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This paper introduces ANSER, a mobile robot designed
to perform surveillance in wide indoor and outdoor areas,
such as civilian airports, warehouses or other facilities.
The paper describes in details the robot subsystems, fo-
cusing on their capabilities in autonomous surveillance,
localization and navigation.
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1. Introduction

This paper describes the robot ANSER, which
is part of a surveillance system based on both
a network of heterogeneous devices and one or
more mobile robots. ANSER is meant to be de-
ployed in wide indoor and outdoor areas, such
as airports, warehouses and storage facilities.

These sites pose interesting problems for tradi-
tional surveillance systems. A trade-off must
be set between system specifications and sys-
tem autonomy. Often, completely autonomous
surveillance systems are not what is needed: re-
placing only selected human operations is usu-
ally preferable. This choice is motivated by sev-
eral reasons: among them, the difficulty of en-
coding surveillance rules and policies (e.g., how
to deal with the situation at hand? which kind
of safety protocols should the system use?), the
lack of guarantees related to system behavior
(e.g., is this the correct behavior to hold? is the
robot aware of the consequences of the planned
actions?), and the need for humans to be at the
core of the decision process (e.g., who is respon-
sible for robot actions?). The design of a real
surveillance system starts from system specifi-
cations and surveillance objectives. Common

specifications include area coverage, reliabil-
ity, decision making, autonomy and deployabil-
ity.

Area coverage: Critical areas must be covered
by the surveillance system. In wide environ-
ments it is not possible to cover all the critical
areas in their entirety using fixed devices. Cam-
eras lack in resolution when pointing towards
distant areas. Other sensors, like Passive Infra
Red (PIR in short) can help if carefully placed,
but they cannot be positioned in traversable ar-
eas such as landing sites.

Reliability: Patrols must be performed accord-
ing to predefined policies. Patrolling operations
require active intervention by human personnel
during a mission. Human lazyness is one of the
major causes for lack of security in these cases:
very often human patrols are neither completely
carried out nor the sequence of visited places
varies from patrol to patrol, therefore invalidat-
ing surveillance policies.

Decision making: Anomalies must be carefully
investigated. When an anomaly is detected, a
course of action is decided according to both
law policies and other considerations related to
human safety, security and moral judgement. A
completely autonomous system would be out of
control in such cases, thus not meeting these
requirements.

Autonomy and deployability: The behavior of
the surveillance system must be independent
from the environment. This must be guaran-
teed in all cases. For example, video-based
algorithms do not work properly in changing
lighting conditions: alternative solutions must
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be put into practice to overcome these limita-
tions. On the other hand, localization systems
for mobile robots should not rely on external de-
vices, such as differential GPS stations, which
can not be assumed to be present everywhere:
their absence could invalidate the overall system
behavior.

These requirements lead to design choices which
stress the focus on interoperability rather than
complete autonomy. The name ANSER arises
from this approach: ANSER is an acronym for
Airport Non-Stop Surveillance Expert Robot,
and it is the Latin name for “goose”. Capito-
line geese, according to tradition, neutralized a
sneak attack by the Gauls during the siege of
Rome by simply rising an alarm. The ANSER
approach is to detect anomalies, to address ba-
sic decisions, and then to rise alarms in case
that dangerous situations are detected: human
personnel can then inspect the critical scenario
and decide the most suitable course of action.

In this paper we focus on the mobile robot
subsystems, describing in detail how surveil-
lance, localization and navigation are designed
to adhere to the proposed philosphy. Section
2 discusses relevant literature. Section 3 intro-
duces the overall surveillance system, focusing
on the mobile robot part. Section 4 describes
the adopted localization technique, investigat-
ing the properties of the augmented state vector
approach. Section 5 discusses how robot navi-
gation is affected by the overall design philos-
ophy. Finally, experimental results — obtained
in a field set-up at the Albenga Airport (Italy) —
are discussed.

2. Related Work

In the following paragraphs, we first discuss
mobile robots used for surveillance purposes,
and then about algorithms for object detection,
localization and navigation in these scenarios.

Mobile Robots for Surveillance. Recently, sev-
eral autonomous surveillance systems based on
mobile platforms have been presented. The goal
of MDARS, ajoint USA Army-Navy project [1],
is to provide multiple mobile platforms per-
forming random patrols in warehouses and stor-
age sites, both indoor and in semi-structured
outdoor environments. However, it is immedi-
ate to notice that high performances are obtained
by over equipping the system with a huge set of

different sensorial devices and by providing ad-
equate on-board computing power to process
the huge amount of available data: the localiza-
tion and navigation subsystems require the joint
use of a differential GPS (thus being in contrast
with the autonomy requirement of surveillance
systems), a fiber-optic gyro and the recognition
of retroreflective landmarks via a laser-based
proximity sensor.

In [2] a network of mobile all-terrain vehi-
cles and stationary sentries are exploited in
an autonomous surveillance and reconnaissance
system. The vehicles are able to detect and
track moving objects, which are classified us-
ing learning algorithms, through cameras. Each
robot relies for localization on both a differential
GPS and an Inertial Measurement Unit (IMU);
four networked PCs for navigation, planning,
perception and communication are required. In
[3] a team of UAVs (i.e., Unmanned Aerial
Vehicles) and UGVs pursue a second team of
evaders adopting a probabilistic game theoretic
approach (see also [4]). Again, the robots need
enough computational power to manage a dif-
ferential GPS receiver, an IMU, video cameras
and a color-tracking vision system. In [5] a
multirobot surveillance system is presented, de-
scribing how a group of miniature robots (called
Scouts) accomplishes simple surveillance tasks
using an on-board video camera. Because of
limitations on the space and power supply avail-
able on-board, Scouts rely on remote computers
to manage all the resources, to compute deci-
sion processes, and finally to provide them with
control commands.

Laser-based Object Detection. Algorithms for
laser-based people and object tracking range
from simple cluster detections to more recent
techniques able to classify generic shapes made
up of range data. The framework proposed
in [13] uses different laser rangefinders, po-
sitioned in known locations, to cover a given
area: raw scan points associated with moving
objects are clustered, and then assigned with a
linear movement model. For object tracking, a
Kalman filter is used to locate each target. The
tracker is able to generate smooth paths even
in presence of occluding objects. In [14] laser
rangefinders are placed on mobile robots for
people tracking. In order to overcome limita-
tions related to the use of Kalman filters (e.g.,
assumptions related to linearity and unimodal
probability distributions), a Bayesian frame-
work is adopted, using a sample-based joint
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probabilistic data association filter to track mul-
tiple objects at the same time. Finally, more
complex features are extracted from range data
in [15]: the authors are able to recognize generic
features (e.g., legs) given a feature model and
training a Bayesian classifier with good results.

Localization and Navigation in Surveillance
Robots. With the sole exception of [5], au-
tonomous self-localization and navigation capa-
bilities are fundamental prerequisites in all the
robot-based surveillance systems. Starting from
a minimal configuration including an IMU and
a carrier phase differential GPS receiver [6 — 9],
a common approach to self-localization is to
equip the mobile platform with redundant sen-
sory, thus requiring high computational power
and complex data filtering. However, system
reliability and decision making are seldom con-
sidered. With respect to navigation approaches,
issues related to autonomy and reliability are not
usually taken into account. Patrols and laser-
based object detection require the system to be
robust with respect to localization pitfalls and to
be reliable even with minimal sensing require-
ments. Common approaches in literature [16,
17] require the knowledge of both the distance
from the trajectory and the difference between
the desired and the current orientation. Further-
more, since they model trajectories using para-
metric equations, the resulting computational
load to model the motion law of the parameters
is not negligible.

3. Surveillance

The philosophy of the ANSER project is to in-
tegrate heterogeneous sources of information,
using different subsystems where the areas to
be monitored allow for their use. Therefore,
near walls and in cluttered areas, a network of
fixed sensors can be preferable to mobile robot
patrols. However, two issues must be dealt
with: (i) the sensor network topology cannot
be easily modified according to specific needs,
and (ii) in some areas sensors must be eas-
ily removable when other activities take place
(e.g., cameras cannot be placed in the mid-
dle of a runway where planes take-off!). Al-
though mobile robots are more expensive, they
require more complex algorithms for data pro-
cessing, and have well-known problems related
to power supply, nonetheless they can move
where needed, thus increasing deployability and

adaptability. In particular, in open spaces, the
superior mobility, the sensing range and preci-
sion of a mobile robot equipped with a laser
rangefinder are expected to produce more ac-
curate results. With respect to these consider-
ations, a system can be envisaged taking com-
plementary subsystems and a two-layer decision
making framework into account.

Complementary subsystems. The overall surveil-
lance system is made up of two components: the
former is a standard network of heterogeneous
devices, exploiting video cameras, microphones
or PIR sensors, thus being able to detect anoma-
lies according to sensors’ range, whereas the
latter is a collection of mobile robots, whose
aim is to address system adaptability and to
increase area coverage. In a sense, the tra-
ditional surveillance paradigm is extended by
adding mobile platforms able to transport sen-
sors where needed. This approach increases the
autonomy and the range of action of the over-
all system thereby reducing the need for human
intervention in many situations.

Two-layer decision making. When perform-
ing patrolling operations the system does not
autonomously take any course of action for
anomalies. However, basic tasks (e.g., check-
ing if doors are correctly closed or if humans
can identify themselves through RFID badges)
can be carried out as long as things go smooth.
Otherwise, the mobile robot will simply detect
anomalies (e.g., presence of objects in critical
areas, misplaced objects and furniture, or per-
sonnel without required permissions, etc.), and
it will be teleoperated in order to further in-
vestigate the situation using human cognitive
capabilities.

In particular, an intelligent (possibly semi-auto-
nomous) supervisor maintains a coherent world
model by dividing the whole workspace into
different areas: a number of areas are assigned
to fixed distributed devices, whereas others are
monitored by mobile robots. Whenever needed,
the system is able to orchestrate the coordinated
behavior of both devices and robots. For ex-
ample, it could plan a course of action for a
robot in order to investigate the situation: the
robot could be asked to reach the area where the
anomaly has been detected in order to provide
a remote operator with camera images, or to
use the laser rangefinder to gain a fine grained
resolution image of a particular object. In the
following paragraphs, we specifically focus on
the capabilities of a single mobile robot.
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3.1. Laser-based Surveillance

Laser rangefinders were initially designed for
improving safety and security in factories: the
idea is to monitor an area of interest (e.g., in the
proximity of a machine tool) where the pres-
ence of people or objects should cause an im-
mediate arrest. In a similar spirit, a very con-
servative laser-based surveillance algorithm is
used in ANSER to identify anomalies.

First, during the design phase, the whole region
to be monitored by the mobile robot (e.g., in
Figure 1, an airport terminal and runways) is
split into n convex polygonal areas {A;}. Each
polygon defines a critical area. Next, when
performing patrolling operations according to
surveillance policies, clusters {C;} are period-
ically extracted from raw laser measurements,
which can be as simple as point features or line
features, or complex as legs or body shaped
objects. Specifically, clusters of points are rep-

resented by a center of mass ¢; € R? and a
covariance matrix m; € R2%2,

Typical patrol
path
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Figure 1. Patrol rounds in an airport scenario.

In our scenario, the system assumes that the
monitored area must be empty and every clus-
ter that is detected inside it must be considered
a potential threat. The overall surveillance ac-
tivities performed by the ANSER mobile robot
are carried out by concurrent agents which are
charged of performing different tasks: laser data
acquisition and filtering, objects detection, etc.
However, for the sake of explanation, it is possi-
ble to describe the robot behavior through Algo-
rithm 1. It is worth noticing that this structured

behavior emerges from the interaction of the dif-
ferent involved agents, and there is by no means
any centralized supervision.

Algorithm 1 1aser based_surveillance()

Require: true < patrolling started()
Ensure: {true,false} < object_detection()
1: while false < patrolling completed() do

2: navigate_to_next(A;)

3:  {C;} < sense_and.associate()

4. if ¢;e{A;} then

5: patrolling suspended ()

6: badge_id <— scan_rfid()

7 if authorized rfid(badge_id) then
8: patrolling resumed()

o: else

10: alert_supervisor()

11: enter_teleoperated mode ()

12: if telep_command <— manually operate then
13: manually_operated()

14: end if

15: if telep_command «+— map then
16: map_object(c;)

17: end if

18: if telep_command «+— resume then
19: patrolling resumed()
20: end if
21: end if
22:  end if

23: end while

The robot surveillance task consists of carrying
around the laser rangefinder, thus visiting all the
critical areas in sequence (line 2, see also Sec-
tion 5). The robot is provided with a map of the
patrolling area: therefore, it has knowledge of
known or previously mapped object locations
and object-free areas. While navigating, if an
anomaly C;is detected, a tentative association to
previously mapped objects {O;} is carried out
through the minimization of the Mahalanobis
distance M(Cj, O;) between the actual cluster
and all the previously mapped objects, i.e.,

M(G 00 = /(e — oy g — o) (1)

where o0 is the baricentre of one mapped ob-
ject. If a suitable O; is found, C; is recognized
as a previously detected object. Otherwise, the
robot stops (line 5). It is worth noting that
centers of mass are compared with respect to a
global reference frame, thus ultimately relying
on self-localization (see Section 4). As a con-
sequence, it is fundamental to maintain errors
in self-localization under certain bounds.
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Anomalies depend on the particular area: as
previously discussed, potential anomalies en-
compass misdisplaced objects (e.g., opened
doors which should be closed), unforeseen ob-
stacles in areas which are assumed to be free,
and moving objects. With respect to misdis-
placed objects, their status can be easily recog-
nized using scan-matching techniques. How-
ever, a more interesting case is posed by un-
known objects. Within monitored environments,
it is usually common to assume the availability
of RFID enabled badges and tags. Humans and
objects can be given RFID identification capa-
bilities, in order to be easily recognized by the
system. Therefore, the robot silently scans for
RFID readings: if the detected object can pro-
vide a RFID identification tag which classifies it
as authorized, the mobile robot simply resumes
its patrol (lines 6 to 8); otherwise, it warns the
intelligent supervisor that an unexpected object
has been detected (line 10). At this point, a
human supervisor can manually teleoperate the
robot (line 13), using video feedback provided
by an onboard pan/tilt/zoom video camera to
further investigate the situation. During this op-
eration, data can be collected from the scene: es-
timated object position, shape, dimension, etc.
Finally, if the situation is classified by the super-
visor as normal (e.g., an object left unattended,
a vehicle parked in an unusual place) the ob-
ject is mapped (line 16), and the robot resumes
its patrol (line 19), ignoring the same object in
the future if the position, shape and dimensions
match.

4. Localization

In surveillance scenarios, mobile robots are re-
quired to patrol wide regions and to devote spe-
cial care to critical areas, according to given
policies. In order to meet autonomy require-
ments, the ANSER localization subsystem re-
lies only on a single non-differential GPS re-
ceiver and a laser rangefinder.

Unfortunately, GPS measurements are corrupted
by error sources introducing highly colored noise
with significant low-frequency components,
which can be modeled as a non-zero mean value
(i.e., a bias) in GPS errors slowly varying in
time [9]. The analysis of both longitude and
latitude data collected for 24 hours at a fixed
location clearly shows this effect: considering
the Fast Fourier Transform (FFT in short) of

GPS longitude and latitude data, low-frequency
components can be noticed, corresponding to a
slow variation of the signal over time. By esti-
mating this bias in GPS measurements, one can
expect to improve GPS data precision, therefore
making robot localization more accurate.

To this purpose, an augmented state vector x
is defined, comprising the x, y, and 6 com-
ponents of the robot pose, as well as the xgp,
and yg,; components of the low-frequency bias.
Since the colored components are then sepa-
rated from additive white gaussian components
of GPS noise (i.e., they are comprised in the
state vector), an Extended Kalman Filter (EKF
in short) can be applied [10].

With respect to laser-based localization, the a
priori map of the environment includes, in ad-
dition to objects {O;} which have been de-
tected by the surveillance system during pre-
vious patrols, a collection of oriented line seg-
ments {m;}. Notice that line segments are rep-
resented through their implicit equation in the
form mj(a,b,c) = 0, and are fed to a self-
localization process which runs concurrently
with laser-based surveillance, but requires fea-
tures to be stable across different runs. In this
sense, the map has multiple layers, each layer
having different characteristics and a different

purpose.

When navigating indoor, the laser-based local-
ization subsystem simply updates the robot pose
by comparing the given map with features de-
tected by the laser rangefinder. The mobile
robot is equipped with two laser rangefinders
(see Figure 5 at the top left): the former — used
for surveillance — is hidden within the chassis
and it 1s located about 50 cm above the ground,
whereas the latter — used for self-localization —
is located on top of a pole about 2 m high. As
soon as new laser measurements are available,
(i) line extraction produces a number of lines
{1;} using a common Split & Merge algorithm;
(ii) the Mahalanobis distance associated with
each tuple (/;, m;) is computed; (iii) for each [,
the line m; for which such a distance is minimum
is selected and fed to the EKF, which can then
update the robot pose using a line measurement
model and the actual measure /; [11].

When moving outdoor, lines within the a pri-
ori map mostly correspond to external walls of
buildings. In this situation, a smaller number of
features are available (see Figure 1), since the
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robot mostly traverses areas where no lines are
detected at all. However — when line features
are available — their contribution is sufficient
to estimate the full state vector and — under a
number of assumptions — the pose estimate is
still valid even when the rangefinder does not
provide any further information.

4.1. An Augmented State Vector

The approach relies on the idea of including the
GPS bias in the state to be estimated. The result-
ing augmented state vector is shown in Equation

XT :[x1 X2 X3 X4 X5] (2)

[x y ) Xbias ybias]

It includes the robot position and orientation
with respect to a fixed frame, and the two com-
ponents of the GPS bias. The system can be
modeled with the following differential equa-
tions:

x| = g [(ul + Wl) + (Mz + Wz)] COS X3

Xy = g [(ul + Wl) + (Mz + Wz)] sin x3

3= 5 [(un +wi) = (u2 +wa)] (3)
X4 = u3 + ws

X5 = Ug + wy

with

T

u Up Uy u3 u4]:[(1)r a)ZOO] (4)

and

wT:[wl wy w3 W4]=N(O,Q> (5)

The first three rows in Equation 3 describe the
vehicle unicycle kinematics: u; and uy are the
rotational speed w, and wy of the right and left
rear wheels; w; and w; are zero-mean, AWG
noise allowing to model non-systematic errors
in control and odometric reconstruction. R is
the wheels radius, and D is the distance between
wheels. The fourth and fifth rows in Equation
3 describe how bias changes in time. However,
since this is obviously unknown, the bias is as-
sumed to be constant (i.e., u3 = uq = 0), and
the variation of xp;,; and yp;, in time is assumed
to depend exclusively on the noise w3 and wy.

After integrating the dynamic equations of the
system through a standard Euler approxima-
tion with an appropriate step size, the system

can be described at instant k through the fol-
lowing finite difference equations in the form

X = f (Xk—1, Uy, W):

R(uy g+w1 g+uo g +wo i ) At

X1k = X1 k—1 T ( 5 ) COS X3 k—1
R(ul_k+w1_k+u2_k+w2_k)At .

X2k =X k-1t : 5 SIN X3 k|
R M17k+W1ﬁk—u27k—W27k>At

X3k = X3k—1 T ( D

X4k = X4 h—1 + W3k
X5k = X5k—1 + Wak

(6)
Equation 6 can be used to estimate the state and
the covariance in the prediction phase of the
Extended Kalman Filter at step k as:

X, = f(Ri—1,u,0) (7)

Pk_ = AkPk—lA]Z + Wka_IWkT
Notice that, even if the dynamics of the bias
is assumed constant, and hence the correspond-
ing components of X, are left unchanged in the
prediction phase, the same is not true for the es-
timated covariance P, , which is updated in the
prediction phase according to the EKF equa-
tions and increases at each iteration depending
on the noise covariance Q. Since the uncertainty
of the estimated bias increases with time, the
predicted values )%,;4 and fc,;s are very likely to

be updated in k if new measurements are avail-
able (i.e., in the correction phase of the EKF),
thus finally producing an estimate that varies in
time as well, and hopefully approximates the
actual bias in GPS measurements. Remember
that in the measurement update phase, it holds:

X = )?]: + Kk(zk — h()%;, 0))
Py = (I — KeHi) Py, (8)
Ky = P HI(HP HE + ViR V) ™!

In other words, the corrections performed on
each component of the state & (first equation)
depend on the kalman gain Kj, which (third
equation) directly depends on the state covari-
ance P;_ (and inversely depends on the measure-
ment covariance Ry). Finally, since the state
equations are not linear, Ay is computed as the
Jacobian matrix of partial derivatives of f with
respect to x, and Wy, is computed as the Jacobian
matrix of partial derivatives of f with respect to
w.
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Measurements Zg,; can be modeled by a non
linear function of the state, because the relation-
ship between georeferenced data (i.e., latitude
and longitude) and the estimated x— and y—
coordinates varies with the latitude itself, as a
consequence of the non planarity of the earth
surface:

T

Zow=[21 2] =[long lat] (9)

which can be expressed as a non-linear function
of the state (in discrete form):
21k = flong(X2k) « (X146 + Xax) +Vik (10)
2k = f zazfxz,k) Xk FXx5k) + Vo

where vq x and v, x can now be modeled as zero-
mean AWG noise with variance Ry and R, and
the scale factors fo,e (X2 x) and 14 (x2 «) depend
on current latitude.

Conversely, for each line feature [; originat-
ing from laser data, the map line m; that best
matches /; can be expressed using two param-
eters representing, respectively, the distance p
from the robot and the angle o between the line
itself and the robot’s heading [11]:

Zyer =23 2 ]=[p o]

(11)
By considering the implicit equation to com-
pute the distance between a line and a point, the
measurement model turns out to be linear:

3k = (a,'ka + b,'ka + C,‘)/\/al2 + bl-z + V3K
zagx = tan"Y(—a;/b;) — X34 + vax
(12)
where a;, b; and ¢; are the parameters character-
izing the implicit equation of m;, and v3 ; and
V4 can be modeled as zero-mean AWG noise
with variance R3 and Ry4.

Whenever new GPS or laser measurements are
available, they are fused with the prediction
(Equation 7) to produce a new estimate (Equa-
tion 8), thus reducing displacement errors which
inherently characterize odometry and providing
also a new estimate for the GPS bias. Notice
that, since GPS data are not a linear function of
the state, it is necessary to compute Hy, in Equa-
tion 8 as the Jacobian matrix of partial deriva-
tives of & with respect to x. On the contrary, the
dependence of & from noise is linear both for
the GPS and for the laser scanner, hence we set
Vi=1.

In principle, observations are provided concur-
rently by both the GPS and the laser rangefinder.
This happens when the robot is operating out-
door and landmarks for laser-based self-locali-
zation, for example buildings, are available in
the neighborhoods. However, in open spaces,
GPS is usually the only sensor providing infor-
mation, since building walls could be so dis-
tant to be undetectable by laser rangefinders.
Therefore, two cases must be dealt with sepa-
rately, by considering (i) corrections provided
by the GPS alone, and (ii) corrections pro-
vided concurrently by the GPS and the laser-
scanner. A formal observability analysis is out-
side the scope of this paper. However, by writ-
ing the Kalman observability matrix Oy, with
of = [ HI ATH! ..AT*HT |, itis straight-
forward to demonstrate that:

(i) when only GPS data are available, only the
subspace defined by (x| + x4, X3 + x5, x3) is
fully observable: the estimated robot’s po-
sition has a permanent error that depends on
the current estimate of the GPS bias. The
robot’s orientation x3 can be corrected only
when the robot is moving.

(ii) the whole state x is fully observable when
at least one GPS measurement and two non
parallel laser measurements are considered
in cascade [12].

The former case is particularly interesting: in
this case, innovation due to GPS measurements
is distributed by the Kalman gain onto x, y, Xp;4s
and yp;,s according to the current value of the
state covariance matrix P in such a way as to
maximize likelihood. By focusing, for exam-
ple, on x and xp;,s, let’s assume that P can be
written as follows:

Pi1 - P4
P, = ’ o 13
k P41 - P44 (13)
The term p; = Gfl is the variance of x; = x,
P44 = G/gbias is the variance of x4 = xp;,s, and

finally p14 = pa1 = Oy, 1S the correspond-
ing covariance. When taken together, they de-
fine the covariance matrix Py [, of the vector

[ X1 x4 | which can be graphically represented
as an ellipse, whose axes have the orientation
of Py [y,x,)’s eigenvectors and the length of the
corresponding eigenvalues.
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See, for example, Figure 2 (ellipses correspond
to subsequent iterations): starting from an ini-
tial situation in which p1; = 1,pyg = 1,p14 =
pa1 = 0 (i.e., x; and x4 are not correlated),
Py [x,x,) 18 updated through the EKF. However,
if only GPS measurements are available, the lin-
ear composition x| + x4 is observable whereas
each single component is not. This means that
p11 and p4q initially decrease, but they do not
tend to zero (which would happen if each single
component would be observable). More impor-
tant, pi4 and p4; decrease down to a constant
value < O after each iteration, i.e., x; and x4
tend to be more and more correlated (the minor
axis of the corresponding ellipse tends to zero,
and ellipse’s axes tend not to be aligned with
the main axes).

. P(xbias)

06}

08}

P

4 . i
-1 -05 0 0.5 1

Figure 2. State partially observable.

If, at a given instant, laser measurements are
available (see Figure 3), x| is immediately cor-
rected, and x4 is consequently updated as well
(i.e., both py; and pa4 tend to zero, as well as
the axes of the corresponding ellipse). Finally,
after both p; and p44 have been reduced, the
latter increases faster than the former in the pre-
diction phase of the EKF (Equation 7), since it
is reasonable to assume that the error made in
modeling the GPS bias as constant (Equation 3)
increases faster than the odometric error. The
result is that — after a landmark has been ob-
served — the innovation is mostly projected onto
Xpias and Vpias: When the robot has traveled a
long path without observing any landmark, cor-
rections are adequately distributed onto the state
components only if the actual GPS bias changes
slowly, and given that a new landmark for laser-
based re-localization will soon be available.
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Figure 3. State completely observable.

5. Navigation

The approach adopted for localization allows an
accuracy which is sufficient to reliably recog-
nize objects and persons which are not stored in
the map through the laser-based surveillance al-
gorithm (this will be shown in the next Section).
However, for the purpose of navigation, the re-
sulting positioning accuracy turns out to be in-
adequate when adopting a standard approach for
trajectory tracking. In particular, since most of
the time only the GPS is available for position-
ing, the orientation is properly estimated only
when the robot is moving at high speed, thus
being unreliable for feedback control. When
this happens, an oscillatory behavior around the
imposed trajectory can be observed, which must
be obviously avoided. To this purpose, we have
designed a new control model which allows to
regulate to zero the distance from the trajectory
as well as the difference between the vehicle’s
orientation and the tangent to the curve, and it
is proven to be asymptotically stable. However,
it is different from other models in literature in
the following two issues:

(i) only the distance D(x,y) between the vehi-
cle and the trajectory is measured and fed
to the controller, whereas most approaches
require to measure both the distance and the
robot’s orientation.

(ii) the trajectory is expressed through the im-
plicit equation of the curve in the form

t(x,y) =0.
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For the sake of brevity, we consider here only
the case that the curve corresponds to a straight
line connecting subsequent via-points, which
is a very reasonable approach when traversing
outdoor areas. However, the model has been
demonstrated to be asymptotically stable for
each curve which can be expressed through its
implicit equation.

By referring to the continuous-time model of the
vehicle kinematics (first three rows in Equation
3), it is now assumed — to simplify the discus-
sion — that control inputs Uy and U, correspond
to the robot’s linear and rotational velocity, in-
stead of the wheels velocity w, and w;. That is,
by ignoring process noise, we define

U= g(a)ﬂrwr), U, = %((Dl — a),) (14)
which yields:
)&1 = U1 COS X3

)&2 = U1 SiHX3
x3=U;

(15)

Without loosing generality, we assume that the
trajectory to be followed is a straight line which
lies onto the x—axis of the reference frame (Fig-
ure 4): in this case, x; = y obviously corre-
sponds to the distance to the line, and x3 = 0
is the difference between the orientation of the
robot and the orientation of the line (which is
zero). x; = x increases as the robot moves
along the line. It can be demonstrated that, to
achieve asymptotic stability, it is sufficient to
set control inputs as follows:

U =U,

. 16
U2 = Kp(—XQ — XQ) ( )
The underlying idea is simple. If the robot
moves with a linear speed U1, the component of

A
X2 3 B
Yy ==X, %, > 0 Vi <=Up, %, ==V,
U =0,U,<0 U,=U,U,<0
\‘X3
Xogl-——-H 1 ¥Z——----"_
v <0,%,=0
U, =U,U,<0
G
X/

Figure 4. Tracking a straight trajectory.

U, along x, is x; = Uy sinxs. This is called ap-
proaching velocity: in situation 1 in Figure 4, x;
is positive since x3 increases counter-clockwise.
Notice that the approaching velocity x, can be
increased (up to a maximum value U) or de-
creased (down to a minimum value —U;) by
controlling x3, which — on its turn — requires to
operate on the rotational speed U;. In particu-
lar, Equation 16 sets the rotational speed U as
proportional to the difference between a refer-
ence approaching velocity v,y = —xp and the
the real approaching velocity x;. The reference
approaching velocity has the following proper-
ties:

1) when x» = 0, v,or = 0 as well (the robot
(i) wh 0, vier =0 11 (the rob
lies on the trajectory);

(ii) whenxy > 0,v,s = —x;is negative (head-
ing downward in Figure 4);

(iii) when xp < 0, v, = —x; is positive (head-
ing upward in Figure 4).

The linear speed U is a free variable and can
have a generic profile Uy () (given that it satis-
fies kinematics and dynamics constraints). We
assume in the following that U (r) = U is con-
stant: since we are dealing with a regular, time
invariant system, it is sufficient to demonstrate
that the system is stable for every constant in-
put U to deduce stability for a generic velocity
profile Uy (z).

Since x| is obviously never in equilibrium (the
robot moves along the line), we are interested
only in the stability of x, and x3, which requires
to consider a system composed of the second
and third rows in Equation 15:

)62 = Ul Sin)C3
)é3 = Kp(—XQ - Ul SiIl)C3> <17>

Equilibrium points are given by the solutions of

0= U;sinx3

OIKP<—X2 —U1 SiHX3) (18>
Equilibrium points correspond to the set {(x; =
0,x3 = km)|k € Z},i.e., when the distance from
the line is null and the robot is oriented along the
line. It is necessary to demonstrate that points
in the set {(x, = 0,x3 = 2km)|k € Z} are sta-
ble equilibrium points, whereas {(x, = 0,x3 =
(2k + 1)m)|k € Z} are not (the robot is moving
along the line but in the wrong direction). By
considering — for the moment — the only point
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(x2 = 0,x3 = 0), a C! Lyapunov function can
be defined, i.e.,

K3
Vi, x3) = ”sz Y U1 —cosx3)  (19)
which is locally positive definite and V(0,0) =
0. Its derivative with respect to time, i.e.,

V(X2,X3) = KpXQU] sinx3
—i—Ul SiHX3Kp(—X2 — Ul SiHX3)
= —KPU% sin? x3
(20)

is negative semidefinite, since it does not depend
on x; and hence V(x;,x3) = 0 for all points in
the set {(x, = Xp,x3 = 0)[x, € Re} (cor-
responding to the x,-axis). This is sufficient to
state that the equilibrium point (x; = 0,x3 = 0)
is locally stable: to prove asymptotic stability,
it is possible to apply the LaSalle’s invariance
principle. This latter part of the demonstration
is not shown here for the sake of brevity: how-
ever, it is straightforward to notice that the ori-
gin is the only possible stable point. In fact, by
considering a generic point (x; = X,x3 = 0)
along xp-axis, the second row in Equation 17
becomes:

X3 :Kp(—)_CQ - U, sin 0) (21)
That is, Equation 21 drives the system outside
xp-axis unless X, = 0, which happens only in
the origin. These results can be extended to all
equilibrium points in the set {(x; = 0,x3 =
2km)|k € Z} by considering x3’s periodicity.

We still need to demonstrate the instability of
points in the set {(x; = 0,x3 = (2k+ 1)7m)|k €
Z} (which guarantees that the vehicle cannot
head towards the wrong direction). This can
be done by introducing an accessory state vari-
able x¢ = x3 — 7, by writing the corresponding
state equations, and by demonstrating that the
equilibrium point (x; = 0,x¢ = 0) is unstable
through the Lyapunov theorem. Once again,
the demonstration is not shown here. Consider
however situation 3 in Figure 4: it is straight-
forward to see that, when the vehicle is heading
towards the wrong direction and x, # 0, the ro-
tational speed U, 1s sufficient to make the robot
diverge from its current trajectory.

Finally, consider situation 2 in Figure 4. The
control law in Equation 16 has a problem: when

the distance from the curve (and hence the ref-
erence approaching velocity v, ) is bigger than
the maximum approaching velocity x, (whose
absolute value is Uy ), the reference approach-
ing velocity cannot be achieved simply by con-
trolling U,. This can cause the vehicle to con-
verge to an equilibrium point {(x, = 0,x3 =
2km)}, k # 0 after performing some loops. To
avoid this, it is sufficient to saturate v, to a

minimum value —U; when x; > U; and to a
maximum value U when x, < —U;. By sub-
stituting the new value of v,.s in Equation 17,
asymptotic stability can be easily demonstrated
through the Lyapunov’s and LaSalle’s theorems,
as previously.

6. Experimental Results

Figure 5 shows a number of snapshots taken
from a video recorded for the first public demon-

stration of ANSER in October 2006 . The robot
is performing patrol rounds, both outdoor and
indoor (see Figure 5, top line). When either
the robot or distributed devices (e.g. Passive
Infrared Sensors are used in this scenario) de-
tect an unexpected object or a potential intruder,
an RFID emission is immediately searched for.

Figure 5. Robot ANSER at the Albenga Airport.

1
The video is available at www.laboratorium.dist.unige.it.
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If it is not found, a question mark appears in
the human supervisors interface, meaning that
further investigation is required (see Figure 5
on the bottom left). The human supervisor
— possibly operating in a room far away — is
alerted (see Figure 5 on the mid left), and can
remotely control the robot to better assess the
situation. Video feedback is provided through
the pan/tilt/zoom camera on-board the robot
(see Figure 5 on the mid right). In this case, an
abandoned luggage is found, and the supervisor
simply updates the question mark in the GUI
with a different symbol, meaning object to be
removed (handling it with care...). The robot
can then continue its patrolling operations. In
Figure 5 at the bottom, a different situation is
shown: the robot has detected a moving per-
son, and asks him to exhibit his credentials to
check if he is allowed to be in that area. If the
person is provided with a RFID badge (which
happens to be true in this case), the robot simply
resumes its patrol, without alerting the human
Supervisor.

6.1. Localization

For what concerns the localization subsystem,
many experiments in simulation (Figure 6), as
well as at the Albenga Airport and in our Cam-
pus (Figure 7) have been performed. In simu-
lated tests, landmarks for laser-based localiza-
tion are available along the path every 50, 100,
or 200 m depending on the experiment. Odom-
etry and laser errors are simulated, whereas real
GPS data belonging to a previously acquired
data set are used. During the localization tests
at the Albenga Airport, the robot is manually
driven at 1.0 m/s along a path that is about
500 meters long. Walls for laser-based local-
ization are visible only in a very limited area
of the Airport (i.e., buildings walls in Figure
1), which forces the robot to rely exclusively
on GPS most of the time. During the tests in

| land. dist. | A-tests ‘ B-tests ‘ C-tests |

50m 1,744 | 0,303 | 1,632
100m 1,938 | 0,76 | 1,844
200m 2,024 | 1,256 | 1,934

Figure 6. Simulated localization tests.

‘ scenario | A-tests ‘ B-tests ‘ C-tests |

Campus | 3,02 1,84 2,96
Airport 2,3 1,83 2,22

Figure 7. Localization tests.

our Campus, the robot is driven back and forth
along a path which is about 100 meters long,
and a new landmark for localization is available
every 200 meters. Under these conditions, tests
have been performed in three modalities: (i) A-
tests correspond to localization without includ-
ing the bias in the state vector, i.e., by modeling
the GPS noise as AWGN and by using laser
measurements (when available) to correct only
the robot’s position; (ii) B-tests are performed
by including the GPS bias in the augmented
state vector, i.e., by using laser measurements
to estimate the bias and letting the EKF update
this estimate even when laser measurements are
not available (i.e., when the state is not fully
observable); (iii) C-tests are performed by esti-
mating the bias only when laser measurements
are available (i.e., when the state is fully observ-
able), and using this estimate (without updating
it) to correct GPS errors when laser measure-
ments are not available. Notice that case (ii)
corresponds to the approach described in Sec-
tion 4, whereas case (iii) describes a control
test, i.e., to verify whether updating the bias,
even when the state is not fully observable in-
creases localization accuracy.

Different experimental runs have been perfor-
med, by recording the robot estimated position
in a number of selected locations along the path,
and by computing the difference between the
actual and the estimated robot’s position. Fig-
ures 6 and 7 report the average positioning er-

ror E(v/(% — x)2 4+ (§ — y)?). In all cases, the
positioning error in B-tests is lower, whereas
C-tests yield approximately the same accuracy
as A-tests. However, the increment in perfor-
mance is not that evident at Albenga Airport. A
deeper analysis reveals that — in this latter sce-
nario — GPS errors are lower in the first place,
which influences the final positioning error: this
is due to the absence of tall buildings, which
are known to be one of the major causes of
signal occlusions and multi-path effects, which
severely affect the GPS accuracy.
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6.2. Object Detection

The robustness of the object detection algorithm
versus localization errors is evaluated, in or-
der to check whether the achieved positioning
accuracy is adequate to correctly associate ob-
jects detected by the on-board surveillance sys-
tem. Specifically, one of the biggest problems to
be taken into consideration during surveillance
is that an object, which has been previously
mapped and classified as “not dangerous”, can
be used by a potential intruder to hide himself:
a thief standing against a wall is a well-known
example. Even if this latter case, in our sys-
tem, is handled by the network of fixed sensors,
the task assigned to robots is nevertheless crit-
ical: in spite of localization errors which can
severely affect object matching (as described
in Equation 1), the on-board surveillance sys-
tem must be able to find the correct correspon-
dences between objects with different shapes
and dimensions. Figure 8 shows the a poste-
riori probability that a detected object (whose
diameters varies from 0.5 m to 1 m in different
experiments) is correctly matched against the
corresponding object in the map, by imposing
an increasing localization error. We can observe
that: (i) the localization accuracy observed in
experiments (< 2 m) is adequate to guarantee
correct data association in most cases; (ii) cor-
rect data association decreases with localization
error; (iii) correct data association increase with
object diameter. These results are confirmed by
experiments described in Figure 9: objects of
different diameters (from 0.5 m to 1 m) are de-
tected and matched against objects in the map
when the robot is at different distances (from 10
m to 30 m). The experiments clearly show that
the improvement in self-localization due to bias
estimation in B-tests leads to improved correct
data association rate.

disp./diam. ||0,5m | 0,6m[0,7m[0,8m [0,9m | 1m |
im  ][0.96]096] 098 [0.98]099 [0.99
13m [ 0940940950096 | 097|098
1L6m [ 091091093094 095098
1.9m | 0.86]0.87 089091093095
20m || 0.6 [0.65|0.68[0.71]0.74 ]0.76
2.5m || 0.46 [0.49 [ 0.52 [ 0.56 | 0.58 [0.62

Figure 8. Object matching vs. localization accuracy.

dist./diam. | 0,5m | 0,6m | 0,7m | 0,8m | 0,9m | 1m |

10m A-tests | 0,84 | 0,87 | 0,9 | 0,92 ] 0,96 | 1
B-tests | 0,91 | 0,93 | 0,94 | 0,96 | 0,97 | 1
15m A-tests | 0,76 | 0,79 | 0,83 | 0,86 | 0,9 | 0,9
B-tests | 0,9 | 0,91 0,93 | 095|096 | 1
A-tests | 0,66 | 0,68 | 0,72 | 0,77 | 0,8 |0,8
20m
B-tests | 0,86 | 0,88 | 0,89 | 0,91 | 0,94 | 1
A-tests | 0,46 | 0,49 | 0,52 | 0,56 | 0,59 | 0,6
25m
B-tests | 0,79 | 0,81 | 0,83 | 0,86 | 0,9 | 0,9
A-tests | 0,2 | 0,25 | 0,27 | 0,29 | 0,31 | 0,3
30m
B-tests | 0,65 | 0,71 | 0,77 | 0,79 | 0,83 | 0,9

Figure 9. Object matching vs. localization accuracy.

7. Conclusions

The paper describes the capabilities of the-
mobile robot ANSER in terms of autonomous
surveillance, localization and navigation.

In ANSER, great attention has been paid to
the mutual role played by system specifications
and system autonomy. Usually, complete au-
tonomy is not desirable. On the opposite, a
carefully designed trade-off must be set to bal-
ance surveillance policies and autonomous deci-
sion making. Specifically, autonomous surveil-
lance requires to detect differences between per-
ceived and expected environmental conditions,
on the basis of a simple laser rangefinder based
algorithm. To guarantee the necessary accu-
racy for navigation and surveillance, the lo-
calization subsystem plays a fundamental role.
Instead of equipping the robot with a huge
amount of expensive sensors, an augmented
state vector approach is chosen that relies ex-
clusively on a non-differential GPS unit and a
laser rangefinder, and allows to estimate both
the robot pose and the low frequency compo-
nents of the GPS measurements. The experi-
ments confirm the expectations, showing that
the approach reasonably improves the overall
system capabilities. Finally, a navigation algo-
rithm is introduced (and its properties formally
demonstrated) which proves to be very suited to
the considered scenario, allowing smooth and
stable trajectories even when moving at high
speed.
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