
Journal of Computing and Information Technology - CIT 17, 2009, 2, 203–214
doi:10.2498/cit.1001215

203

Analysis of Key Management Schemes
for Secure Group Communication
and Their Classification

R. Aparna1 and B. B. Amberker2

1 Department of Computer Science and Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka, India
2 Department of Computer Science and Engineering, National Institute of Technology, Warangal, Andhra Pradesh, India

Secure Group Communication is very critical for ap-
plications like board-meetings, group discussions and
teleconferencing. Managing a set of secure group keys
and group dynamics are the fundamental building blocks
for secure group communication systems. Several group
key management techniques have been proposed so far
by many researchers. Some schemes are information
theoretic and some are complexity theoretic in nature.
Users in the secure group may negotiate with each
other to derive a common group key or may compute
the group key on their own. Some schemes involve a
trusted Key Distribution Center (KDC), which generates
and distributes initial pieces of information, whereas
in other schemes users themselves select their private
information. Storage at each user and communication
cost among members of the group vary from scheme
to scheme. Here, in this paper, we discuss some of
the key management schemes proposed earlier, based on
the considerations mentioned above. We also analyze
the schemes with respect to storage, communication and
computation costs.

Keywords: secure group communication, secure group
key, key distribution scheme, contributory key agreement,
privileged user set

1. Introduction

The advancement of digital technologies and
widening Internet bandwidth have increased the
demand for new multimedia services. Some
of the service types include video-on-demand,
group discussions, board meetings, etc. There
are many users who participate in such services.
The communication among the users pertaining
to any such service must be carried out confi-
dentially.

Other scenarios may be out of the n users in
a network, some t(t � n) of them would like

to discuss on a common concern. These t par-
ties termed privileged users must communicate
themselves over a public channel in confidence
and others must not be able to listen to the con-
versation amongst these t parties. Hence, there
is a need to find new technology for such confi-
dential communication termed as Secure Group
Communication or Secure Conferencing.

ANaive solution is to have a shared key between
every pair of users, which leads to storing (n−1)
keys with each user. To send a message, sender
must encrypt the message to each user in the
group separately. This increases the amount of
storage at each user-end; computation and com-
munication costs are also increased. Another
possible solution would be to have a publicly
available directory, called Public Key Infras-
tructure (PKI). Here, user will have a (private,
public) key pair, private key is known only to
that user, whereas public keys of all n users are
stored in the publicly available directory. To
send a message, sender uses public keys of all
other group members to encrypt the message,
so that other users can decrypt using their own
private keys. This leads to (n−1) encryptions to
send a single message and any non-group mem-
ber can try to act as privileged user and send the
message after encrypting it with public keys of
privileged users. Since these default solutions
require huge amount of storage, communication
and computation, they do not fit for group com-
munication scenario. Hence, the general goal
of Secure Group Communication is to establish
a common secret key, called Secure group key or
Secure conference key among privileged users
for confidential communication.

204 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

Many group key management techniques have
been proposed so far. Some schemes are infor-
mation theoretic in nature and some are com-
plexity theoretic. There may be a trusted Key
Distribution Center (KDC) involved in the sys-
tem which generates and distributes initial pri-
vate pieces of information to users in the group.
Group key may be generated and distributed by
the KDC or group members may compute the
group key, either interactively or non-interacti-
vely. Based on the involvement of KDC, key
management techniques can be classified into
two categories: (i)KeyDistribution Scheme and
(ii) Contributory Key Agreement Scheme. Key
distribution scheme [4, 7, 20, 19, 16, 13, 18]
involves a single entity termed as trusted KDC.
There exists a pair-wise secure channel with the
KDC and every group member. KDC is respon-
sible for generating and distributing keys to all
the members in the group via secure channel. It
is also responsible for generating the group key
and distributing it to all the users in the group.

In key distribution scheme, after receiving the
initial information from KDC, secure group key
can be derived by the members in the privileged
set, either asynchronously or interactively. In
asynchronous mode, each member in the priv-
ileged group can derive a common group key
on his own for secure conference with the help
of information obtained by KDC. In interactive
mode, users in the privileged group can commu-
nicate with each other to set up secure confer-
ence key. However, a KDC incurs management
overhead and is a single point of failure.

In contrast to key distribution scheme, contrib-
utory key agreement schemes [6, 5, 10, 1, 2, 14,
11] require every groupmember to contribute an
equal share to the common secret key. Secret
key for secure group communication is com-
puted as a function of all members contribution.

Once a conference (group key) is set up, users
in the group can communicate with each other
in secured manner. Since the group is dynamic,
membership in the group may change over time,
i.e., new members may join the group and ex-
isting members may leave the group. Group
membership can change because a single mem-
ber may join/leave the group or a set of mem-
bers may join/leave the group simultaneously.
Set of members join/leave scenario may arise
because of the changes in network connectivity.
These changes in network connectivity may be
due to network partitions (which divides the
group) and network re-heals (which combines

several groups together). A new member can
always join the group voluntarily, but the mem-
ber in the group may leave the group either vol-
untarily or involuntarily (being forced by other
members). Involuntary exit may be due to pro-
cessor crash or network disconnect. Whenever
there is a membership change, group key must
be changed to prevent a new user from reading
past communications, called backward access
control and a departed user from reading future
communications, called forward access control.

In key management schemes, an adversary may
try to eavesdrop on the conversation of the priv-
ileged user set. An adversary may be an insider
(member of among n parties, but not a member
of privileged set) or outsider (member of other
than n parties). A group of users, termed mali-
cious parties may collude with each other and
try to derive the common group key. The se-
curity of the group key management scheme is
based on number of colluding parties. Scheme
is termed as k-secure if it is not possible to derive
the common key even after k non-group (non-
privileged) members collude with each other,
where k is termed as threshold.

The cost of the group key management scheme
is determined by three factors: communica-
tion, storage and computation, amongst which,
communication and computation costs are very
important. Usually, efficiency in one comes
at the expense of the other. Schemes that
require minimum computation usually require
more communication among group members,
while schemes minimizing communication re-
quire more computations.

Many researchers have made surveys on group
key management schemes [2, 15, 9]. In [2], per-
formance evaluation has been made on five dis-
tributed key management techniques. Rafaeli
and Hutchison classify the schemes in [15] into
centralized, decentralized and distributed key
management protocols. In [9], Judge and Am-
mar concentrate on providing security for mul-
ticast content distribution in group key manage-
ment.

In this paper, we focus on the performance
analysis of different key management proto-
cols proposed by Blundo et al. [4], Wong et al.
[20], Diffie-Hellman [6, 17], Fiat-Naor [7] and
Burmester-Desmedt [5], with respect to storage,
communication and computation. We classify
the protocols based on (i) method used to estab-
lish the group key i.e., whether they are based
on key distribution scheme or contributory key

Analysis of Key Management Schemes for Secure Group Communication and Their Classification 205

agreement scheme, (ii) role ofKDC (active only
during initial stage or active throughout) (iii) se-
curity (unconditional or conditional). Section
2 describes the protocols that come under key
distribution scheme and Section 3 discusses key
agreement protocols. We show the classifica-
tions in Section 4. In Section 5, we analyze the
protocols with respect to storage, communica-
tion cost and computation cost. We conclude
the paper in Section 6.

2. Key Distribution Schemes

As mentioned earlier, key distribution schemes
are classified into asynchronous or non-interacti-
ve and interactive modes. In asynchronous
mode, each member in the privileged group can
derive a common group key on his own, for se-
cure conference, with the help of information
obtained by KDC. In interactive mode, users
in the privileged group can communicate with
each other to compute secure conference key as
described below.

2.1. Non-interactive Key Distribution
Schemes

2.1.1. Blundo et al. Conference Keying
Protocol

Blundo et al. [4] have proposed a protocol to
derive a common conference key. In this ap-
proach, a trusted off line server, which is active
only at initial stage, distributes some informa-
tion among a set of n users, (User1, User2, . . . ,
Usern) so that any t of them can join and gener-
ate a secure group key asynchronously. Figure

1 depicts the Blundo et al. non-interactive k-
secure t-conference protocol. It makes use of a
symmetric polynomial in t variables (number of
users in the group) of degree k (threshold) with
coefficients over GF(q), q > n. In this scheme,
t is fixed beforehand. Each join/leave restarts
the protocol from initial stage.

Maximum number of coefficients in the poly-

nomial are

(
k + t − 1

t − 1

)
out of which each

user is required to store

(
k + t − 2

t − 2

)
val-

ues from GF(q) and is required to perform

at the most t ∗
(

k + t − 2
t − 2

)
multiplications,(

k + t − 2
t − 2

)
additions and k ∗ t exponentia-

tion operations.

2.1.2. Broadcast Encryption Zero Level
Scheme

Fiat and Naor proposed a basic scheme [7]
which allows users to determine a common key
for every subset, which is resilient to any set S
of size ≤ k. In this scheme, for a given k each
user is preassigned with a set of keys such that,
once the users are told which of them are in
privilege set and which are not, each user in the
privilege set can construct the common key on
his own. This scheme considers a set U which
comprises all users i.e., |U| = n. For every set
B ⊂ U, 0 ≤ |B| ≤ k, a key KB is defined and KB
is given to every user x ∈ U − B. Let T denote
the privileged user set. The common secret key
to the privileged set T is obtained by performing
exclusive-or of all keys KB, B ∈ U − T .

• KDC picks at random a symmetric polynomial P(x1, . . . , xt) of degree k with t variables
with coefficients over GF(q), q > n.

• To each user Useri, i = 1, . . . , n, in the system, KDC distributes the polynomial f i(x2, . . . , xt)
= P(i, x2, . . . , xt), that is the polynomial obtained by evaluating P(x1, . . . , xt) at x1 = i.

• If the users Userj1, . . . , Userjt want to set up a conference key, then each user Userji
evaluates f ji(x2, . . . , xt) at (x2, . . . , xt) = (j1, . . . , ji−1, ji+1, . . . , jt).

• The conference key for users Userj1, . . . , Userjt is equal to sj1,...,jt = P(j1, . . . , jt).

Figure 1. Blundo et al. non-interactive k-secure t-conference protocol.

206 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

The scheme is resilient to every coalition of up
to k users, since, even if up to k users collude,
they will all be missing key KS. Hence they are
unable to compute the common secret key. In
this scheme, each user in the system is assigned

with
k∑

i=0

(
n − 1

i

)
keys and each user is re-

quired to perform
k∑

i=0

(
n − t

i

)
exclusive-or

operations to obtain the common secret key.

2.1.3. Broadcast Encryption One Level
Scheme

This scheme developed by Fiat and Naor [7],
considers a family of functions f 1, f 2, . . . , f l, f i :
U �−→ 1, . . . , m with the property that for every
subset S ⊂ U of size k, there exists some 1 ≤
i ≤ l such that for all u, v ∈ S : f i(u) 	= f i(v),
that means the family of functions f i contains a
perfect hash function (defined in [8], [12]) for
all size k subsets of U when mapped to the range
{1, 2, . . . , m}. This family can be used to obtain
a k-resilient scheme from 1-resilient scheme.

For every 1 ≤ i ≤ l and 1 ≤ j ≤ m, an indepen-
dent 1-resilient scheme R(i, j) is used. Every
user u ∈ U receives the keys associated with
schemes R(i, f i(x)) ∀ 1 ≤ i ≤ l. Suppose the
secret massage is M. To send this message to
a privileged set T ⊂ U, KDC generates ran-
dom strings M1, . . . , Ml such that

⊕l
i=1 Mi =

M. KDC broadcasts for all 1 ≤ i ≤ l and
1 ≤ j ≤ m the message Mi to the privileged
subset {u ∈ T|f i(u) = j} using scheme R(i, j).
Every user u ∈ T can obtain all the messages
M1, . . . , Ml and by performing exclusive-or of
them can get the message M.

Every user receives (n ∗ l) number of keys
from KDC where l denotes number of func-
tions, hence the storage required at every user is
(n ∗ l) and 3 messages are broadcast by KDC.

2.1.4. Keystone Architecture

This scheme assumes a trusted key server which
is responsible for distributing the keys; and, the
key server uses key tree [20, 19, 3] for group key
management. A key tree is a directed acyclic
graph with two types of nodes, U nodes repre-
sentingmembers and k nodes representing keys.

The nodes of the tree hold the keys at that par-
ticular level. The leaves of the tree correspond
to group members and each leaf contains indi-
vidual key of that member. The key present at
the root of the tree is the group key. Key server
is at the root of the tree. Keys at the intermedi-
ate levels of the tree are termed auxiliary keys
and will be used to convey new group key to the
members in an efficient manner. A member U
is given key k if and only if there is a directed
path from U-node u to k-node k in the key path.

If the tree is a balanced binary tree and if there
are t users in the group, then the height h of
the tree is log2t and each member stores at most
(h + 1) keys. In general, if d is the degree of
the tree and if there are t users, then height of
the tree is logdt. Figure 2 depicts a binary tree
structure for t = 8 users. K-nodes represent
keys and U-nodes represent users. User U1, for
example, knows the keys K1, K12, K14, and K
where K is the group key, K1 is U1’s individual
key, K12 and K14 are auxiliary keys along the
path from leaf to root.

For each join/leave operation, server changes
keys along the path from leaf to root from the po-
sition where join/leave operation has occurred.
For example, in Figure 2, if user U7 leaves the
group, then the keys K78, K58 and K must be
changed. Changed group key and auxiliary keys
must be conveyed to remaining members in the
group. New group key K′ must be conveyed to
users U1 to U6 and U8, K′

58 must be sent to users
U5, U6, U8 and K′

78 to U8. The following mes-
sages are constructed to convey changed keys:

(Message {K′}K indicates new key K′ en-
crypted with key K)

For users U1 to U4 : {K′}k14

For Users U5, U6 : {K′
58}K56 , {K′}K′

58

For User U8 : {K′
78}K8 , {K′

58}K′
78

, {K′}K′
58

Similarly, when it joins the group, keys at the
same position are to be changed. The following
messages are constructed:

For users U1 to U4 : {K′}K

For users U5, U6 : {K′}K , {K′
58}K58

For user U8 : {K′}K , {K58}′K58
, {K′

78}K78

For user U7 : {K′, K′
58, K

′
78}K7

Analysis of Key Management Schemes for Secure Group Communication and Their Classification 207

Figure 2. Tree structure for n = 8 users K-nodes represent keys and U-nodes represent users, K1 to K8 are user’s
private keys, K12, K34, K56, K78, K14, K58 are auxiliary keys and K is the group key.

2.2. Interactive Key Distribution Schemes

2.2.1. Blundo et al. One-way Interactive
Scheme

As in Blundo et al.[4] non-interactive scheme,
here also trusted server chooses a symmetric
polynomial, but in two variables of degree (k +
t−2) with coefficients over GF(q), q > n. Pro-
tocol in Figure 3 realizes an one-time interactive
k-secure t-conference key distribution scheme.

The scheme is one-way interactive, since the
tth user Usert among users (User1, User2, . . . ,
Usert) selects the common secret key and sends
it securely to all the other t − 1 users (User1,
User2, . . . , Usert−1). In this scheme, each user
is required to store (t + k − 1) elements of

GF(q) and is required to perform at the most
(k + t − 2) ∗ 2 exponentiations and same num-
ber of multiplications and (k + t − 2) additions
and one exclusive-or operation. Usert sends se-
curely the group key to every other user in the
group. Each join/leave operation re-initiates
the protocol.

3. Contributory Key Agreement

3.1. Group Diffie-Hellman Key Agreement

In this scheme, secret key is never transmitted
from one user to the other over the network.
Group Diffie-Hellman Protocol in [17] general-

1. KDC chooses a symmetric polynomial P(x, y) of degree (k + t − 2) with coefficients
over GF(q), q > n.

2. To each user useri, i = 1, . . . , n, in the system, KDC distributes the polynomial
f i(y) = P(i, y), that is the polynomial obtained by evaluating P(x, y) at x = i.

3. If the users Userj1, . . . , Userjt , where j1 < j2 < . . . < jt, want to set up
a conference key, then:

(a) Userjt , randomly chooses a secret key s in GF(q) (the value s is the conference key).

(b) Userjt evaluates the polynomial f jt(y) at y = jl, for l = 1, . . . , t − 1, and, then,
he computes temporary keys sjt,jl = f jt(jl) (which is equal to P(jt, jl)).

(c) Userjt sends to Userjl the value γl = sjt,jl

⊕
s, for l = 1, . . . , t − 1,

where
⊕

is the bitwise ex-or.

(d) For l = 1, . . . , t − 1: Userjl , first computes sjt,jl = sjl,jt = f jl(jt) (which is equal
to P(jl, jt) = P(jt, jl)). Then, Userjl computes s by taking the bitwise ex-or
between sjt,jl and the value γl received by Userjt .

Figure 3. Blundo et al. one-time interactive k-secure t-conference protocol.

208 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

izes the basic 2 party Diffie-Hellman key ex-
change discussed in [6]. In Diffie-Hellman, two
parties agree on a common key. Group Diffie-
Hellman protocol considers t users, instead of
two users. The group agrees upon a pair of
primes q and g and starts calculating intermedi-
ate values. First member calculates first value,
gr1 and passes it to the next member. Each sub-
sequent member in the group receives the set
of intermediate values and raises them using its
own contribution generating a new set. A set
generated by jth member will have j intermedi-
ate values with j− 1 exponents and a new value
comprising all the exponents. For example, the
fifth member receives the set:

{gr2r3r4, gr1r3r4, gr1r2r4, gr1r2r3, gr1r2r3r4}
and generates the set

{gr2r3r4r5 , gr1r3r4r5 , gr1r2r4r5, gr1r2r3r5 ,

gr1r2r3r4 , gr1r2r3r4r5}

The new value in this set is gr1r2r3r4r5 . The
last member (t) can calculate the new value
K = gr1r2...rt . It raises all intermediate values
to its contribution and multicasts it to the set.
Each member extracts its respective intermedi-
ate value and calculates group key K. During
the first phase, all the users send gri i.e., one
message is sent by each user. During the second
phase, all the users send grirj , j 	= i, j=1 to t, i.e.,
(t − 1) messages are sent by each user. During

the third phase, each user will send

(
t − 1

2

)

messages and so on. Hence,

(
t − 1
i − 1

)
mes-

sages are sent by each user during ith phase.
Total number of communications required to set

up group key = t∗{1+
(

t − 1
1

)
+
(

t − 1
2

)

+ . . . +
(

t − 1
t − 1

)
} = t ∗ (2t−1 + 1) and each

user must perform (2t−1 + 1) exponentiations.

If a set of k members want to join the group,
then a list of partial keys for each member of
the group is generated and sent. Upon receiv-
ing partial keys each user uses its partial key
to compute the common secret key. Usually,
one particular member of the group (termed as
controller) is responsible for generating and dis-
tributing these partial keys. Figure 4 shows a
protocol to merge k members to the group and
Figure 5 shows a partition protocol.

In merge protocol the current group controller
(usually tth user) removes its contribution from
the current group key, generates a new token
and passes it to one of the new members. The
new member adds its own contribution to the to-
ken received by group controller and passes the
token to the next newmember. Every newmem-
ber (except the last one) adds its own contribu-
tion and passes it in the same manner. When the

Assume that k members are added to a group of size t.

Step 1: Mt generates a new exponent r′t ∈ Zq, computes gr1...rt−1r
′
t mod p,

and unicasts the message to Mt+1

Step j+1 for j ∈ [1, k − 1]: New merging member Mt+j generates an exponent
rt+j ∈ Zq, computes gr1...r

′
t ...rt+j mod p and forwards the result to Mt+j+1.

Step k + 1: Upon receipt of the accumulated value, Mt+k broadcasts it to the entire group.

Step k + 2: Upon receipt of the broadcast, every member Mi, ∀i ∈ [1, t + k − 1],
computes gr1...r

′
t ...rt+k/ri mod p and sends it back to Mt+k.

Step k + 3: After collecting all the responses Mt+k generates a new exponent rt+k,
produces the set S = gr1...r

′
t ...rt+k/ri mod p|∀i ∈ [1, t + k − 1] and broadcasts it to the group.

Step k + 4: Upon receiving the broadcast message, every member Mi, ∀i ∈ [1, t + k]
computes the key K = (gr1...r

′
t ...rt+k/ri)ri mod p = gr1...r

′
t ...rt+k mod p.

Figure 4. Group Diffie-Hellman merge protocol.

Analysis of Key Management Schemes for Secure Group Communication and Their Classification 209

Assume that a set W of members is leaving a group of size t.

Step 1: The group controller Md generates a new exponent r′d ∈ Zq, produces the set

S = gr1...r
′
d mod p|Mi /∈ W, and broadcasts it to the remaining members in the group.

Step 2: Upon receiving S, every remaining member Mi, ∀i /∈ W computes the key
K = (gr1...r

′
d/ri)ri mod p = gr1...r

′
d mod p.

Figure 5. Group Diffie-Hellman partition protocol.

token reaches the last newmember, it broadcasts
the token to the group without adding its con-
tribution. From now on, this becomes the new
group controller. Upon receiving the token, ev-
ery group member (including new members),
removes (factors out) its contribution and sends
it to the new group controller (last new mem-
ber). After receiving this information from all
the members, new controller adds its own con-
tribution to each and this represents a partial
key. After computing all the partial keys, it is
broadcast to the group. Every member gets the
new group key by adding its contribution to the
corresponding partial key that was broadcast.

In partition protocol, when a set of members
leave the group, the most recent remaining
group member is termed as the group controller.
Group controller removes the corresponding
partial keys of the leaving users from the list
of partial keys, adds its new contribution after
removing the previous contribution and broad-
casts it to the group. Each remaining mem-
ber in the group can compute the secret group
key by adding its own contribution to the corre-
sponding partial key in the list. For every join
operation, (t + 3) messages are sent and each
user must perform (t + 3) exponentiation oper-

ations. If any user leaves the group, one mes-
sage is broadcast and each user performs one
exponentiation operation, hence totally (t − 1)
exponentiation operations are performed.

3.2. Burmester-Desmedt Scheme

Burmester and Desmedt proposed a protocol
[5] which is very efficient and executes in only
three rounds. Figure 6 shows the Burmester-
Desmedt protocol. The same protocol is exe-
cuted irrespectively of the type of membership
change (i.e, whether it is join or leave). This
scheme does not involve any group controller,
computation is distributed among members of
the group. Users U1 through Ut with individ-
ual Diffie-Hellman exponentials zi = gri will
form a conference key K = gr1r2+r2r3+...+rt−1rt .
Every user is required to perform (t + 1) expo-
nentiations and (t−1) multiplications and must
broadcast (2 ∗ t) messages.

If any user joins the group, (2 ∗ t + 2) messages
are broadcast and 3 exponentiation operations
are performed. For a leave operation, (2∗ t−2)
messages are broadcast and 3 exponentiation
operations are performed.

Any group of t ≤ n users (U1, . . . , Ut) (t � n), derive a common group key K as follows:
(Every user Ui is aware of other t − 1 members in the group)

1. Each Ui selects a random integer ri, 1 ≤ ri ≤ p − 2, computes zi = gri mod p, and sends
zi to each of the other t − 1 group members.

2. Each Ui after receiving zi−1 and zi+1, computes Xi = (zi+1/zi−1)ri mod p
(i.e., Xi = gri+1ri−riri−1), and sends Xi to each of the other t − 1 group members.

3. Upon receiving Xj, 1 ≤ j ≤ t excluding j = i, Ui computes K = Ki as
Ki = (zi−1)tri.Xt−1

i .Xt−2
i+1 . . .X2

i+(t+3).X
1
i+(t−2) mod p = gr1r2+r2r3+...+rt−1rt mod p.

Figure 6. Burmester-Desmedt conference keying Protocol.

210 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

4. Classification

The schemes discussed above are deliberately
classified based on the factors like (i) method
used to establish the group key (ii) role of Key
Distribution Center and (iii) security.

4.1. Based on Group Key Establishment

Based on the way group key is derived, the
schemes can be classified into (a) Key Distri-
bution scheme (b)ContributoryKeyAgreement
scheme. In key distribution scheme, as we saw
earlier, there is a key distribution center which is
responsible for generating and distributing keys
to all the group members via secure channel.
KDC also generates and distributes initial group
key to the group members when the group is set
up and also new group key whenever there is
a membership change (join/leave). Again the
schemes which come under Key Distribution
can be further classified into Asynchronous or
Non-Interactive and Interactive Key Distribu-
tion schemes. In Non-Interactive, members in
the privileged group can derive a common group
key on their ownwith the help of the information
obtained by KDC. Of the schemes discussed
so far, Blundo et al. conference keying pro-
tocol [4], Broadcast encryption zero level and
one level schemes [7], and Keystone architec-
ture scheme [21] are Non-interactive Key Dis-
tribution schemes.

In Interactive, users in the privileged group can
communicatewith each other to set up the group
key. Blundo et al. one-way interactive scheme
[4] comes under this classification, as tth user is
choosing the group key and distributing it se-
curely to the rest of the (t − 1) members in the
group.

In Contributory Key Agreement schemes, there
is no KDC involved. Instead, each group mem-
ber picks its own contribution (maybe some
random number) to group key and interacts
with other members to compute the group key.
Schemes proposed by Diffie-Hellman [6, 17]
and Burmester-Desmedt [5] come under this
scheme.

4.2. Based on Role of KDC

The schemes under Key Distribution are based
on a single entity called KDC. These schemes

are further classified based on the role of KDC.
In some schemes, KDC is active only during
initial stage of the protocol, i.e., KDC just gen-
erates and distributes initial private pieces of in-
formation among group members and becomes
inactive. Blundo et al. Non-Interactive, Blundo
et al. one-way interactive [4] and Broadcast
encryption zero level schemes [7] come under
this category. Where as in Broadcast encryp-
tion one level scheme [7] and Keystone archi-
tecture [21], KDC is active throughout the pro-
tocol. During initial stage, KDC generates and
distributes securely initial private pieces of in-
formation among the privileged user set. Dur-
ing later stage, it becomes active during each
join/leave operation. In broadcast encryption
one level scheme, KDC itself generates random
strings for the message and broadcasts it to the
privileged set, where as in keystone architec-
ture, whenever there is a membership change
(join/leave), KDC generates new group key
and auxiliary keys and sends them to the group
members in an optimized way.

4.3. Based on Security

Group key management schemes provide either
unconditional security or conditional security.
In unconditional security, even if an adversary
has unlimited computational resources, he can-
not defeat the system. In conditional security,
depending on the amount of computational ef-
fort required, an adversary can defeat the sys-
tem and the methods depend on the hardness
of the problem. The following schemes pro-
vide unconditional security: Blundo et al. non-
interactive and one way interactive schemes [4],
Broadcast encryption zero level and one level
schemes [7], keystone architecture[21]. Where
as the schemes proposed by Diffie-Hellman[6]
and Burmester-Desmedt[5] provide conditional
security.

5. Storage, Computation and
Communication costs

Table 1 depicts storage, communication and
computation costs at each user during key set
up activity for the above discussed Key man-
agement schemes. This is considered after ini-
tial information is distributed to all the n users
and after knowing the privileged user set, i.e.,

Analysis of Key Management Schemes for Secure Group Communication and Their Classification 211

participating t members. In the table, n denotes
total number of users in the system, t denotes
size of the privileged set, k denotes the threshold
and L total number of functions.

Let the number of users in the system, n be 30,
size of the privileged set t be 10 and threshold
value k be 3. For Blundo et al. non-interactive,
one-way interactive, Broadcast encryption zero
level and one level schemes, we have consid-
ered the size of the element from GF(q) as 64-
bits and for Group Diffie-Hellman, Burmester-
Desmedt and Keystone architecture schemes,
the size of the element is considered as 1024-
bits. Table 2 shows the storage and communi-
cation costs in bits and total computation cost in
bit-operations for different protocols after con-
sidering one join and one leave operations. If
one member joins the group, size of the privi-
leged set will be (t+1) i.e., 11 and if a member
leaves, it is (t − 1) i.e., 9. First row of each
protocol indicates the storage, communication
and computation costs during initial key set up
activity.

Each exponentiation and multiplication opera-
tion requires Wlog2W bit-operations, where W
is the size of the element. It is 64 log264 = 384
bit-operations for the protocols for which W =
64 and 1024 log21024 = 10240 bit-operations
for the protocols with W = 1024.

Calculations Illustration:

Consider Blundo et al. non-interactive scheme.

Storage at each user is

(
k + t − 2

t − 2

)
=
(

11
8

)
= 165 co-efficients from GF(q). Size of each
co-efficient is considered as 64-bits, hence stor-
age at each user = 165 ∗ 64 = 10560 bits. Each
term contains maximum 10 variables (t) with
maximum degree 3 (k). Therefore, maximum
number of exponentiations = 10 ∗ 3 = 30.

Number of Multiplications = t∗
(

k + t − 2
t − 2

)
= 10 ∗ 165 = 1650

Number of Additions =
(

k + t − 2
t − 2

)
= 165

Protocol Storage Required Communication Cost Computation Cost

Blundo et al.

(
k + t − 2

t − 2

)
No Communication k ∗ texponentiations,

Non-interactive t ∗
(

k + t − 2

t − 2

)
Multiplications,

(
k + t − 2

t − 2

)
additions

Blundo et al. (t + k − 1) (t − 1) 2 ∗ (k + t − 2)exponentiations,

one-way Interactive and Multiplications,

(k + t − 2)additions

Broadcast Encryption
k∑

i=0

(
n − 1

i

)
No communication

k∑
j=0

(
n − t

j

)

zero level scheme Ex-or operations

Broadcast Encryption t ∗ L L L

one level scheme Ex-Or operations

Keystone Architecture log2t log2t –

Group Diffie-Hellman random number, ri 2t−1 + 1 t ∗ (2t−1 + 1)

Exponentiations

Burmester-Desmedt 2 ∗ t + 2 2 ∗ t (t + 1) exponentiations

(t − 1) multiplications

Table 1. Table depicting storage, communication and computation costs at each user during key set up activity.

212 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

Protocol Storage Required Communication Cost Computation Cost

(in bits) (in bits) (in bit-operations)

Blundo et al. t = 10 10, 560 – 6, 55, 680

non-interactive Join 14, 080 – 9, 56, 032

(64-bits) Leave 7680 – 4, 32, 768

Blundo et al. t = 10 768 576 17, 600

one-way Interactive Join 832 640 19, 200

(64-bits) Leave 704 512 16,000

Broadcast Encryption t = 10 2, 61, 760 – 86, 864

zero level scheme Join 2,61,760 – 74,240

(64-bits) Leave 2, 61, 760 – 99, 968

Broadcast Encryption t = 10 1920 192 192

one level scheme Join 2112 192 192

(64-bits)(L = 3) Leave 1768 192 192

Keystone Architecture t = 10 5120 4096 –

(1024-bits) Join 5120 4096 –

Leave 5120 4096 –

Group t = 10 1024 52, 53, 120 52, 53, 120

Diffie-Hellman Join 1024 13, 312 1, 33, 120

(1024-bits) Leave 1024 1024 92, 160

Burmester-Desmedt t = 10 22, 528 20, 480 2, 04, 800

(1024-bits) Join 24, 576 22, 528 30, 720

Leave 20, 480 18, 432 30, 720

Table 2. Table depicting storage, communication and computation costs.

Total computation cost for Exponentiation,Mul-
tiplication and Addition = (30+1650) ∗ 384 +
165 ∗ 64 = 655680 bit-operations.

For every join/leave operation, the protocol
must be restarted (i.e., KDC must pick another
symmetric polynomial and distribute it) from
the initial stage. For join operation, every user

will have

(
12
9

)
= 220 coefficients and is

required to perform 11 ∗ 3 exponentiation oper-
ations, 2420 multiplications and 220 additions.
Total storage is 220 ∗ 64 = 14080 bits and com-
putation cost is (33 + 2420) ∗ 384 + 220 ∗ 64
= 956032 bit-operations. If a user leaves the
group, storage = 120∗64 = 7680 bits and com-
putation cost = (27 + 1080) ∗ 384 + 120 ∗ 64
= 432768 bit-operations.

For Diffie-Hellman protocol, each user must
store only the random number whose size we
have considered as 1024-bits. During initial
group key set up, totally t ∗ (2t−1 + 1) mes-

sages are exchanged among privileged user set.
Hence, communication cost = 10 ∗ (29 + 1) =
5130 messages * 1024 bits = 52, 53, 120 bits.
Each user must perform 2t−1 + 1 exponentia-
tions, which leads to 29 + 1 = 513 exponen-
tiations with 10240 bit-operations for each ex-
ponentiation. So, total exponentiation cost =
513 ∗ 10240 = 52, 53, 120 bit-operations.

If a user joins the group, only (t + 3) messages
are sent and (t+3) exponentiation operations are
performed. Hence, total communication cost is
13, 312 bits and computation cost is 1, 33, 120
bit-operations. For a leave operation, only one
message is sent (1024bits) and (t−1) exponenti-
ation operations are performed i.e., computation
cost = 9 ∗ 10240 = 92, 160 bit-operations.

5.1. Performance Analysis

In Blundo et al. non-interactive scheme and
broadcast encryption zero level scheme, amount

Analysis of Key Management Schemes for Secure Group Communication and Their Classification 213

of storage required at each user and the compu-
tation costs are larger, but there is no commu-
nication among the group members. In Blundo
et al. one-way interactive scheme, amount of
storage required is very much less, compared
to non-interactive scheme and it requires mod-
erate computation cost with minimum com-
munication cost. Broadcast encryption one
level scheme requires moderate amount of stor-
age with less communication and computation
costs. In keystone architecture, no computa-
tion cost is involved since KDC itself sends the
group key. InGroupDiffie-Hellman, storage re-
quired is negligible, but requires more messages
to be exchanged with high computation cost.
Burmester-Desmedt scheme requires more stor-

Figure 7. Storage at each user.

Figure 8. Communication and computation costs.

age; communication and computation costs are
also high to set up the group key, but, compu-
tation cost required is less for join/leave opera-
tions as compared to Diffie-Hellman, Broadcast
encryption zero level and Blundo et al. non-
interactive schemes. Graphs depicting num-
ber of users versus storage, communication and
computation costs are plotted. Figure 7 gives
the comparison for amount of storage at each
user and Figure 8 about communication and
computation costs. From the graphs we can
see that amount of storage required for Diffie-
Hellman is negligible, but communication and
computation costs are too high.

For join/leave operations, the schemes pro-
posed by Blundo et al. and broadcast encryp-
tion zero level schemes require almost the same
amount of computation as required for initial
key set up, where as it is very much less in case
of Diffie-Hellman and Burmester-Desmedt pro-
tocols. Among the protocols discussed in the
paper, broadcast encryption one level and key-
stone architecture schemes are quite efficient as
compared with other schemes.

6. Conclusion

We discussed several key management schemes
and classified them based on the method used
to establish the group key, involvement of Key
DistributionCenter in different phases of secure
group communication and security factors. We
analyzed the performance of the protocols based
on the amount of storage required, communi-
cation and computation costs during initial key
set up activity and during join/leave operations.
It is evident from the tables that the schemes
which require more storage, require less amount
of communication. But, at the same time,
computation cost required for join/leave opera-
tions is quite high. The schemes which require
more communication among users, require less
amount of computation for each join/leave op-
eration.

References

[1] Y. AMIR, Y. KIM, C. NITA-ROTARU, J. SCHULTZ, J.
STANTON, G. TSUDIK, Secure Group Communica-
tion using Robust Contributory Key Agreement.
IEEE Transactions on Parallel and Distributed Sys-
tems, 15, 5, 2004, pp. 468–480.

214 Analysis of Key Management Schemes for Secure Group Communication and Their Classification

[2] Y. AMIR, C. DANILOV, M. MISKIN-AMIR, J.
SCHULTZ, J. STANTON, The Spread Toolkit: Archi-
tecture and Performance. Technical Report, CNDS-
2004-1, Johns Hopkins University, 2004.

[3] D. BALENSON, D. MCGREW, A. SHERMAN, Key
Management for Large Dynamic Groups: One-
way Function Trees and Amortized Initialization.
Internet Draft, draft-irtf-smug-groupkeymgmt-oft-
00.txt, August 2000.

[4] C. BLUNDO, A. DE SANTIS, A. HERZBERG, S. KUT-
TEN, U. VACCARO, M. YUNG, Perfectly Secure Key
Distribution for Dynamic Conferences. In Advances
in Cryptology-CRYPTO’92, LNCS, 740 (1993), pp.
471–486.

[5] M. BURMESTER, Y. DESMEDT, A Secure and Ef-
ficient Conference Key Distribution System. Ad-
vances in Cryptology – EUROCRYPT’94.

[6] W. DIFFIE, M. HELLMAN, New Directions in Cryp-
tography. IEEE Transactions on Information The-
ory, IT-22(6): 644–654, November 1976.

[7] A. FIAT, M. NAOR, Broadcast Encryption. In D. R.
Stinson, editor, Proceedings of CRYPTO’93, pp.
480–491.

[8] O. GOLDREICH, S. GOLDWASSER, S. MICALI, How to
Construct Random Functions. Journal of the ACM
33, 1986, pp. 792–807.

[9] P. JUDGE, AMMAR, Security issues and solutions
in multicast content distribution: A Survey. IEEE
Network, Jan/Feb 2003.

[10] Y. KIM, A. PERRIG, G. TSUDIK, Simple and Fault-
tolerant Key Agreement for Dynamic Collaborative
Groups. In the 7th ACM Conference on Computer
and Communications Security. ACM Press, 2000,
pp. 235–244.

[11] P. P. C. LEE, J. C. S. LUI, D. K. Y. YAU, Distributed
Collaborative Key Agreement Protocols for Dy-
namic Peer Groups. Proc. IEEE International Con-
ference on Network Protocols (ICNP), November
2002.

[12] K. MEHLHORN, Data Structures and Algorithms:
Sorting and Searching. Springer-Verlag, Berlin Hei-
delberg, 1984.

[13] S. MITTRA, Iolus: A Framework for Scalable Se-
cure Multicasting. In Proceedings of the ACM SIG-
COMM. Vol. 27, No. 4 (NewYork, Sept.), ACM,
NewYork, 1997, pp. 277–288.

[14] A. PERRIG, Efficient Collaborative Key Manage-
ment Protocol for Secure Autonomous Group
Communication. Proc. of International Workshop
CrypTEC, 1999.

[15] S. RAFAELI, D. HUTCHISON, A survey of Key Man-
agement for Secure Group Communciation. ACM
Computing Surveys, September 2003.

[16] A. T. SHERMAN, D. A. MCGREW, Key Establish-
ment in Large Dynamic Groups Using One-way
Function Trees. IEEE Transactions on Software
Engg. 2003, pp. 444–458.

[17] M. STEINER, G. TSUDIK, M. WAIDNER, Diffie-
Hellman Key Distribution Extended to Group Com-
munication. In SIGSAC Proceedings of the third
ACM conference on Computer and Communica-
tions Security. New Delhi, India, March 1996.,
ACM, New York, pp. 31–37.

[18] M. WALDVOGEL, G. CARONNI, D. SUN, N. WEILER,
B. PLATTNER, The Versakey Frameworks: Versatile
Group Key Management. IEEE Journal on Selected
Areas in Communication (JSAC), Vol. 17, No. 9,
September 1999, pp. 1614–1631.

[19] D. WALLNER, E. HARDER, R. AGEE, Key Manage-
ment for Multicast: Issues and Architectures. Re-
quest For Comments (Informational) 2627, Internet
Engineering Task Force, June 1999.

[20] C. WONG, M. GOUDA, S. LAM, Secure Group Com-
munication Using Key Graphs. In Proceedings of
the ACM SIGCOMM’98, October 1998.

[21] C. K. WONG., SIMON S. LAM, Keystone: A Group
Key Management Service. In Proceedings of Inter-
national Conference on Telecommunications, Aca-
pulco, Mexico, May 2000.

Received: February, 2008
Revised: November, 2008

Accepted: December, 2008

Contact addresses:

R. Aparna
Dept. of Computer Science and Engg.

Siddaganga Institute of Technology
Tumkur, Karnataka, India

e-mail: raparna@sit.ac.in

B. B. Amberker
Dept. of Computer Science and Engg.

National Institute of Technology
Warangal, Andhra Pradesh, India e-mail: bba@nit.ac.in

R. APARNA obtained her M.S. from Birla Institute of Technology, Pilani,
Rajasthan, India. She is presently working as an Assistant Professor
in the Department of Computer Science and Engineering, Siddaganga
Institute of Technology, Tumkur, Karnataka, India and pursuing Ph.D
in the area of cryptography and network security.

B. B. AMBERKER obtained his Ph.D from the Department of Com-
puter Science and Automation, IISc., Bangalore, India. He is presently
working as a Professor in the Department of Computer Science and
Engineering, National Institute of Technology, Warangal, AP, India.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

