
Journal of Computing and Information Technology - CIT 19, 2011, 1, 57–67
doi:10.2498/cit.1001739

57

Introducing Polymorphic Features
into a Scripting Model of Generator

Danijel Radošević and Ivan Magdalenić
Faculty of Organization and Informatics, University of Zagreb, Varaždin, Croatia

Generative programming is a discipline of Automatic
programming which strives to make application and the
generator development process flexible and generated
program code optimized. Because of the lack of appro-
priate graphic and aspect based generator models, we
developed the Scripting model of generator, as a static
generator model based on higher level scripts. This
paper gives a formal definition of the Scripting model
and describes how basic object model properties, like
encapsulation, inheritance, and now, polymorphism are
achieved. This offers some advantages in generative ap-
plication development, such as more precise application
specification, better generator reusability, and simpler
generator model and its easier implementation. The
introduced polymorphic features are presented in an
illustrative example of a Java application generator.

Keywords: generative programming, scripting model,
polymorphism

1. Introduction

Generative programming [2] is a discipline of
Automatic programming introduced, under this
name, in the late 1990’s. According to a defi-
nition, Generative programming represents de-
signing and implementing software modules
which can be combined to generate specialized
and highly optimized systems fulfilling specific
requirements [5]. The main specific difference
from other techniques of automatic program-
ming is aspect orientation of the model and
independency from the targeted programming
language. The programming code contains only
instructions necessary for execution of desired
task, which makes programming code more op-
timized.

The Scripting model of generator is a graphic
model, originally developed for the needs of

Generative programming based on the script-
ing languages by Radošević [17]. Different to
the object model given by the UML diagrams,
it is aspect-oriented, i.e. oriented to define the
specific aspects of a future application within its
problem domain. Aspects represent the features
that are not closely connected to the individual
program organizational units, like functions or
classes. Consequently, they can appear within
different application parts which require a con-
nection model, according to Kiczales [10]. The
Scripting model is a kind of a Join point model
[9] known from the Aspect oriented program-
ming. A specific difference is in that Script-
ing model is not type-based i.e. it represents a
type-free system because its connecting points
are only the connections between the metapro-
grams and the properties defined in the applica-
tion specification rather than classes and their
objects [15].

The Scripting model, introduced in [17], in-
cludes properties which can be compared with
object-oriented concepts: encapsulation and in-
heritance. Introduction of polymorphic features
into Scripting model offers all main object-
oriented concepts to Generative programming.

The expected scientific contribution of this pa-
per is in:

• Formal definition of Scripting model. The
formal definition of Scripting model is de-
scribed in Section 3. Previous version of
Scripting model presented in [17] was de-
fined as a graphic model.

• The addition of the polymorphic features
into Scripting model, now covering all basic
concepts from the Object oriented program-
ming, which is an important prerequisite for

58 Introducing Polymorphic Features into a Scripting Model of Generator

becoming alternative regarding Object ori-
ented paradigm.

The paper is organized as follows: The related
work is presented in Section 2. The formal def-
inition of the Scripting model is presented in
Section 3. Section 4 describes implementation
of the object model properties in the Scripting
model and Section 5 presents polymorphism in
the Scripting model. Section 6 deals with open
implementation issues. Section 7 gives illustra-
tive example of usage of polymorphism in the
Scripting model. The conclusion is given in
Section 8.

2. Related Work

Generative programming is mostly observed as
a discipline based on the Object-oriented pro-
gramming (OOP). Advanced OOP concepts,
like generic classes, along with techniques of
object modelling, such as UML, are used in
building generators and automatization of pro-
gramming [2]. Except the OOP, there some
other disciplines in the base of generative pro-
gramming. Aspect oriented programming (AOP)
was marked by Guerray [8] as one of the pos-
sible successors of OOP. AOP deals with so
called crosscutting concerns i.e. features that
are shared among more program organizational
units like functions or classes [9]. Crosscutting
concerns can hardly be handled by parameters,
so appropriate code fragments, called aspects,
have to appear within different application parts
which require a connection model, according to
Kiczales [10]. The Scripting model is a kind
of Join point model [6][9] known from AOP. A
specific difference from original AOP approach
is that the Scripting model is not type-based i.e.
connecting points have only their names, with-
out any property.

Generators use so called Domain-specific lan-
guages (DSL) to specify applications to be gen-
erated i.e. DSL can be used to generate mem-
bers of a family of systems in an application
domain [4]. A Domain engineering as a dis-
cipline which deals with DSL-s is in the base
of Generative programming [2]. The Scripting
model uses hierarchical tree-like specification
form to propose elements of DSL to be used in
generation of applications, which is described
in chapter 3.1.

Metaprogramming is, according to Cordy and
Shukla [1], the process of specifying generic
software source templates from which classes
of software components, or parts thereof, can be
automatically instantiated to produce new soft-
ware components. The source templates used
in the Scripting model are called metascripts.
Metascripts are code fragments (or scripts)which
have to be completed by elements of applica-
tion specification and other metascripts by an
automatized process of generation.

After OOP languages, the scripting languages
are also introduced into Generative program-
ming, as announced by Sells [18]. The ad-
vantages of the scripting languages should be
reached by avoidance of certain weaknesses of
the Object-oriented programming, which are,
according to Ousterhout [16], rigidity of the ob-
ject model, high level of typing and the need
of the translation/compilation phase during the
program development. There are some script-
ing language characteristics that could be use-
ful for Generative programming: a scripting
language abilities in the character strings pro-
cessing [13][19], the possibilities of connecting
completed componentswritten in the target pro-
gramming languages [19] and flexibility of the
scripting languages syntax which arise from a
low typing level [16][19]. Except of using exist-
ing scripting languages, some projects on mak-
ing specialized scripting languages aimed at
Generative programming were conceived, such
as Open Promol [19] and CodeWorker [13].

The idea of the Scriptingmodel is to offer model
of generator with good properties of scripting
languages, primarily to avoid the rigidity of ob-
ject model. Complex classes, which are used as
connection points in Join point model [9], are
replaced with simple links which are type-less.
A program code is assembled from fragments
of source code called metascripts. On the other
hand, introducing properties which are charac-
teristic to object model, like encapsulation, in-
heritance, and polymorphism, could be interest-
ing to achieve higher level of model elements
reusability (so less complex model) and easier
upgrading of generator.

The Scripting model is a static model of a gener-
ator which does not suggest any particular tech-
nology (component or other) used in its imple-
mentation, unlike some other Generative pro-
gramming based projects, like Uniframe [21].

Introducing Polymorphic Features into a Scripting Model of Generator 59

Consequently, there is a difference in relation
to metaclass-based approaches, as described by
Grigorenko et al.[7] Tolvanen and Rossi [20] and
De Lara and Vangheluwe [3]. Metascripts are
not strictly tied to particular classes and other
program units to be generated. Their purpose is
to implement some crosscutting concern in all
needed parts of the program. Another impor-
tant difference between the object model and
the Scripting model is that the latter is based on
the dealing with crosscutting concerns, which
is recognized as a problem within the object
model by Kühl [11] and Lee [12]. Furthermore,
an object model is aimed to define the individual
application, while a Scripting model defines the
application generator for a proposed problem
domain.

3. Scripting Model Definition

Scripting model is oriented to produce software
variants i.e. building Software Product Lines
(SPL). According to the Scripting model, the
generator is software that produces a source
code of a one particular application from a fam-
ily of possible applications. Scripting model
defines generator as a multi-level structure (Fig-
ure 1) consisting of three kinds of elements:
application Specification (S), Metascripts (M;
code templates in Scripting model) and Links
(L), where links are base elements containing
all lower-level structures. Each level starts with
its base Metascript and defines one particular
generator. For each particular application the
Scripting model is defined by this 6-tuple:

SM = {S, M, L, P, m0, g}.
where

S is a whole specification (of particular appli-
cation to be generated),

M is a set of metascripts (program code tem-
plates in Scripting model),

M = {m0, m1, . . . , mm}
L is a set of links (each link occurs 0..N times
in 0..M metascripts). The link is a user defined
mark, which is replaced with the source code in
the process of generation.

L = {l1, l2, . . . , ln}

P is a generated program (source code)

m0 is a highest-level metascript (base of the
appropriate generator)

g is a function that produces source code (gen-
erator)

Generated program is a function of Specifica-
tion (S), Links (L) and highest level metascript
m0:

P = g (S, L, m0)

Generator (g) is a recursive function. Each par-
ticular metascript (mi) can contain fragments of
a program code (p) and subset of links (Lmi),
from all possible links in L, toward lower-level
structures:

mi = {p, Lmi}
p are fragments of the program code (to be in-
cluded in generated source code)

Lmi is a set of links (connections toward lower-
level structures) in this particular metascript,

Lmi = {l0, l1, . . . , lk}.

Each link (li ∈ Lmi) in metascripts mi is re-
placed in the process of generation with one of
the following:

• appropriate three elements groups
{S, Lmj, mj}, which can be observed as a
new generator or

• a fragment of program code (p) from meta-
script mi.

Higher-level generator is given as a superposi-
tion of lower-level generators (Figure 1). Par-
ticular links can be used more times, in different
templates, enabling reuse of whole connected
sub-levels.

3.1. Graphic representation of
Scripting model

The graphic representation of Scripting model
shows the structure of application specification,
by the Specification diagram, and configuration
of generator, by the Metascripts diagram.

60 Introducing Polymorphic Features into a Scripting Model of Generator

Figure 1. Generator as a multi-level structure.

3.1.1. Specification diagram

The Specification diagram gives the structure of
application specification in the form of a tree-
like feature model (similar approach: Limbourg
and Kochs [14]). The application specification
consists of attributes, defining particular fea-
tures of application to be generated within its
problem domain and their values, as shown in
Figure 2. All attributes are optional, so they
can be omitted or replicated as many times as
required.

Figure 2. Application specification.

An example of the concrete application specifi-
cation is shown later in Figure 12.

The hierarchy of the attributes is given by the
Specification diagram (Figure 3). Higher-level
attributes are containers for the lower-level at-
tributes.

Figure 3. Example of the Specification diagram.

The attribute database <type> is a container
for all other specification attributes. It can be
repeated an arbitrary number of times. The
attributes db name, db file, table, XPath, user
and password are optional and can appear only
once per database <type>, while the attributes
from the group field (field int, field float and
field string) can appear an arbitrary number of
times. As shown in Figure 2, containers are
marked by square brackets, or end by ‘ ’ sign,
which is used for groups e.g. field int, field float
and field string could be treated in both ways:
separately and as members of group field . This
diagram is used later to describe example appli-
cation in subsection 6.1.

3.1.2. Metascripts diagram

The Metascripts diagram defines generator con-
figuration, i.e. connections between application
specification and metascripts (code templates
in Scripting model). Specification attributes,
given in the Specification diagram, represent
sources in the Metascripts diagram, while links
represent replacing tags in metascripts.

There are three basic elements used in the Meta-
scripts diagram (Figure 4):

Figure 4. Elements of the Metascripts diagram.

Introducing Polymorphic Features into a Scripting Model of Generator 61

A metascript is a template used in generation of
its implementation – a program code in the tar-
get programming language. It is represented by
a rectangle. The element contains data such as:
metascript name, metascript source (filename
or the name of another used source), and out-
put code (filename or name of another output
which contains the generated program code).
Metascript contain replacing tags, called links,
in form of ‘#’ marks. Links physically belong
to their metascripts, but it is shown outside. A
link connects the metascript(s) with the feature
source from the application specification and
(optionally) to the lower level metascript(s). It
is represented by a triangle with one corner ori-
ented downwards. A link is typeless and has
only its name. During generation process, the
links inside metascripts are replaced with the
data or a program code in either of the two pos-
sible ways. The first way is the direct replace-
ment of a link with the source data (if there
are no connected lower-level metascripts). The
second way is the replacement of a link with a
lower-level metascript. It is important that the
links inside a particular metascript could appear
more than once. All appearances are shownby a
single triangle in the Metascripts diagram. The
sources can be defined as containers. In that
case, their further use must be defined on the
lower levels of the Metascripts diagram.

The example of theMetascripts diagram is shown
in Figure 5. Metascript Main has link to meta-
script Database. Metascript Database has links
tometascriptsFields,Table fields,Oracle fields,
and XML fields.

Figure 5. Example of the Metascripts diagram.

Dashed line represents virtual metascript (me-
tascript subjected to late binding process), as
described in Section 5. This diagram is used
later to describe example application in subsec-
tion 6.2.

4. Implementation of the Object Model
Properties in the Scripting Model

Object-oriented programming uses encapsula-
tion, inheritance and polymorphism as its basic
concepts. Similar concepts are used in Script-
ing model at generation level. These object-
oriented features are applied in the context of
generation of the source code regardless of the
target programming language.

Implementation of some features that are char-
acteristic for object-oriented programming could
be interesting in achieving better features of
the generator system, like higher reusability of
model elements, more precise application spec-
ification and simpler model of particular gener-
ator.

The Scripting model, as introduced in [17], in-
cludes basic concepts of encapsulation and in-
heritance. These two features of the Scripting
model are shortly described in next two subsec-
tions.

4.1. Encapsulation

The basic unit of encapsulation in the Script-
ing model of generator is a metascript. The
metascript encapsulates a programcode together
with links (replacing marks). A program code
of the metascript is static and serves as interface
for combining with other metascripts. Links in
metascripts can be observed as full implemen-
tation, which depends on application specifica-
tion. Unlike a class, the metascript is a dy-
namic structure, which means that its instances
(scripts) share only a basic structure and can be
sized differently (Figure 6).

62 Introducing Polymorphic Features into a Scripting Model of Generator

Figure 6. Metascript and its instances.

The structure of scripts depends on its meta-
scripts and their connected contents (the sources
from a specification and, possibly, the inherited
metascripts).

4.2. Inheritance

Inheritance in the Scripting model occurs when
a base metascript inherits the lower-level meta-
scripts. The lower-lever metascripts in con-
text of Scripting model are parents regarding
the base metascript. In Figure 7 metascripts
A and B are parents of metascript Base. The
inheritance is selective and inclusion of every
particular parent metascript depends on the ex-
istence of the appropriate source from the pro-
gram specification (Sources S1 and S2 in the
example in Figure 7).

Figure 7. Inheritance in a Scripting model.

The Scripting model inheritance mechanism
differs from standard function call mechanism
(used in structural programming and OOP) in
several ways: in the level of inheritance, in
selective inheritance, and using of application
specification values instead of function param-
eters. Function calls exist at application runtime
level and are used for process sharing. Inheri-
tance in the Scripting model exists at the gener-
ation level and is oriented on static structure of
generated application. The selective inheritance
is a base for achieving optimization (in relation
to generic approaches): final application could
use only a subset of available metascripts, de-
pending on its specification.

4.3. Polymorphism in the Scripting model

Polymorphism in the Scripting model is based
on the use of the virtual metascripts. These
metascripts are invoked by the mechanism of
late binding during the program generation (ac-
cording to the program specification, as de-
scribed further; Figure 8).

Figure 8. The principle of using virtual metascripts.

Polymorphism extends the Scripting model by
providing possibility that allmetascripts sources
do not have to be known before application gen-
eration. A name of the metascript is determined
by the values from application specification dur-
ing the process of generation. This allows later
addition of new functionalities by introduction
of new metascripts.

Introducing Polymorphic Features into a Scripting Model of Generator 63

The advantage of introducing polymorphism is
expandability in a way that does not touch the
model of generator and its implementation. Ad-
dition of new functionality by using polymor-
phism requires specifying new values in the ap-
plication specification and adding the appropri-
ate metascripts.

The virtualmetascript is represented by a dashed
line rectangle (Figure 9).

Figure 9. Virtual metascript.

A metascript source contains a variable part
marked by the square brackets. The follow-
ing example shows the usage of attribute name
for invocation of appropriate virtual metascript:

create [field].metascript

Figure 10 shows such definition of virtual meta-
script.

Figure 11 shows how invocation of virtual meta-
scripts works. Specification defines the usage
of attribute field char. During the process of
generation, generator uses this value to create
name of metascript create char.metascript and
then invokes it.

Figure 10. An example of virtual metascript definition.

Figure 11. An example of virtual metascript invocation.

In some other cases the real metascript source
could be e.g. create field int.metascript, depend-
ing on the specification attributes used.

5. Open Implementation Issues

The upgraded Scripting model of generator de-
fines the way of building and documenting of
generator by its specification (represented by
the Specification diagram), configuration (rep-
resented by the Metascripts diagram) and set of
metascripts (code templates within the Script-
ing model). Some issues regarding checking
consistency that concern implementations of the
model still remain for future work. There are
three kinds of inconsistencies that could happen
in implementation of the model: the inconsis-
tent syntax of the model, syntactic incorrectness
of the generated code and logical incorrectness
of the generated code.

Inconsistent syntax of the model could be, in
the simplest form, a result of using unsupported
specification attributes or disregarding of the
specification hierarchy. Referencing of non-
existing metascripts could be a circumstance of
polymorphism if some of the virtual metascripts
have not their implementation. It’s possible to
use replacing metascripts, or to stop the gener-
ation process. Dealing with links in generator
configuration could cause two kinds of errors:

• usage of connections that don’t appear in
used metascripts. Could be wrong connec-
tion or redundant generator configuration,

• usage of connections in metascript which
are not supported in generator configura-
tion. This could result in links (usually in ‘#’

64 Introducing Polymorphic Features into a Scripting Model of Generator

signs) remaining in generated code resulting
in syntax and/or logical errors.

Syntactic incorrectness of the generated code
often comes from insufficient specification,
where some necessary attribute values are not
specified. This results in links remaining in
generated code. Usage of unsafe names in
metascripts (variables, functions, classes etc.)
could cause the collision with attribute values
in specification. Some programming languages
require that e.g. functions have to be defined
prior to their calls. Order of specification at-
tributes could cause breaking of that rule.

Logical incorrectness of the generated code
could be violated by usage of unsafe names or
by links remaining in generated code (if these
do not cause the syntactic incorrectness) or by
breaking program restrictions. For example, ex-
ceeding of size limits for attribute values could
cause improper work or instability of generated
applications.

6. Illustrative Example

The problem domain of an illustrative example
is a small Java application for reviewing data
from different data storages (Oracle database
and XML). The generator uses attribute names
for handling different data types by invocation
of virtual metascripts.

6.1. Specification of the example
application

The Specification diagram of the example appli-
cation is presented in Figure 3 and described in
subsection 3.1.1. It defines main parameters of
the used data storage and the used fields together
with their types. The appropriate specification
is shown in Figure 12.

Figure 12. The specification of the example application.

The specification consists of two parts: the first
part defines the structure of Oracle database,
and the second part defines XML data structure.
Attribute group ‘database ’ is connected to vir-
tual metascript marked as ‘database [database-
type].metascript’. The real metascript (Oracle
or XML) is attached during the process of gen-
eration.

6.2. Working with the metascripts

The example generator generates only one pro-
gram file, which has the part for handling appro-
priate data storage. The Metascript diagram of
the example application is presented in Figure
5 and described in subsection 3.1.2.

Hence the main metascript contains the parts
common to all generated applications, includ-
ing its general structure:

The link #accessDataSource#, from Figure 13,
is replaced by a program code in the process
of generation. The virtual metascript Database
is used for generating a code and it has two in-
stances (for Oracle database and for XML docu-
ment). The metascript Oracle fields for gener-
ating the Oracle code that handles different data
types is also virtual because of the three field

Figure 13. The highest level metascript.

Introducing Polymorphic Features into a Scripting Model of Generator 65

types used (field int, field float and field string;
Figure 5).

Someof the links onDatabasevirtualmetascript
are not common to all instances of the virtual
metascript. Therefore, they are ignored in these
instances. Finally, the generated code for the
example specification is shown in Figure 14.

Figure 14 shows the source code which is used
for access data about students from two different
data sources. The first data source is table inOr-
acle database and the second data source is XML
file in file system. The source code used for ac-
cessing these data sources differs significantly
because data sources are of different kinds.

The source code for each data source comes
from separate metascripts. The element data-
base <type> of application specification, as
shown in Figure 12, specifies which metascript

file is used. The bolded words in source code
come from application specification presented
in Figure 12.

Because some fields inOracle table are of differ-
ent types, different source code should be gener-
ated. That is the reason why Oracle.fileds.meta-
script is virtual metascript which can generate
source code for different data types depending
on application specification, e.g. type int and
type String in Figure 14.

The main benefits of using polymorphism in
this example are simpler application specifica-
tion and simpler extension of the generator.

The application specification (shown in Figure
12) is simplified by usage of virtual metascript
([database].metascript). This enables usage
of same specification attributes (e.g. field int,
field string etc.) after the type of database is

Figure 14. Generated source code.

66 Introducing Polymorphic Features into a Scripting Model of Generator

specified (database Oracle or database XML).

Addition of new type of data source requires
building a new metascript for this type and ad-
dition of appropriate elements into application
specification.

This and some other examples are available1.

7. Conclusion

This paper gives formal definition of the Script-
ing model and introduces polymorphic features
into the Scripting model. Scripting model has
preserved all of previously obtained features,
such as aspect orientation and type-less join
points. The paper shows that the basic con-
cepts of the Object-oriented programming, e.g.
encapsulation, inheritance and, finally, poly-
morphism can be implemented within Scripting
model of generator.

The main goals of introducing polymorphic fea-
tures in the Scripting model are: a more pre-
cise application specification, a better reusabil-
ity of generator elements, and a simpler gen-
erator model and its implementation. A more
precise application specification is enabled by
variety of metascripts under the same name that
are subjected to late binding. The problem do-
main covered by a generator can be extended
by usage of virtual metascripts and change of
a generator aimed at introducing new program
templates is not always necessary. The vir-
tual metascript covers more real metascripts,
which reduces the number of metascripts in the
Metascripts diagram.

The advantage of introducing polymorphism is
expandability in a way that does not touch the
model of generator and its implementation. Ad-
dition of new functionality by using polymor-
phism requires specifying new values in the ap-
plication specification and adding the appropri-
ate metascripts.

In our future work we plan to focus on the prob-
lems of checking consistency of the model im-
plementation.

References

[1] J. R. CORDY, M. SHUKLA, Practical Metaprogram-
ming. Proceedings of the 1992 Conference of the
Centre for Advanced Studies on Collaborative Re-
search, (November 09–12, 1992), Toronto, Ontario,
Canada.

[2] K. CZARNECKI, U. W. EISENECKER, it Generative,
Programming: Methods, Tools, and Applications,
Addison Wesley, 2000.

[3] J. DE LARA, H. VANGHELUWE, Defining visual
notations and their manipulation through meta-
modelling and graph transformation. Journal of
Visual Languages and Computing, Vol. 15 (2004),
pp. 309–330.

[4] A. V. DEURSEN, P. KLINT, Domain-specific Lan-
guage Design Requires Feature Descriptions. Jour-
nal of Computing and Information Technology
(CIT), Vol. 10, No. 1 (2002).

[5] U. EISENECKER, Generative Programming: Beyond
Generic Programming. Proc. Dagstuhl Seminar on
Generic Programming, (April 27–May 1, 1998),
Schloß Dagstuhl, Wadern, Germany.

[6] J. GRAY, Y. LIN, J. ZHANG, Levels of Independence
in Aspect-oriented Modelling. Available on:
http://www.gray-area.org/Pubs/middle-
ware-2003.pdf, 2003.

[7] P. GRIGORENKO, A. SAABAS, E. TYUGU, Visual Tool
for Generative Programming. Proc. of the Joint
10th European Software Engineering Conference
(ESEC) and the 13th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-13),
ACM Publ., (2005), pp. 249–252.

[8] R. GUERRAOUI, Strategic directions in object-
oriented programming. ACM Computing Surveys,
Baltimore, December 1996.

[9] M. M. KANDÉ, J. KIENZLE, A. STROHMEIER, From
AOP to UML – A Bottom-Up Approach. 1st Inter-
national Conference on Aspect-oriented Software
Development, (2002), Enschede, The Netherlands.

[10] G. KICZALES, J. LAMPING, A. MENDHEKAR, C.
MAEDA, C. VIDEIRA LOPES, J.-M. LOINGTIER, J. IR-
WIN, Aspect-oriented Programming. In Proceedings
of the EuropeanConference onObject-oriented Pro-
gramming (ECOOP), (June 1997), Springer-Verlag
LNCS 1241, Finland.

[11] D. KÜHL, STL and OO Don’t Easily Mix. Pro-
ceedings of the GSCE,Workshop on C++ Template
Programming, Erfurt 2000, Available on:
http://www.oonumerics.org/tmpw00/
kuehl.html, 2000.

[12] K. W. K. LEE, An Introduction to Aspect-oriented
Programming. COMP610E: Course of Software
Development of E-Business Applications, (Spring
2002), Hong Kong University of Science and Tech-
nology.

1 http://barok.foi.hr/∼darados/smg/

Introducing Polymorphic Features into a Scripting Model of Generator 67

[13] C. LEMAIRE, CODEWORKER Parsing tool and
Code generator –User’s guide& Referencemanual,
(Release 4.4.), http://codeworker.free.fr-
/CodeWorker.pdf, 2007.

[14] P. LIMBOURG, H. D. KOCHS, Multi-objective opti-
mization of generalized reliability design problems
using feature models – A concept for early design
stages. Reliability Engineering & System Safety,
Volume 93, Issue 6 (2008), pp. 815–828.

[15] I. MAGDALENIĆ, D. RADOŠEVIĆ, Z. SKOČIR, Dy-
namic Generation of Web Services for Data Re-
trieval Using Ontology, INFORMATICA, Vol. 20,
No. 3 (2009), pp. 397–416, ISSN 0868-4952, In-
stitute of Mathematics and Informatics, Vilnius,
Lithuania.

[16] J. K. OUSTERHOUT, Scripting: Higher Level pro-
gramming for the 21st Century, IEEE computer
magazine, (March 1998).

[17] D. RADOŠEVIĆ, B. KLIČEK, J. DOBŠA, Generative
Development Using Scripting Model of Application
Generator. DAAAM International Scientific Book
2006, DAAAM International, Vienna, Austria 2006.

[18] C. SELLS, Generative programming: Modern Tech-
niques to Automate Repetitive Programming Tasks.
MSDN Magazine, (December 2001). Available on:
http://msdn.microsoft.com/msdnmag/issu-
es/01/12/GenProg/GenProg.asp, 2001.

[19] V. ŠTUIKYS, R. DAMAŠEVIČIUS, G. ZIBERKAS, Open
PROMOL: An Experimental Language for Target
Program Modification, Software Engineering De-
partment, Kaunas University of Technology, Kau-
nas, Lithuania, 2001.

[20] J. P. TOLVANEN, M. ROSSI, Metaedit+: Defining
and using domain-specific modeling languages and
code generators. In OOPSLA 2003 demonstration,
2003.

[21] UNIFRAME WEB SITE. Available on:
http://www.cs.iupui.edu/uniFrame/, last ac-
cessed 05-13-2008.

Received: October, 2009
Revised: December, 2010
Accepted: February, 2011

Contact addresses:

Danijel Radošević
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2

42000 Varaždin
Croatia

e-mail: danijel.radosevic@foi.hr

Ivan Magdalenić
Faculty of Organization and Informatics

University of Zagreb
Pavlinska 2

42000 Varaždin
Croatia

e-mail: ivan.magdalenic@foi.hr

DANIJEL RADOŠEVIĆ, PhD, is an associate professor at the University
of Zagreb, Faculty of Organization and Informatics. He teaches at dif-
ferent programming courses. His research focuses on programming
languages, generative programming and educational software.

IVAN MAGDALENIĆ, PhD, is an assistant at the University of Zagreb,
Faculty of Organization and Informatics in Varaždin. His research in-
terests are in e-business, web technology, semantic web technology and
generative programming. He has been involved in several projects of
e-business adoption in Croatia. He is a member of National Council for
e-business.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

