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Intelligent autonomous acting of mobile robots in un-
structured environments requires 3D maps. Since manual
mapping is a tedious job, automatization of this job is
necessary. Automatic, consistent volumetric modeling
of environments requires a solution to the simultaneous
localization and map building problem (SLAM prob-
lem). In 3D this task is computationally expensive, since
the environments are sampled with many data points
with state of the art sensing technology. In addition, the
solution space grows exponentially with the additional
degrees of freedom needed to represent the robot pose.
Mapping environments in 3D must regard six degrees
of freedom to characterize the robot pose. This paper
summarizes our 6D SLAM algorithm and presents novel
algorithmic and technical means to reduce computation
time, i.e., the data structure cached k-d tree and par-
allelization. The availability of multi-core processors
as well as efficient programming schemes as OpenMP
permit the parallel execution of robotics tasks.
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algorithm, graphSLAM, cached k-d tree search, parallel
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1. Introduction

Methods for solving the SLAM problem are a
key scientific issue in mobile robotics research.
SLAM solutions are important in providingmo-
bile systems with the ability to operate with
real autonomy. Many mobile robots are nowa-
days equipped with a 3D laser scanner to gather
3D range information about the environment.
Multiple 3D scans are necessary to digitalize
environments without occlusions. To create a
correct and consistent model, the scans have
to be merged into a single coordinate system.
The initial registration is usually done with the
well-known Iterative Closest Points (ICP) al-
gorithm [7]. In all sequential strategies, where

each scan is matched to some previous one,
small errors add up to global inconsistencies.
These errors are due to imprecise measurements
as well as small registration errors, which can
never be avoided. SLAM algorithms that use
information about closed loops help diminish
these effects. So, Lu and Milios proposed a
probabilistic scan matching algorithm for solv-
ing the simultaneous localization and mapping
(LUM) [19]. In recent work, these algorithms
are applied to 3D laser scan mapping [25, 8].
Figure 1 gives an example of a 3D map gener-
ated by a mobile robot.

Figure 1. 3D map acquired by a mobile robot.

3D scan matching approaches to SLAM tend
to be computationally expensive due to sev-
eral reasons: First, the amount of data: A 3D
laser range finder scans the environment with
a large number of samples. Second, the addi-
tional threeDoF result in an exponentially larger
solution space, i.e., the solution is computation-
ally more complex. New algorithms as well as
new hardware developments help reduce these
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computational costs. In a popular formulation
of Moore’s law, one could state that the num-
ber of transistors on integrated circuits doubles
every 18 months. This is emphasized by the
observation of the appearance of dual-core and
quad-core CPUs in the consumer market. These
chips multiply the number of computing units
whereas the increase of the clock rate of the
chips seems to stop due to thermal issues.

This paper presents a variation of 3D scan
matching algorithms, namely cached k-d tree
search and the parallel Iterative Closest Points
(pICP) and the parallel Lu / Milios SLAM al-
gorithm (pLUM). The algorithms have been op-
timized for execution on a shared memory ma-
chine with p processors, i.e., for quad and dual-
core processors. The application to robotics
is obvious: Several mobile robots are already
controlled by dual-core notebooks. OpenMP is
used to program the dual-core processors in a
multi threaded fashion. To this end, this paper
focuses on the implementation details of scan
matching for our SLAM front-end.

The paper is structured as follows: After a brief
description of the state of the art, we describe
our 3D scan matching algorithm and our SLAM
approach (Section 2 and 3). The parallelization
of these two algorithms is introduced in Section
4 and 5. In Section 6 the experiments and results
on various data sets are presented, starting with
comments on the load balancing issue. Section
7 concludes the paper.

1.1. Current Trends in Processor
Technology

In April of 2005, Intel announced the Intel Pen-
tium Processor Extreme Edition, featuring an
Intel dual-core processor. An Intel dual-core
processor-based PC enables a higher throughput
and simultaneous computing using a multi-core
architecture. Intel dual-core CPUs supporting
Hyper-threading Technology can process four
software threads simultaneously by using more
efficiently the resources that otherwise may sit
idle [1]. Since multi-core processors represent
a major evolution in computing technology, In-
tel’s competitors have dual and quad-core pro-
cessors, too. All these machines have a shared
memory model.

Parallelization is an important optimization is-
sue, since the increase of the clock rate has
nearly stopped. Therefore, it is not possible
to wait until computers have gotten fast enough
to run a single thread algorithm in the desired
time.

State of the art in programming multiple in-
struction multiple data paths (MIMD) proces-
sors such as dual and quad-core computers is
OpenMP. Programs written in C and Fortran
are divided into single threaded and parallel
regions using OpenMP using compiler direc-
tives, which are handled by the preprocessor.
Compared to other underlying parallelization
schemes like pthreads or the message pass-
ing system (MPI), the underlying philosophy
of OpenMP is to make, small changes to exist-
ing single threaded programs in order to yield
parallel executable code, e.g., when paralleliz-
ing a for loop. Mathematical computations are
especially in the focus of parallelization. In ad-
dition to compiling into parallel threads, instruc-
tion level parallelism (single instruction multi-
ple data paths, SIMD) is employed by current
compilers.

1.2. 3D Metric Robotic Mapping – State
of the Art

Metrical maps represent explicit distances in the
environment. These maps are either 2D, usually
an upright projection, or 3D, i.e., a volumetric
environment map. State of the art for 2D met-
ric maps are probabilistic methods, where the
robot has a probabilistic motion and perception
model. SLAM in well-defined, planar indoor
environments is considered solved, a survey of
these techniques is presented by Thrun in [26].
Furthermore, SLAM approaches can be classi-
fied by the number of DoF of the robot pose. A
3D pose estimate contains the (x, y)-coordinate
and a rotation θ , whereas a 6D pose estimate
considers all degrees of freedom a rigid mobile
robot can have, i.e., the (x, y, z)-coordinate and
the roll, yaw and pitch angles. This emerging
research topic is called 6D SLAM, In previous
work, we presented the mobile robot Kurt3D
that uses a tiltable 2D laser range finder [24]
in a stop-scan-match-go-process to create a 3D
map of the environment by merging several 3D
scans into one coordinate system [22, 25]. Here,



Parallel and Cached Scan Matching for Robotic 3D Mapping 53

online map generation, i.e., the map is avail-
able right after the robot run without extra map
computing time, was possible, through using
pairwise scan matching with an ICP algorithm.
The speed-ups have been realized using data re-
duction and approximate k-d tree search. Sim-
ilar experiments have been made by Newman
et al. [20]. A recent trend in laser based 6D
SLAM is to overcome stop-and-go fashion of
scan acquisition by rotating or pitching the scan-
ner while moving [9, 28, 31].

Another trend in SLAM research is to apply
probabilistic methods to 3D mapping. Katz et
al. use a probabilistic notion of ICP scan match-
ing [16]. Weingarten et al. [30] and Cole et al.
[9] apply extended Kalman filter to the map-
ping problem. We extend this state of the art
by a GraphSLAM method. A similar approach
was used in [27]. However, their algorithm is
not practical due to the reported computational
requirements. Furthermore, Frese presented an
extension of his treemap SLAM algorithm to
six degrees of freedom, which, however, covers
the least-square estimation core and no actual
scan-data processing [10].

2. The ICP Algorithm

The ICP Algorithm was developed by Besl and
McKay [7] and is usually used to register two
given 3D point sets in a common coordinate
system. The algorithm calculates the registra-
tion iteratively. In each iteration step, the al-
gorithm selects the closest points as correspon-
dences and calculates the transformation, i.e.,
rotation and translation (R, t), for minimizing
the equation

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j‖mi − (Rdj + t)2, (1)

where Nm and Nd, are the number of points in
the model set M and data set D, respectively,
and wji are the weights for a point match. The
weights are assigned as follows: wji = 1, if mi
is the closest point to dj, wji = 0 otherwise. Eq.
(1) is reduced to

E(R, t) ∝ 1
N

N∑
i=1

‖mi − (Rdi + t)2, (2)

with N =
∑Nm

i=1
∑Nd

j=1 wi,j, since the correspon-
dence matrix can be represented by a vector
v containing the closest point pairs, i.e., v =
((d1, mf (d1)), (d2, mf (d2)), . . . , (dNd , mf (dNd ))),
with f (x) the search function returning the clos-
est point. The assumption is that in the last it-
eration step the point correspondences, thus the
vector of point pairs, are correct.

Besl and McKay show that the iteration ter-
minates in a minimum [7]. Note: Normally,
implementations of ICP would use a maximal
distance for closest points to partially handle
overlapping point sets. In this case, the proof in
[7] does no longer hold, since the overlap and
number of points as well as the value of E(R, t)
might increase after applying a transformation.

Fourmethods are available to calculate the trans-
formation in each ICP iteration: A SVD-based
method of Arun et al. [3], a quaternion method
of Horn [14], an algorithm using orthonormal
matrices of Horn et al. [15] and a calculation
based on dual quaternions of Walker et al. [29].
These algorithms show similar performance and
stability concerning noisy data [18]. The diffi-
culty of the minimization problem is to enforce
the orthonormality of matrix R.

Next, we give a brief overview of the SVD-
based algorithm. The first step of the computa-
tion is to decouple the calculation of the rotation
R from the translation t using the centroids of
the points belonging to the matching, i.e., for
all points in vector v:

cm =
1
N

N∑
i=1

mi, cd =
1
N

N∑
i=1

dj (3)

and

M′ = {m′
i = mi − cm}1,...,N, (4)

D′ = {d′
i = di − cd}1,...,N. (5)

After replacing (3), (4) and (5) in the error
function, E(R, t) Eq. (2) becomes:
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E(R, t) ∝ 1
N

N∑
i=1

‖m′
i − Rd′

i −
2

(t − cm + Rcd)︸ ︷︷ ︸
=t̃‖

=
1
N

N∑
i=1

‖m′
i − Rd′

i
2 (6a)

− 2
N

t̃ ·
N∑

i=1

(
m′

i − Rd′
i

)
(6b)

+
1
N

N∑
i=1

‖t̃2. (6c )

In order to minimize the sum above, all terms
have to be minimized. The second sum (6b)
is zero, since all values refer to centroid. The
third part (6c) has its minimum for t̃ = 0 or

t = cm − Rcd. (7)
Therefore the algorithm has to minimize only
the first term, and the error function is expressed
in terms of the rotation only:

E(R, t) ∝
N∑

i=1

‖m′
i − Rd′

i
2
. (8)

Theorem: The optimal rotation is calculated by
R = VUT . Hereby, the matrices V and U are
derived from the singular value decomposition
H = UΛVT of a correlation matrix H. This
3 × 3 matrix H is given by

H=
N∑

i=1

m′T
i d′

i=
N∑

i=1

(mi−cm)(di−cd)T

(9)

=

(
Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

)
,

with Sxx=
∑N

i=1 m′
ixd

′
ix, Sxy=

∑N
i=1 m′

ixd
′
iy, . . . .

The analogous algorithm is derived directly
from this theorem; the proof is given in [3].

Alternatively to minimization via SVD, one can
use quaternions to represent the rotation. The
quaternion is the eigenvector with the maximal
eigenvalue of the 4 × 4 cross-covariance ma-
trix (*) given in Figure 2. Finding the vector
requires solving the characteristic polynomial
of degree 4, that can be computed by Ferrari’s
method. The cross-covariance matrix is calcu-
lated in terms of Sxx, Sxy, . . ., as given above.

The next Section recapitulates existing meth-
ods for closest point search and presents a novel
method applicable for ICP. It combines k-d trees
with caching.

2.1. Closest Point Search with k-d Trees

k-d trees are a generalization of binary search
trees. Every node represents a partition of a
point set to the two successor nodes. The
root represents the whole point cloud and the
leaves provide a complete disjunct partition of
the points. These leaves are called buckets (cf.
Figure 3). Furthermore, every node contains
the limits of the represented point set.

2.1.1. Searching k-d Trees

k-d trees are searched recursively. A given 3D
point needs to be compared with the separating
plane in order to decide on which side the search
must continue. This procedure is executed un-
til the leaves are reached. There, the algorithm
has to evaluate all bucket points. However, the
closest point may be in a different bucket, iff
the distance to the limits is smaller than the
one to the closest point in the bucket. In this
case, backtracking has to be performed. Figure
3 shows a backtracking case, where the algo-
rithms have to go back to the root. The test is
known as ball-within-bounds test [6, 11, 12].

N =

⎛
⎜⎝

(Sxx + Syy + Szz) (Syz + Szy) (Szx + Sxz) (Sxy + Syx)
(Syz + Szy) (Sxx − Syy − Szz) (Sxy + Syx) (Szx + Sxz)
(Szx + Sxz) (Sxy + Syx) (−Sxx + Syy − Szz) (Syz + Szy)
(Sxy + Syx) (Syz + Szy) (Szx + Sxz) (−Sxx − Syy + Szz)

⎞
⎟⎠ (∗)

Figure 2. Computation of the cross-covariance matrix for the quaternion-based solution.
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Figure 3. Left: Recursive construction of a k-d tree. If the query consists of point pq, k-d tree search has to backtrack
to the tree root to find the closest point. Right: Partitioning of a point cloud. Using the cut (b) rather than (a) results

in a more compact partition and a smaller probability of backtracking [11].

2.1.2. The Optimized k-d Tree

Theobjective of optimizing k-d trees is to reduce
the expected number of visited leaves. Three
parameters are adjustable, namely, the direction
and position of the split axis as well as the max-
imal number of points in the buckets. Splitting
the point set at the median ensures that every k-
d tree entry has the same probability [11]. The
median can be found in linear time, thus the
time complexity for constructing the tree is not
affected. Furthermore, the split axis should be
oriented perpendicular to the longest axis to
minimize the amount of backtracking (see Fig-
ure 3, right). Friedman and associates prove
that a bucket size of 1 is optimal [11]. Never-
theless, in practice it turned out that a slightly
larger bucket size is faster [13].

2.1.3. Approximate k-d Tree Search

S. Arya and D. Mount introduce the following
notion for approximating the nearest neighbor
in k-d trees [4]: Given an ε > 0, then the point
p ∈ D is the (1+ ε)-approximate nearest neigh-
bor of the point pq, iff

‖p − pq‖ ≤ (1 + ε)‖p∗ − pq‖,
where p∗ denotes the true nearest neighbor, i.e.,
p has a maximal distance of ε to the true near-
est neighbor. Using this notation, the algorithm

records the closest point p in every step. The
search terminates if the distance to the unana-
lyzed leaves is larger than

‖pq − p‖/(1 + ε).

Figure 4 (left) shows an example where the gray
cell need not to be analyzed, since the point p
satisfies the approximation criterion.

2.1.4. ApproximateBoxDecompositionTrees

Arya et al. have presented an algorithm for
approximating the nearest neighbor search and
proved its optimality [5]. They use a balanced
box decomposition tree (bd-tree) as their pri-
mary data structure. This tree combines two im-
portant properties of geometric data structures:
First, as in the k-d tree case, the set of points is
exponentially reduced. Second, the aspect ratio
of the tree edges is bounded by a constant. Not
even the optimized k-d tree is able to make this
assurance, but quadtrees show this characteris-
tic [5]. The actual box decomposition search
tree is composed of splits and shrinks. Figure 4
(c) shows the general structure.

The search procedure of bd-trees is similar to
the one of approximate k-d trees. The approxi-
mate search is discontinued (cf. Figure 4) if the
distance to the unanalyzed leaves is larger than

‖pq − p‖/(1 + ε).
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Figure 4. Left: The (1 + ε)-approximate nearest neighbor. The solid circle denotes the ε environment of pq. The
search algorithm need not analyze the gray cell, since p satisfies the approximation criterion. Middle and right: (a)

Given point set. (b) decomposition into buckets. (c) Tree layout. Figure adapted from [4, 5].

2.2. Cached k-d Tree Search

k-d trees with caching contain, in addition to
the limits of the represented point set and to
the two child node pointers, one pointer to the
predecessor node. The root node contains a
null pointer. During the recursive construction
of the tree, this information is available and no
extra computations are required.

For the ICP algorithm, we distinguish between
the first and the following iterations: In the first
iteration, a normal k-d tree search is used to
compute the closest points. However, the re-
turn function of the tree is altered, such that, in
addition to the closest point, the pointer to the
leaf containing the closest point is returned and
stored in the vector of point pairs. This supple-
mentary information forms the cache for future
look-ups. Note: The cache here is a main mem-
ory section storing intermediate results and is
not the hardware, i.e., on die cache.

In the following iterations, these stored pointers
are used to start the search. If the query point is
located in the bucket, the bucket is searched and
the ball-within-bounds test is applied. Back-
tracking is started, iff the ball lies not com-
pletely within the bucket. If the query point is
not located within the bucket, then backtrack-
ing is started, too. Since the search is started in
the leaf node, explicit backtracking through the
tree has to be implemented using the pointers
to the predecessor nodes (see Figure 5). Al-
gorithm 1 summarizes the ICP with cached k-d
tree search.

Performance of cached k-d tree search. The
proposed ICP variant uses exact closest point

search. In contrast to the previously discussed
approximate k-d tree search for ICP algorithms
[12, 21], registration inaccuracies or errors due
to approximation cannot occur.

Friedman et al. prove that searching for closest
points using k-d trees needs logarithmic time
[11], i.e., the amount of backtracking is in-
dependent of the number of stored points in
the tree. Since the ICP algorithm iterates the
closest point search, the performance derives to
O(INd logNm), with I the number of iterations.
Note: Brute-force ICP algorithms have a per-
formance of O(INdNm).

The proposed cached k-d tree search needs
O((I + logNm)Nd) time in the best case. This
performance is reached if constant time is needed
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Figure 5. Schematic description of the proposed search method: Instead of closest point searching from the root of
the tree to the leaves that contain the data points, a pointer to the leaves is cached. In the second and following ICP

iteration, the tree is searched backwards.

for backtracking, resulting in Nd logNm time for
constructing the tree, and I ·Nd for searching in
case no backtracking is necessary. Obviously,
the backtracking time depends on the computed
ICP transformation (R, t). For small transfor-
mations the time is nearly constant.

Cached k-d tree search needsO(Nd) extramem-
ory for the vector v, i.e., for storing the point-
ers to the tree leaves. Furthermore, additional
O(Nm) memory is needed for storing the back-
wards pointers in the k-d tree.

3. Lu / Milios Style GraphSLAM

To solve SLAM, a 6D graph optimization algo-
rithm for global relaxation based on the method
of Lu and Milios [19] is employed, namely Lu
and Milios style SLAM (LUM). Details of the
6D optimization, i.e., how the matrices have to
be filled, can be found in [8].

Given a network with n + 1 nodes X0, ..., Xn
representing the 6D poses V0, ..., Vn in Euler
angles, and the directed edges Di,j, we aim to
estimate all poses optimally to build a consis-
tent map of the environment. For simplicity, we
make the approximation that the measurement

equation is linear, i.e.,

Di,j = Xi − Xj.

Since the optimization is done in an iterative
fashion, problems due to linearization do not
occur. An error function is formed such that
minimization results in improved pose estima-
tions:

W =
∑
(i,j)

(Di,j − D̄i,j)TC−1
i,j (Di,j − D̄i,j). (10)

where D̄i,j = Di,j +ΔDi,j models random Gaus-
sian noise added to the unknown exact pose
Di,j. The covariance matrices Ci,j describing
the pose relations in the network are computed
based on the paired points of the scan match-
ing. The error function Eq. (10) has a quadratic
form and is therefore solved in closed form by
Cholesky decomposition in the order of O(\)
for n graph edges (n � N, where N is the
number of points per 3D scan). The algorithm
optimizes Eq. (10) gradually, by iterating the
following five steps [8]:

1. Compute the point correspondences (n clos-
est points) for any link (i, j) in the given
graph.
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2. Calculate the measurement vector D̄ij and its
covariance Cij.

3. From all D̄ij and Cij form a linear system
GX = B.

4. Solve for X

5. Update the poses and their covariances.

4. The Parallel ICP Algorithm

The basic work for parallelization of the ICP
algorithm (pICP) was done by by Langis et
al. [17]. pICP showed compelling results on
a cluster with p processors for registration of
large data sets. The basic idea is to divide the
data set D into p parts and to send these parts
together with the whole model set M to the child
processes that compute concurrently the expen-
sive closest point queries. Afterwards, these
points correspondences are transmitted back to
the parent that uses it for computing the trans-
formation by minimizing Eq. (2). Then this
transformation is sent to the childs, which trans-
form the data set D. The process is iterated until
the minimum of Eq. (2) is reached.

The parallelization scheme for ICP uses a lot
of bandwidth for transmitting corresponding
points. Thus, Langis et al. [17] proposed sev-
eral enhancements to the parallel method. One
of these improvements is avoiding the transfer
of the corresponding points. The computation
of the correlation matrix t in Eq. (9) is paral-
lelized and partially executed by the child pro-
cesses, i.e., Eq. (9) is transformed as follows

H =
N∑

i=1

(mi − cm)(di − cd)T

=
p∑

i=1

Ni∑
j=1

(mi,j − cm)(di,j − cd)T , (11)

(12)

where Ni denotes the number of points of child i,
cmi , cdi the centroid of points of child i, and
(mi,j, di,j) the jth corresponding point of child i.
Furthermore, for Eq. (11) holds

H =
p∑

i=1

Ni∑
j=1

( (
mi,j − cmi + (cmi − cm)

)

(
di,j − cdi + (cdi − cd)

)T)
=

p∑
i=1

(
Hi + Ni(cmi − cm)(cdi − cd)T) (13)

where, Hi =
Ni∑
j=1

(mi,j − cmi)(di,j − cdi)
T

(14)

Therefore, after the point correspondences are
parallelly computed Eq. (13) and (14) form the
algorithm for computing the correlation matrix
t in a parallel fashion. The centroids cm and
cd (cf. Eq.(3)) are also computed from these
intermediate results, i.e.,

cm =
1
N

p∑
i=1

Nicmi, cd =
1
N

p∑
i=1

Nicdj

Finally, after the parent has collected the vec-
tors cmi , cdi and the matrix ti from the childs, it
is possible to compute the transformation (R, t)
to align the point sets.

4.1. Parallelization of k-d tree Search

This paper considers an OpenMP implemen-
tation for the pICP algorithm, that is a shared
memory architecturewith p processors or threads
(symmetric multiprocessing). Therefore, there
is no need to create p copies of the model set
M. However the search is executed in parallel,
using parallel k-d tree search.

4.1.1. Parallel Construction of k-d Trees

Since the k-d tree partitions the point set in two
disjunct subsets, the construction is easily par-
titioned by executing the two recursive cases in
parallel.

4.1.2. Parallel Search of k-d Trees

In the pICP algorithm several search requests
have to be handled by the k-d tree at the same
time. Efficient implementations of k-d tree
search algorithms use static, i.e., global vari-
ables to save the current closest point. This cur-
rent point is first derived by depth first search
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and then updated in the backtracking phase.
When executing the search with parallelism p
copies of this point must be created.

4.1.3. Implementation Details

Most high performance processors insert a hard-
ware cache buffer between slow memory and
the high speed registers of the CPU. If several
threads use unique data elements on the same
hardware cache line for read and write, then so-
called false sharing might occur. If one of the
threads writes to a cache line, the same cache
line referenced by the second thread is invali-
dated of the cache. Any new references to data
in this cache line by the second thread results
in a cache miss and the data has to be loaded
again from memory. To avoid false sharings,
we pad each thread’s data element to ensure
that elements owned by different threads all lie
on separate cache lines as follows:

class KDParams {
public:
/** pointer to the closest point.

* size = 4 bytes of 32 bit machines
*/

double *closest;
/** distance to the closest point.

* size = 8 bytes
*/

double closest_d2;
/** pointer to the point,

* size = 4 bytes of 32 bit machines
*/

double *p;
/** expand to 128 bytes to avoid

* false-sharing, 16 bytes from above
* + 28*4 bytes = 128 bytes */

int padding[28];
};

In our search tree, these padded parameters are
included using memory alignment:

class KDtree {
// [snip]

public:
__declspec (align(16)) \

static KDParams params
[MAX_OPENMP_NUM_THREADS];

};

4.1.4. Parallel Search of Cached k-d Trees

Searching cached k-d trees in a parallel fashion
is accomplished by placing the for-statements
of algorithm 1 inOpenMPdirectives. The cache
is currently a section of the main memory, thus
all threads are allowed to access the cached data
via shared memory.

5. The Parallel Lu / Milios Style
GraphSLAM

There are several steps of the Lu and Milios-
based GraphSLAM algorithm that might be ex-
ecuted in a parallel fashion, resulting in the
pLUM algorithm. The point correspondences
for any link (i, j) in the given graph are com-
puted in parallel (step 1) as well as the com-
putation of the measurement vector D̄ij (step
2) and the formation of the linear system (step
3). In principle, also the last step, i.e., solving
the linear system of equations, can be executed
in a parallel fashion by the parallel Cholesky
decomposition [23]. However, since we use
a sparse Choleskey decomposition that runs in
linear time, no additional speedup is needed in
this step.

Two possible strategies exist for parallelizing
step 1: First, for all links the computation of
the correspondence search proceed as the unim-
proved pICP case in Section 4. The drawback
of this strategy is that the closest point pairs
have to be transmitted back to the parent thread.
The more advanced strategy is to compute for
the n given links, the correspondences on the p
processors. In this strategy several k-d trees of
different data sets have to be constructed, main-
tained and searched in a parallel fashion. How-
ever, it turns out that the parallelization scheme
in subsection 4.1.3 also works in this pLUM
variant. Since the global variables of the paral-
lel k-d tree depend on the thread number, several
data sets are processed at the same time. The
search function of every k-d tree associated with
a data set stores its local values separately.

6. Experiments and Results

6.1. Evaluation of Cached k-d Tree Search

The proposed method has been evaluated with
three data sets from different domains. The
computation was done on an Intel Core 2 Duo
with 1.83 GHz running Linux OS, with the
same compiler options, i.e., with Intel’s icc -
O2. Since k-d tree search and cached k-d tree
search are very similar, most parts of the code
were identical in the comparison experiments.
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In all tests, ICP with cached k-d tree search
outperformed ICP with conventional k-d tree
search. Three detailed analyses are provided:

1. The performance of the cached k-d tree search
depending on a change of the bucket sizewas
tested: For small bucket sizes, the speed-up
is larger (Figure 6, top). This behavior orig-
inates from the increasing time needed to
search larger buckets.

2. The search time per iteration was recorded
during the experiments (Figure 6, middle).
For the first iteration the search times are
equal, since cached k-d tree search uses con-
ventional k-d tree search to create the cache.
In the following iterations, the search time
drops significantly and remains nearly con-
stant. The conventional k-d tree search in-
creases in speed, too. Here, the amount of
backtracking is reduced due to the fact that
the calculated transformations (R, t) are get-
ting smaller.

3. The number of points to register influences
the search time. With increasing number of
points, the positive effect of caching algo-
rithms becomes more and more significant
(Figure 6, bottom).

Additional results on cached k-d tree search are
reported in the following subsection in combi-
nation with parallelization.

6.2. Evaluation of the Parallelization

Load Balancing. The computations carried out
in a parallel fashion have to be scheduled to the
p processors. The goal of balancing the load for
the processors is to maximize the gained speed-
up aiming to reach the optimal runtime of ts/p,
with ts the time for executing scan matching on
a single processors.

The scheduling of parallel point searching for
pICP is done by OpenMP altering the for state-
ment. Every thread determines its thread num-
ber and uses this information for the parallel k-d
tree search. Prior splitting of the data set avoids
the determination of the thread number for ev-
ery point. Splitting the data set has to be done in
a randomized fashion to ensure load balancing.
It turned out that this requires more time than
the determination of the thread number in every
iteration. Similar arguments apply for pLUM.

Figure 6. Detailed results for the data set “cluttered
indoor environment”. Top: Search time vs. bucket size.
Middle: Search time per iteration for bucket sizes 10

and 25. Bottom: Search time depending on the number
of points.

MatchingLaserScansAcquiredwithKurt3D.
In this experiment we use the exploration robot
Kurt3D. Figure 7 shows the robot in a natu-
ral outdoor environment. The 3D laser range
finder [24] is built on the basis of a SICK 2D
range finder by extension with a mount and a
small servomotor. Resolution can be adjusted
at the expense of scanning time; scanning is
done in a stop-scan-go fashion. All computa-
tions have been carried out with Kurt3D that is
equipped with a Panasonic Toughbook CF-74
with an Intel Core Duo-T2400, 1.83 GHz.

We made two experiments with Kurt3D. First
we drove a closed loop in our office environ-
ment and acquired 11 3D scan with 85000 data
points each. Figure 8 shows the office scene.
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Figure 7. Left: Kurt3D. Right: The 3D laser scanner is
built of 2D laser scanner and a servo motor step-rotating

the scanner.

Table 1 shows the results. The overall running
time was reduced to 76.2%, i.e., by a factor of
1.31. Using four instead of two threads yields a
slight improvement, probably due to improved
scheduling issues. Usingmore than four threads
did not lead to additional advances.

The second experiment was performed in
Dagstuhl castle, where we acquired a 3D model
of interior of the new building wing (cf. Figure
9) containing 83 3D scans with the same reso-

lution as in the previous experiment. The over-
all time spent by the 3D mapping algorithms,
i.e., ICP and LUM was 112141 ms using single
thread execution, 78141 ms using two threads
and 70218 ms using four threads.

Matching of ContinouslyAcquired 3DScans.
Wulf et al. presented a rotating 3D scanner
in [31]. In the following experiment we pro-
cessed 468 3D scans containing approximately
20000 3D points per scans. These scans where
matched with ICP and since there were several
loops we applied LUM after each loop detec-
tion. Loop detection is done using a simple
distance criterion: If two estimated robot poses
Vi and Vj are close enough, i.e., their distance
falls below a threshold (here: 5meters), thenwe
assume that these scans overlap and are match-
able. The overall time spent by the 3D map-
ping algorithms was reduced from 4526 sec. to
3420 sec. using four threads, i.e., a speed-up of
1.32 was obtained. Figure 10 shows the final
map (top view) and two detailed views.

Figure 8. Left: 3D scans of an office environment. Right: Top view of the map representing one small closed loop.

one thread two threads four threads
algorithm

without cache with cache without cache with cache without cache with cache

ICP 12688 10945 9821 9222 9750 9081

LUM 703 692 610 550 453 412

total 13391 11637 10431 9772 10203 9493

Table 1. Running times in milliseconds for single-thread computation vs. multi-thread computation. The first rows
represent the speed-up for pure ICP and LUM computations on an Intel Core Duo-T2400.
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Figure 9. Left: 3D view of the new wing of Dagstuhl castle. Right: Top view.

Figure 10. Top: Trajectory and map of the campus of Leibniz Universität Hannover. Bottom: Two detailed 3D views.
Bottom left: modelled skyscraper. Bottom right: building with a tree in front. An additional illustration of this scene

is given in Figure 1.
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one thread two threads four threadsnumber of
3D scans without cache with cache without cache with cache without cache with cache

2 (ICP) 20750 12651 10985 8597 10938 8555

3 (ICP) 41984 30122 21750 16788 21750 15991

6 (ICP) 134031 100523 77390 70974 77047 70087

11 (ICP) 369828 258300 218125 198556 210515 198547

11 (LUM) 794110 729199 690023 672912 678111 652245

total 1163938 987499 908148 871468 888626 850792

Table 2. Running times in milliseconds for single thread computation vs. multi-thread computation. The first rows
represent the speed-up for pure ICP and LUM computations.

Figure 11. The main square in Horn (Austria). (a) 3D map in top view. (b) Monument in the center of the main
square. (c) Corresponding photo (right part). (d) Church spire. (e) Photo of St. Georg church. Data provided by

courtesy of RIEGL LMS GmbH [2].

Experiments with a High Resolution Data
Set. In the last experiment, we tested the
proposed parallelization on high resolution 3D
scans provided by RIEGL Laser Measurement
Systems GmbH [2]. For mapping we use 11 3D
scans containing over 300000 data point each,
covering a very large area. Table 2 shows the
performance on this data set, Figure 11 shows
the final map, two detailed views with photos of
the scene. The most gain is achieved by paral-
lelization of ICP, up to a factor of 1.91. The total
speed-up on this data set is 1.28. Besides pro-
cessing these scans on a dual-core T2400, we
tried our algorithms on Osnabrück’s compute
server with 4 dual-core Itanium-II processors
and achieved significant speed-ups, up to a fac-
tor of 3.4. Measurements are not available since
the server is operated in multi-user mode.

7. Summary and Outlook

This paper has presented an approach to par-
allelize two well know mapping algorithms,
namely ICP and LUM. Since 2D mapping is
a special case of 3D mapping, the presented al-
gorithms can handle 2D laser range data as well,
but processing 3D data imposes a greater need
for efficiency. The focus of the parallelization
was to keep up with current hardware devel-
opments given by the introduction of dual and
multi-core CPUs. The achieved speed-ups vary
between the algorithms, for ICP a maximum
speed-up of factor 1.92 can be reported, which
is close to optimal on a dual-core CPU. The av-
erage speed-up is lower (approximately 1.25).
This difference is due to algorithm parts that
cannot be parallelized and due to data manag-
ing processes.
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In future work, we will concentrate on paral-
lelizing probabilistic robotic algorithms to ex-
ploit current computing hardware. Particle fil-
ters seem to be good candidates for paralleliza-
tion. The overall goal is to combine the reli-
ability of probabilistic algorithms, like particle
filters with the precision of deterministic ap-
proaches like scan matching.
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J. HERTZBERG. A 3D laser range finder for au-
tonomous mobile robots. In Proc. of the 32nd Int.
Symposium on Robotics (ISR ’01), pages 153 – 158,
Seoul, Korea, April 2001.
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