simulation of characters and
animation of crowds.

PROF. DR. YVES DUTHEN is a Research Professor of artificial life and
virtual reality at the University of Toulouse 1 Capitole, IRIT lab. He
received his Ph. D. degree from the University Paul Sabatier in 1983
and the “French Habilitation” post-doctorate degree in 1993 to become
full Professor. He has pioneered research in artificial life for building
adaptive artificial creatures and focuses now on organism development
with an embedded metabolism. He has directed or co-directed about 20
PhD theses and has published more than 80 research articles.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

