
Journal of Computing and Information Technology - CIT 16, 2008, 4, 339–344
doi:10.2498/cit.1001403

339

An Enhancement of Futures Runtime in
Presence of Cache Memory Hierarchy

Matko Botinčan1 and Davor Runje2

1Department of Mathematics, University of Zagreb, Croatia
2Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

A future is a simple abstraction mechanism for exposing
potential concurrency in programs. In this paper, we
propose an enhancement of our previously developed
runtime for scheduling and executing futures based on
the lazy task creation technique that aims to reflect the
cache memory hierarchy present in modern multi-core
and multiprocessor systems.

Keywords: futures, lazy task creation, fine-grained con-
currency, memory hierarchy

1. Introduction

The free lunch is over [15, 16] for most sequen-
tial and many concurrent applications that are
being developed today. New processors com-
ing out on a market do not get their performance
boosted by higher clock speeds, yet (typically)
by increasingly higher number of cores. Ap-
plications that want to utilize the potential per-
formance gain of multi-core processors need to
expose the potential concurrency. In order to
achieve this, programmers most commonly em-
ploy programming techniques based on the use
of threads and locks, which in turn often lead
to error-prone and hard-to-verify implementa-
tions. An important challenge of modern soft-
ware engineering is to invent new and improve
existing abstractions that will enable easier and
safer dealing with concurrency for the end pro-
grammer.

The potential concurrency of many programs
is inherently finer-grained than the concurrency
of the platform they are executing on, i.e. the
number of processors in the platform is typi-
cally much smaller than the number of poten-

tially concurrent tasks in the program. A fu-
ture [11, 4, 8, 12, 18, 10] is a simple abstrac-
tion mechanism that allows a programmer to
expose the potential concurrency of such pro-
grams. The key challenge in achieving a scal-
able performance of programs annotated with
futures is efficient partitioning and scheduling
of the exposed potentially concurrent tasks, re-
gardless of the characteristics of the underlying
platform.

In a previous paper [7], we presented an archi-
tecture of a .NET [3] runtime for scheduling and
executing futures based on a technique called
lazy task creation [13]. The runtime was de-
signed in such way that it allowed any function
accessible from .NET to be called as a future.
Moreover, it also gave rise to a simple extension
ofC#programming language [2]with constructs
for easy and elegant programming with futures.

In modern multi-core/multiprocessor systems,
memory accesses are performed through a hi-
erarchy of caches. In order for an optimal per-
formance to be achieved, the runtime should
take into consideration the memory organiza-
tion of the underlying platform. This paper
proposes an enhancement of our previously de-
veloped futures runtime that aims to reflect this
cache memory hierarchy. Its key parts are a hi-
erarchical organization of thread groups and a
traversal strategy for task stealing that aims to
minimize performance penalties resulting from
cache misses and contention between proces-
sors.

The rest of the paper is structured as follows.
Section 2 explains concepts that play main roles

340 An Enhancement of Futures Runtime in Presence of Cache Memory Hierarchy

in the futures runtime – futures, continuations
and the lazy task creation. In Section 3, we
review the design of the futures runtime and
propose its enhancement for systems with hier-
archically structured memory. Section 4 gives
concluding remarks and discusses some future
work.

Acknowledgment: This work was partially sup-
ported by the Phoenix/SSCLI 2006 award from
Microsoft Research and Croatian National Sci-
ence Foundation.

2. Futures and the Lazy Task Creation

A future [11, 4, 8, 12, 18, 10] is an object that
acts as a placeholder for a result of a compu-
tation. On a programming language level, the
future as a language construct is used to de-
note that some piece of code may be executed
in parallel, i.e. to expose potentially concurrent
tasks. For instance, in its canonical MultiLisp
form [11], the expression

(C (future F))

denotes that the child task computing F may
proceed in parallel with its parent continuation
C.1

The computation of C and F can be arranged in
different ways. Our runtime is based on the lazy
task creation technique [13] in which F is be-
ing evaluated in the current task, while enough
information about C is saved so that if some
processor becomes idle, C can be moved to a
separate task. This way the program is exe-
cuted sequentially until a concurrent execution
becomes possible.

In Figure 1, we repeat the example from [7] in
order to exemplify the lazy task creation ap-
proach. The example illustrates a simple con-
current algorithm employing futures that sums
nodes of a binary tree. The code is written
in our proposed extension of the C# program-
ming language. It uses a generic type future<T>
for denoting values that may be computed in
parallel as a future, while the wait construct de-
termines a synchronization point at which the

caller will remain suspended until the value of
a given future becomes resolved.

public class BinaryTree {
BinaryTree l;
BinaryTree r;
int value;

public int FutureSum() {
int s = value;
future<int> f;
if (l != null)
f = l.FutureSum();

if (r != null)
s += r.FutureSum();

if (l != null) {
wait(f);
s += f;

}
return s;

}
}

Figure 1. Summation of a binary tree with futures.

Annotating the variable f in the function Future-
Sum() as a future indicates that the recursive call
to FutureSum() on the left subtree can proceed
in parallel with the recursive call on the right
subtree. This natural expression of parallelism
in FutureSum() gives rise to rather fine-grained
concurrency – namely, for a tree of depth k there
are 2k futures.

If FutureSum() was run with the lazy task cre-
ation on 4 processors (say, p1, p2, p3 and p4), an
ideal execution would look as shown in Figure
2. Suppose that a call to FutureSum() on a tree
with root A is scheduled on processor p1. The
future at A (representing the call to FutureSum()
on B) becomes inlined and executed further by
p1, while its continuation (representing the call

Figure 2. The execution tree of FutureSum() on 4
processors.

1 A continuation is a representation of the execution state of a function performing the computation at a certain point throughout
its execution. It is typically represented by the function’s stack frame consisting of function arguments, the address of the next
instruction and values of local variables.

An Enhancement of Futures Runtime in Presence of Cache Memory Hierarchy 341

to FutureSum() on C) gets stolen by an available
processor, say p2. Likewise, the futures at B
and C get inlined, while their continuations are
stolen by two remaining available processors p3
and p4.

The lazy task creation maximizes the run-time
task granularity and keeps the system evenly
balanced in such idealistic situation. Although,
in general, it is not necessary the case, exper-
iments (e.g. [13, 18]) evidence that in non-
pathological situations a user may expect steady
and well-behaved performance from this tech-
nique. Nonetheless, it treats the cost of switch-
ing between tasks uniformly, making this ap-
proach less likely to perform efficiently in sys-
tems with hierarchically structured memory in
which cost of switching between tasks depends
on their distance in the memory hierarchy.

3. The Futures Runtime in Presence of
Cache Memory Hierarchy

The first part of this section reviews design of
our .NET runtime for scheduling and executing
futures based on the lazy task creation technique
from [7]. Afterwards, the second part deals with
our proposed enhancement of this runtime for
systems with hierarchically structured memory.

3.1. The Design of The Futures Runtime

Before using the result of a future, one must
make sure that the future is completed and that
its result is available. We employ the concept
of guards for conditioning the further progress
on a future that is not yet completed. More-
over, guards enable programmers not only to
express which events need to happen before fur-
ther progress of a computation, but also to spec-
ify actions to be triggered depending on their
relative timings. Our concept of guards has the
full expressiveness of guards from [5, 6]; they
are represented as .NET delegates [3].

Threads managed by the runtime are grouped
into thread groups. A distinct processor in a
system is associated with each thread group,
and all threads in the same group have their

thread affinity fixed to the same processor. The
number of thread groups defaults to the number
of processors available in the system.

All but at most one thread in a thread group
are waiting for a synchronization object (man-
ually reset event) managed by the runtime. The
thread not waiting for such event is running or
scheduled, while other threads in the group are
suspended. If the guard associated with a sus-
pended thread has a defined value, we say that
the thread is runnable.2

Each thread in a thread group has its own task
queue – a double ended queue of continuations.
When a future is called from a continuation, the
continuation gets suspended and placed at the
end of the thread’s task queue, while the future
call is inlined, i.e. it gets called immediately.
An integer that denotes the number of continu-
ations above in a continuation’s execution stack
gets assigned to each continuation at its cre-
ation. The depth of a thread is the maximal
depth of continuations in its task queue.

When a thread t running in a thread group G
requires results of other futures in order to con-
tinue its computation, it evaluates a guard g ex-
pressing the condition for its progress. Since
waiting for a guard blocks the computation as
long as its value remains undefined, if the guard
has an undefined value, the runtime suspends
the thread t. The guard g becomes associ-
ated with t, and the runtime tries to find an-
other runnable thread that can be resumed for
execution. The suspended thread will not be
scheduled by the runtime before it has become
runnable again.

The runtime first checks if there is a runnable
thread t′ in the same thread group G. If there is
such, then t′ becomes the running thread of the
thread group. The exact choice of a runnable
thread to be resumed is important, and the run-
time always chooses the one with the highest
depth in the group. Such choice can be justified
by noticing that the chosen thread is probably
the one with the most advanced computation
and, thus, resuming it would most likely com-
plete its computation and therefore reduce the
total number of threads in the system.

2 One could view thread groups as threads and threads as fibers executed by that thread. If fibers were (still) available in .NET,
they would be used as a natural implementation of this aspect of the runtime.

342 An Enhancement of Futures Runtime in Presence of Cache Memory Hierarchy

If there are no runnable threads inG, the runtime
traverses thread groups searching for a thread
with a stealable continuation. The order that
the thread groups are traversed in matters, and
the next section deals with an optimal traversal
strategy in presence of cache memory hierar-
chy. Let t′′ be the thread being examined at
a particular time instance. The runtime tries
to remove the continuation C with the minimal
depth from the task queue of t′′, and, if success-
ful, starts a fresh thread t′ in the thread group G
that resumes the stolen continuation. The newly
started thread is taken from a thread pool.

The stolen continuation C has originally been
put into the task queue of t′′ when t′′ was as-
signed a future called from C. When the future
called from C gets completed, t′′ will try to re-
move C from its task queue, which is deemed
to fail as C is now being executed by t′. Since
a continuation is just a closure of a function, t′′
cannot proceed before C gets completed, thus
t′′ will remain suspended on the guard waiting
for C until t′ finishes execution of C.

3.2. The Proposed Enhancement

In modern multi-core/multiprocessor systems,
the shared main memory is accessed through a
hierarchy of cache memories. For example, an
Intel quad-core Xeon 5300 processor has four
32-KB Level 1 and two 4-MB Level 2 cache
memories, where each Level 2 cache is shared
between two cores [1]. In a common configura-
tion, two or more such processors are connected
to the shared main memory.

In the original lazy task creation approach [13],
processors are examined for a stealable continu-
ation in the round-robin fashion. Such strategy
reduces contention on task queues, but ignores
the details of memory/cache hierarchy. A task
stealing algorithm should respect the memory
organization of the underlying platform in or-
der to achieve optimal performance — stealing
a task that has been executed by a core far away
in the cache hierarchy results in a performance
penalty.

What we propose as an enhancement of our fu-
tures runtime along this direction is to employ
the binary tree representation of the cache mem-
ory hierarchy and use it for hierarchically orga-
nizing thread groups with continuations. Here,
the shared main memory represents the root
of the tree, the processors constitute its leaves,
while the shared cache memories are its inner
nodes. The corresponding symbolical represen-
tation of the system with two quad-core Xeon
5300 processors is shown in Figure 3.

We now formally describe how an optimal strat-
egy for traversing such hierarchically organized
thread groups looks like. Let T be the binary
tree representation of this hierarchy and denote
with L = {l1, . . . , ln} the set of its leaves. A
traversal strategy t for a tree T assigns a bijec-
tion tl : {1, . . . , n} → L to every leaf l ∈ L.
If for a traversal strategy t and leaves i and j,
ti(k) = j holds, we say that j occurs at k-th
position in ti and write posi(j) = k. We also
write

ti : j1 → j2 → . . . → jn

Figure 3. Cache hierarchy and organization of thread groups on a dual Xeon 5300 system.

An Enhancement of Futures Runtime in Presence of Cache Memory Hierarchy 343

to denote that the function ti maps k to jk, for
k ∈ {1, . . . , n}.
An optimal traversal strategy for a tree T is a
traversal strategy t such that:

• leaves with a smaller distance from i are tra-
versed first in ti, i.e. it holds:

posi(j) < posi(k) ⇐⇒ d(i, j) ≤ d(i, k);

• every leaf i occurs at a position k in some tj
exactly once, i.e. we have:

∀i ∈ L, ∀k ∈ {1, . . . , n} . ∃!j ∈ L
such that posj(i) = k.

The first condition intuitively minimizes the
penalty related to cache misses when moving
a continuation to another processor, while the
second one intuitivelyminimizes the contention
between processors when concurrently search-
ing for a stealable continuation. Note that an op-
timal traversal strategy as defined above might
not exist for an arbitrary binary tree, however,
for every complete binary tree that contains all
possible leaves (and the tree representation of
the cache memory hierarchy is always such by
our assumption) there always exists one.

Example: If we enumerate cores of the sym-
bolical representation in Figure 3 with 0, . . .,
7 when looking at cores from left to right, then
one optimal traversal strategy in the above sense
looks as follows:

t0 : 0 → 1 → 2 → 3 → 4 → 5 → 6 → 7
t1 : 1 → 0 → 3 → 2 → 5 → 4 → 7 → 6
t2 : 2 → 3 → 0 → 1 → 6 → 7 → 4 → 5
t3 : 3 → 2 → 1 → 0 → 7 → 6 → 5 → 4
t4 : 4 → 5 → 6 → 7 → 0 → 1 → 2 → 3
t5 : 5 → 4 → 7 → 6 → 1 → 0 → 3 → 2
t6 : 6 → 7 → 4 → 5 → 2 → 3 → 0 → 1
t7 : 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0

Although it is not difficult to calculate optimal
traversal strategies as such on the fly, we sug-
gest that in the implementation they are precal-
culated and stored in a two-dimensional lookup
table during the initialization phase of the fu-
tures runtime.

4. Conclusions and Future Work

In this paper, we have proposed an enhance-
ment of our previously developed futures run-

time for .NET that employs the lazy task cre-
ation technique. Although the lazy task creation
is a technique known to work well, we have en-
riched it in a novel way that aims to reflect
the cache memory hierarchy in modern multi-
core/multiprocessor systems. The key parts are
hierarchical organization of thread groups and
the notion of an optimal traversal strategy for
task stealing that aims to minimize performance
penalties resulting from cache misses and con-
tention between processors. The proposed ap-
proach, however, has yet to be implemented and
its efficiency remains to be determined.

A future is an object that acts like a proxy in
the sense of [9]. Even though our proposed
extension of C# greatly simplifies exposing the
potential concurrency with futures, since C# is a
strongly-typed language, parts of the code may
need to be manually rewritten in order to use
type Future<T> instead of T, as well as the corre-
sponding Future<T>’s values must be explicitly
claimed. A possible solution to this problem
may be to employ a static analysis based on a
qualifier inference for tracking flow of futures
through a program and inject appropriate coer-
cions where needed, as done in [14].

Furthermore, the observable behavior of a pro-
gram annotated with futures should be equiva-
lent to the observable behavior of the original
program. This property is of course satisfied
in case when there are no side effects, how-
ever, it is much more difficult (if not impossi-
ble) to guarantee it if there exists shared data.
Safe futures for Java proposed in [17] enforce
semantic safety automatically by using object
versioning and task revocation with acceptable
performance penalty for programs with modes
mutation rates on shared data. We also plan to
investigate if it is possible, and if yes, how to
implement this approach in our settings.

References

[1] Intel technology and research web page.
http://www.intel.com/technology/

[2] ECMA-334: C# Language Specification, 4th edi-
tion. ECMA (European Association for Standard-
izing Information and Communication Systems);
2006.

344 An Enhancement of Futures Runtime in Presence of Cache Memory Hierarchy

[3] ECMA-335: Common Language Infrastructure
(CLI), 4th edition. ECMA (European Association
for Standardizing Information and Communication
Systems); 2006.

[4] E. H. BENSLEY, T. J. BRANDO, M. J. PRELLE. An
execution model for distributed object oriented
computation. In OOPSLA ’88: Proceedings of the
Conference on Object-oriented Programming Sys-
tems, Languages and Applications. ACM Press;
1988. p. 316–322.

[5] A. BLASS, Y. GUREVICH, D. ROSENZWEIG, B. ROSS-
MAN. Interactive small-step algorithms I: Axioma-
tization. Technical Report MSR-TR-2006-170, Mi-
crosoft Research; November 2006. To appear in
Logical Methods in Computer Science.

[6] A. BLASS, Y. GUREVICH, D. ROSENZWEIG, B. ROSS-
MAN. Interactive small-step algorithms II: Abstract
state machines and the characterization theorem.
Technical Report MSR-TR-2006-171, Microsoft
Research; November 2006. To appear in Logical
Methods in Computer Science.

[7] M. BOTINČAN, D. RUNJE, A. VUČINOVIĆ. Futures
and the lazy task creation for .NET. In Proceedings
of the 15th International Conference on Software,
Telecommunications and Computer Networks (Soft-
COM 2007). FESB, University of Split; 2007.

[8] A. CHATTERJEE. FUTURES: A mechanism for con-
currency among objects. In Supercomputing ’89:
Proceedings of the 1989 ACM/IEEE conference on
Supercomputing. ACM Press; 1989. p. 562–567.

[9] E. GAMMA, R. HELM, R. JOHNSON, J. VLISSIDES.
Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley, 1995.

[10] H. E. HINNANT. MultithreadingAPI for C++0X – a
layered approach. JTC1/SC22/WG21 – The C++
Standards Committee Document No. N2094=06-
0164; September 2006.

[11] R. H. HALSTEAD JR. MULTILISP: a language for
concurrent symbolic computation. ACM Transac-
tions on Programming Languages and Systems,
1985; 7(4): 501–538.

[12] B. LISKOV, L. SHRIRA. Promises: Linguistic support
for efficient asynchronous procedure calls in dis-
tributed systems. In PLDI ’88: Proceedings of the
ACM SIGPLAN 1988 conference on Programming
Language Design and Implementation. ACM Press;
1988. p. 260–267.

[13] E. MOHR, D. A. KRANZ, R. H. HALSTEAD JR. Lazy
task creation: A technique for increasing the gran-
ularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 1991; 2(3):
264–280.

[14] P. PRATIKAKIS, J. SPACCO, M. W. HICKS. Transpar-
ent proxies for Java futures. In Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and
Applications (OOPSLA 2004). ACM Press; 2004.
p. 206–223.

[15] H. SUTTER. The Free Lunch Is Over: A Funda-
mental Turn Toward Concurrency in Software. Dr.
Dobb’s Journal, 2005; 30 (3).

[16] H. SUTTER, J. LARUS. Software and theConcurrency
Revolution. ACM Queue, 2005; 3 (7): 54–62.

[17] A. WELC, S. JAGANNATHAN, A. L. HOSKING. Safe
futures for Java. In Proceedings of the 20th Annual
ACMSIGPLANConference onObject-oriented Pro-
gramming, Systems, Languages, and Applications
(OOPSLA 2005). ACM Press; 2005. p. 439–453.

[18] L. ZHANG, C. KRINTZ, S. SOMAN. Efficient support
of fine-grained futures in Java. In Proceedings of
the 18th International Conference on Parallel and
Distributed Computing and Systems (PDCS’06).
ACTA Press; 2006.

Received: June, 2008
Accepted: September, 2008

Contact addresses:

Matko Botinčan
Department of Mathematics

University of Zagreb
Bijenička cesta 30

10000 Zagreb, Croatia
e-mail: matko.botincan@math.hr

Davor Runje
Faculty of Mechanical Engineering

and Naval Architecture
University of Zagreb

Ivana Lučića 5
10002 Zagreb, Croatia

e-mail: davor.runje@fsb.hr

MATKO BOTINČAN is a Ph.D student at the Department of Mathemat-
ics, University of Zagreb, Croatia, where he received B. Sc (2002) and
M. Sc (2005) degrees in mathematics. His research interests include
analysis and design of concurrent programs, software verification and
mathematical logic.

DAVOR RUNJE is a Ph.D student at the Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia, where he received B. Sc
(1997) degree in electrical engineering. His research interests include
analysis and design of concurrent programs, software verification and
cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

