
Journal of Computing and Information Technology - CIT 16, 2008, 3, 197–207
doi:10.2498/cit.1001112

197

A Hashing Scheme for Multi-channel
Wireless Broadcast

Muthuswamy Vijayalakshmi and Arputharaj Kannan
Department of CSE, College of Engineering, Anna University, India

The rapid development of wireless communication tech-
nology and battery-powered portable devices is making
mobile information services increasingly popular. Since
the bandwidth resource of wireless networks is scarce and
the mobile devices have a limited battery capacity, any
solution for information access must be devised in such
a way that time and power consumption for the devices
are minimized. Data broadcast is a promising technique
to improve the bandwidth utilization and conserve the
power consumption in a mobile computing environment.
This paper proposes a hashing scheme for information
access via wireless broadcast through multiple channels
in which hash functions are used to index broadcast in-
formation across multiple channels. In this scheme, two
different hash functions called Primary Hash Function
(PHF) and Secondary Hash Function (SHF) are used,
where PHF is used to determine the channel in which the
desired data item is to be broadcasted and SHF is used to
locate the data item within that channel. The proposed
hashing scheme reduces both the access latency and
tuning time and shortens the broadcast length. Moreover,
Access Probabilities of data items and User Profiles that
indicate the client behavior in the environment at any
given time are considered in this system to construct an
efficient broadcast schedule. This broadcast schedule is
a non-flat data broadcast that further reduces the average
access latency. Finally, Caching techniques are also
implemented to further improve the access latency and
tuning time.

Keywords: mobile computing, wireless data broadcast,
data dissemination, hashing

1. Introduction

Mobile computing is the result of the conver-
gence of high-speed wireless networks and per-
sonal mobile devices. In the near future, it is
anticipated that a massive number of mobile
users, carrying portable devices will be able to
access a variety of information from anywhere
and at any time. The ability of mobile users to
move and access information ubiquitously has

opened new classes of data applications, which
promise to make our society more efficient and
our lives more sophisticated. For example, alert
systems can notify a mobile client when a reg-
istered alert fires (e.g., the stock price grows
higher than certain pre-set threshold); and mo-
bile users can query location-dependent infor-
mation (e.g., nearest restaurant) based on their
current locations. Without doubt, mobile com-
puting is becoming an important part of our
daily life. However, the major limitations in a
mobile environment such as limited bandwidth
for communication, limited power supply, fre-
quent disconnections, unrestricted mobility and
limited client capacities become serious con-
cerns that are prevalent in this environment.
These limitations affect the methods used to dis-
seminate information to mobile clients.

Data broadcast is an attractive data dissemina-
tion method in a mobile computing environ-
ment. With the broadcast scheme, the server
repeatedly broadcasts all the information at reg-
ular intervals. This scheme is very attractive
since a single broadcast of a data item can sat-
isfy the entire outstanding request for that data
item simultaneously. As such, broadcast can
scale up to an arbitrary number of users. Also,
data broadcast can take advantage of the large
downlink capacity available to the server when
delivering information to mobile clients. There
are two different approaches to broadcasting
data. The normal method is the one where the
server does not provide any auxiliary informa-
tion about the broadcast. Hence, in this method
a client may have to access all the data items
in a broadcast cycle to retrieve the desired data
item. This requires the mobile client to listen to

198 A Hashing Scheme for Multi-channel Wireless Broadcast

the broadcast all the time, which is inefficient
since clients have a scarce power supply.

On the other hand, a more efficient method,
called indexed broadcast has been used in [11]
in which the server transmits index information
about the broadcast before the actual broadcast.
In this method, the client first reads the index
and finds out when the required data would ar-
rive in the broadcast, dozes until then before
waking up to read the data. Hence in this broad-
cast scheme, tuning time is obviously less than
the normal scheme. But the drawback of this
solution is that broadcast cycles are lengthened
due to the transmission of additional index in-
formation leading to an increase in access la-
tency. One of the solutions provided to this
problem uses a tree structure to represent the
index information in which data is kept in the
leaves and the tree is traversed from the root fol-
lowing the index information kept in the nodes
[5]. Moreover, the structure is distributed in
the form of tables as discussed in [6], which
suits the sequential-access broadcast environ-
ment. In few other systems, the index has been
kept as a simple hash function [4], [1] which
takes up constant space and thus reduces the
length of the broadcast cycle. These Hash func-
tions allow a simplified design at the server side.

In amobile computing environment, two param-
eters are typically used to measure the effective-
ness of any scheme for data dissemination. One,
access latency that refers to the period of time
elapsed from the moment a mobile client issues
a query to the moment when the requested data
is received by the client and two, tuning time
that refers to the period of time spent by the
client staying active in order to obtain the re-
quested data. In this work, we focus on design-
ing and implementing new techniques to reduce
both access latency and tuning time by broad-
casting data over multiple channels. Broadcast
is a well known way of scalably transmitting
data to multiple clients. But this broadcast suf-
fers high response time due to the sequential
nature of data access. One solution provided in
the literature for this problem is to increase the
available bandwidth by increasing the number
of broadcast channels [12]. Hence, in this paper
we propose a new framework that allows fast
access to data that are broadcast over multiple
channels by increasing the number of broadcast
channels.

The scheme proposed in this paper aims at solv-
ing the problem of broadcasting a set of data
items across a set of broadcast channels in such
a way that it reduces both the access latency and
tuning time in order to save time and power for
mobile clients. We use Hash Functions to index
the broadcast information in order to reduce the
tuning time when data are broadcasted across
multiple channels. Access Probabilities of data
items are used as an indicator of the popularity
of data items and User Profiles [8] are used to
indicate the interests of mobile clients. We use
these two factors to analyze clients’ behavior
in the mobile environment, which is considered
to construct an efficient non-flat data broadcast
schedule. This non-flat data broadcast reduces
the access latency. In this system, caching tech-
niques are also implemented in mobile clients
to reduce the time for answering a query. More-
over, the availability of cache in the mobile unit
further improves the access latency and tuning
time of the system. Finally, mobility of the
clients and handoff are also handled appropri-
ately in this system.

The rest of this paper is organized as follows.
Section 2 provides a survey of related works
and its salient features. It also highlights the
work presented in this paper. Section 3 de-
scribes the system used in designing efficient
access broadcast programs. In Section 4, we
discuss the proposed system architecture with
the add-ons in the normal mobile computing ar-
chitecture. Section 5 provides the simulation
of the work and the results obtained. Section
6 gives a conclusion on this work and suggests
some possible enhancements.

2. Related Works

Several related research issues have attracted
a number of researchers to pay a considerable
amount of attention to on-demand broadcast,
data indexing, access frequencies estimation
and client cache management.

Imielinski et al. [11] aimed to solve the problem
of organizing data on wireless networks in order
to provide fast and low power access to users
equipped with mobile devices by proposing a
tree-based indexing scheme for data broadcast.
They also proposed an indexing scheme called

A Hashing Scheme for Multi-channel Wireless Broadcast 199

Distributed indexing which is an improved ver-
sion of the previous method. With distributed
indexing the index replications are cut down
since it is sufficient to have only the index rel-
evant to the data immediately following it in
the broadcast. But this index information con-
sumes a lot of space that can be efficiently used
for transmission of data items. Access latency
and tuning time are two conflicting performance
measures that cannot be minimized at the same
time with these methods. Hence it is necessary
to provide a better scheme for effective dissem-
ination of data in wireless broadcasts, that min-
imizes both access latency and tuning time.

Jianliang Xu et al. [3] proposed a method to
make the indexing scheme tunable, in which
any one of the parameter(s) is limited to a cer-
tain bound and the other is minimized. They
used a linear, but distributed index instead of a
tree-based one. The structure of the exponen-
tial index proposed by them allows searching
to start anywhere in the index and also to re-
cover from any error quickly, thus providing
error resilience. This scheme is tunable, that is,
the index can be tuned in such a way to opti-
mize either access latency or tuning time. Error
resilience is also achieved with their method
by quickly recovering from link errors due to
the distributed structure of the indexing scheme.
But the partitioning of the indexing space needs
further optimization. Moreover, the issues of
balancing both access latency and tuning time
are not considered in this paper.

Imielinski et al. [10] also proposed two hash-
ing protocols for indexing the broadcast. These
techniques are improved byYuxiaYao et al. [13]
and used for non-flat broadcast in a more effi-
cient manner. However, the hash scheme used
by them is not fully hole free and they provide
a minimal collision resolving mechanism. The
proposed scheme called MHash in [13] simulta-
neously reduces both access latency and tuning
time in wireless broadcast. Besides, using hash
function eliminates the need to broadcast index
structures and thus shortens the broadcast cy-
cles. Popular items are broadcasted frequently,
thereby reducing access latency. This naturally
leads to less tuning time for these items, but
their scheme works only for a single-channel
environment.

In the literature that deals with broadcasting,
indexing schemes are discussed only for a sin-

gle channel environment. Navathe et al. [12]
proposed using multiple channels effectively in
order to improve the performance. Multiple
channels mean that many data items are avail-
able in the broadcast at any point of time, pos-
sibly serving multiple clients. But the authors
assume that the client is capable of listening to
only one channel at a time. Hopping is required
to read data from another channel and this is
assumed to take constant time. Even though
there are multiple channels, each data item is
still unreplicated. In order to overcome these
problems, we take complement of the hash-
ing scheme in which we apply it for multiple
channels so that tuning time, access latency and
broadcast length are optimized in our system.

Caching is an important issue inmobile environ-
ment since it leads to less power consumption
by mobile devices. Cache Invalidation is of im-
portance and different in this environment due
to the unrestricted mobility of mobile clients
and dynamic nature of the information that the
mobile devices try to access. Existing schemes
such as Timestamps, Bit Sequences [2] are all
too complex and the size of the invalidation re-
port is too large. Joe Chun-Hung Yuen et al. [4]
proposed to use the real time characteristic of
data items and the average life span of data items
to invalidate the cache. The scheme is referred
to as Invalidation by Absolute Validity Interval
(IAVI) in which each item has an associated
Absolute Validity Interval (AVI) that indicates
its average lifetime. Two time intervals are used
in this method. One, False Valid Period (FVP)
is the period where AVI overestimates the valid-
ity period and causes the mobile unit to read the
data that might be outdated. Two, False Invalid
Period (FIP) is when AVI underestimates the
validity period. This makes the mobile client
discard his cache entry sooner than needed. By
suitably adjusting the AVI based on update in-
tervals, the values of FVP and FIP are kept low.
The advantage of this scheme is that Implicit In-
validation is performed by checking the cached
items when they are referenced. Explicit In-
validation is done by reading the Invalidation
Report that is broadcasted by the server when
a database update causes the Absolute Validity
Interval (AVI) of a data item to decrease. Thus,
in their method, the size of the Invalidation Re-
port is much smaller than the earlier schemes.
As our work also aims at the reduction of power
consumption, we have also implemented this

200 A Hashing Scheme for Multi-channel Wireless Broadcast

caching scheme in our system that leads to low
power consumption by mobile clients. In addi-
tion, we perform the temporal reasoning tasks
explanation and prediction on these intervals
using Allen’s Interval Algebra whenever it is
necessary [9].

In broadcast systems, the server is unable to
learn about how the information is used, which
data items are popular among clients etc. Such
knowledge would however help in an efficient
construction of broadcast schedules. Petros
Nicopolitidis et al. [7] proposed an adaptive
push system, which uses a learning automa-
ton at the broadcast server. After an item is
broadcasted, each client waiting for this item
acknowledges the receipt via transmission of a
short, power-controlled feedback pulse. These
acknowledging pulses add up at the server, and
the automaton uses the strength of the received
pulse to update the probability estimated. These
converge to the actual demand probability. The
advantage of this simple scheme is that it judges
the behavior of the clients in the environment.
On the other hand, this scheme assumes that
items are broadcasted one at a time and the
server has to wait until it gets the response
pulses before it broadcasts the next item and all
response pulses are assumed to have the same
signal strength. But, in this paper we intro-
duce a new learning mechanism in which a sep-
arate channel is allocated for pull requests and
the user responds with response pulses that are
used to calculate demand probability apart from
users’ interests and profiles.

Compared with all the works found in the litera-
ture, our work is different and effective in many
ways. First, we propose a new hashing scheme
by extending the Hash Functions explained by
Yuxia Yao et al. [13] to index broadcast infor-
mation across multiple channels. Second, we
consider access probabilities of data items to
determine the popularity of data items and user
profiles to extract and analyze history and thus
track users’ preferences and activity patterns in
specific contexts. These two factors are intro-
duced to predict the behavior of clients present
in the environment at any given time and are
used for constructing efficient broadcast sched-
ule. Third, caching techniques proposed by Joe
Chun-Hung Yuen et al. [4] are implemented to
improve access latency and tuning time and, in
addition, we provide explanation and prediction

features. Finally, the unrestricted mobility en-
joyed by mobile clients is handled by transfer-
ring their profiles automatically between base
stations and by invalidating the cached data
items that vary with location.

3. Designing Efficient Access Broadcast
Programs

In this system, efficient access broadcast pro-
grams are designed that index the informa-
tion using hash functions over multiple chan-
nels. Two hash functions, namely Primary Hash
Function (PHF) and Secondary Hash Function
(SHF) are designed for this purpose. Primary
Hash Function (PHF) determines the channel
in which the interested item will be broad-
casted and Secondary Hash Function (SHF) de-
termines the position of the item in that channel.
Items that are popular in a cell are more readily
accessible than the ones that the clients are not
much interested in, because they are replicated
to produce a non-flat broadcast. Mobile clients
can tune into the broadcast schedule to obtain
the results of queries from the application. If
the data item gets corrupted in transmission, the
clients can use the replicas. If broadcast does
not contain the requested data, they can send
explicit pull requests to the server and obtain
the results. Data items are cached in the mo-
bile unit in order to reduce the time and power
spent in getting the results of queries. Database
updates cause information that is broadcasted
earlier and stored in the cache to become stale.
This is handled by the server using Invalidation
Reports broadcast.

3.1. Broadcast Cycle Construction

Broadcast Cycle Constructor selects items to be
broadcasted not only based on their profile and
access probabilities, but also with current pop-
ularity. At the end of every broadcast cycle,
this component selects a predetermined num-
ber of items based on their access probabil-
ities, which is computed using the algorithm
discussed in section 3.2. Items with the largest
number of pull requests select themselves for
the next broadcast, even if they have low prob-
ability. For instance, cricket scores may have a
low probability, but many users can start query-
ing it suddenly. To avoid explicit pull requests

A Hashing Scheme for Multi-channel Wireless Broadcast 201

that will overload the server, the Broadcast Cy-
cle Constructor selects items with the largest
number of pull requests for the next broadcast.

A single broadcast cycle contains a number of
slots each of which has the following fields,

• Slot ID – a unique identifier for the slot.

• Key – 32 bit key of the data item.

• Hash Functions – the PHF and SHF that are
to be used by mobile clients.

• Data – the real information.

• Last Update Time – the time of last update
of the data item.

• AVI – Absolute Validity Interval, the ex-
pected validity period of the item.

• Mobility Effect – a flag that tells whether the
data is mobility dependent.

• Distance Pointer – a pointer that is used to
follow chained items.

• Replication Bound – the maximum number
of replications allowed for any item in the
broadcast.

• Broadcast Cycle Length – length of the cur-
rent broadcast cycle, in number of slots.

• Checksum – CRC32 checksum of all the
above fields.

The steps followed in the construction of a sin-
gle broadcast are:

Step (i). For each selected item, the Primary
Hash Function (PHF) is applied to compute the
channel in which the item is broadcasted.

H(k) = k mod Nc. (1)

— k – Key of the Data item.
— Nc – Number of broadcast channels.

Step (ii). There aren channels namelyC1 . . .Cn,
where Ci, is the ith channel that contains the
replication of the same data item found in chan-
nel C1. The replication frequency of each item
is computed using the formulae,

C1 = 1, (2)

Ci =
⌈

ri

r1
− 1

2

⌉
, 2 ≤ i ≤ n (3)

where

ri =
√

pili
n∑

j=1

√
pjlj

, i = 1 to n. (4)

Here, pi is the access probability of item i, li is
the length of item i in bytes and n is the number
of items chosen for broadcast.

Step (iii). The Secondary Hash Function (SHF)
given by equations (5) and (6) is applied to de-
termine the position of each item in their respec-
tive channels.

H(k, 1) = [(A ∗ k + B) mod 231] %L (5)

where A = 1103515245, B = 12345 and L =
Length of broadcast cycle

H(k, n)=
(
H(k, 1)+

2n−2�log2 n�−1

2�log2 n� L
)

mod L

(6)
where, H(k, 1) gives the position of the first in-
stance of the data item with key k, and H(k, n),
with n = 2 to M, where M is the replication
bound for an item, which gives the position of
the remaining instances in an almost equally
spaced manner.

Step (iv). Collisions may occur and holes may
be present in the schedule constructed so far.
These are resolved by a simple mechanism in
which chaining is used to hash the colliding
items and distance pointers are maintained to
access chained items.

Step (v). The items thus identified are filled
into “slots” and are broadcasted.

3.2. Updating of Access Probabilities

Data items are replicated based on their pop-
ularity and broadcasted. Access probabilities
are continually maintained to estimate this pop-
ularity. Mobile clients are required to send re-
sponses to each item they access in the broad-
cast. This re-calculates access probabilities of
data items after the kth cycle in the broadcast
schedule based on these responses and updates
the Master Table maintained in the server.

The algorithm is as follows:

i. Maintain an access counter for each data
item that clients access or make an explicit
request for.

202 A Hashing Scheme for Multi-channel Wireless Broadcast

ii. Calculate the Normalized Response for an
item i, β(i) which represents the normalized
environmental response after the server’s kth

broadcast,
β(i) = Ratio between the number of ac-
cesses of items i and the number of clients
in the BS.

iii. Compute Pi(k+1) which is the Update Ac-
cess Probability of item i after the kth cycle
using equation (7),

pi(k + 1) = pi(k) + L(1− β(k))
∑
j �=i

(pj(k))

(7)

iv. Obtain Pj(k + 1) which is the Update Ac-
cess Probability of all other items calculated
using the formula,

pj(k+1) = pj(k)−L(1−β(k))(pj(k)), ∀j �= i
(8)

where L is the convergence factor that re-
flects the speed versus accuracy. In this
system, this factor is 0.15.

3.3. Profile Management

A client initially submits its profile (interests)
to the home Base Station. The submitted user
profiles are analyzed to identify the common in-
terests of the clients in that cell. Obviously, data
items that satisfy most clients should be more
readily available. Access probabilities of these
items are updated to reflect the commonalities
in interests. Access probabilities affect the fre-
quency of broadcasts of the item; hence popular
items are comparatively more easily available.
When a client moves to some other location, the
destination base station gets its profile from the
old base station and uses it to update its access
probabilities.

3.4. Efficient Client Access Algorithm

This algorithm is designed for accessing the in-
terested data items by the mobile clients using
the hashing scheme.

i. Let k be the key of the requested data item.
Tune into some channel Ci to obtain pri-
mary hash function (PHF).

ii. Apply PHF to determine channel Cj in
which this data item is being broadcasted.

iii. If i �= j, hop to channel Cj and obtain the
secondary hash function (SHF).

iv. Calculate the M slots using SHF which are
the potential locations of the requested data
item.

v. Sort the slot numbers in increasing order of
their distances ahead of the initial probing
slot and store them in a queue.

vi. Search the slots in this queue for the data
item following the distance pointers if ne-
eded.

vii. If the data item is found, send a response
pulse to the base station and cache the data
item.

viii. Corrupt data items are identified by their
CRC32 checksums and if a data item is
corrupt, access its next instance.

ix. If the queue becomes empty, then the re-
quested data item is not in broadcast. Hence
send an explicit pull request to the server
through a dedicated channel, wait for the
server to respond and cache the data that
arrived from the server.

3.5. Cache Management

A cache entry contains the following informa-
tion, Key, Data – the real information, Valid – a
flag indicating the validity of the entry, Mobili-
tyEffect – a flag indicating whether the cached
item is mobility dependent, AVI – the expected
validity interval of the item after which the item
may be expected, LastUpdateTime – time of
last update in the database, LastAccessTime –
time of last access by the mobile client, Num-
berofHits – number of cache hits so far. Cache
management includes:

Cache Replacement

The basic factors of cache replacement such as
LastAccessTime and NumberofHits are utilized
in this system. An invalid entry that has the min-
imum last access time is chosen as the victim for
cache replacement. If all the entries are valid,
the one with the least number of hits (LFU) is
chosen to be the victim.

A Hashing Scheme for Multi-channel Wireless Broadcast 203

Cache Invalidation due to Mobility

In this system, cache invalidation is done by
using the location of the mobile user and Inval-
idation by Absolute Validity Interval scheme.
When a client moves to a new location, some
data items may need to be invalidated. This is
achieved by having a Mobility Effect bit in the
cache, which is set for such data items.

Invalidation of cache entries is also done us-
ing Invalidation by Absolute Validity Interval
scheme [4]. Both the server and client maintain
a running estimate of update intervals for each
data item termed AVI. The client stores the AVI
for the data item in the cache and invalidates that
entry when AVI lapses. This is the case when
the estimate AVI increases at server. When the
estimate AVI decreases at server, it sends an In-
validation Report (IR) that contains the key of
data item and the new AVI.

Formally, the items that satisfy the equation 9
proposed in [4] are added to the IR,

Tupdate(i,n) − Tupdate(i,n−1) < AVI(i) × (1 − Fi)
(9)

where Tupdate(i,n) is the timestamp of nth update
on data item i; AVI(i) is the AVI of data item i;
and Fi is the AVI tolerance for data item i.

4. System Architecture

There are three core entities in the proposed
model – the Mobile Switching Centre (MSC),
the Base Station (BS) and the mobile client.
MSC serves as an interface between base sta-
tions and enables communication between them.
Base station takes care of gathering data that
may be of interest to clients in its cell and
broadcasts the data in repetitive cycles. Mobile
clients, when given a query, access the broad-
cast for retrieving the data.

4.1. Server (Base Station)

Each servermaintains its own database that con-
tains a Master Table to store the common at-
tributes of all data items and a Profile Table to
store the profiles of the mobile clients currently
located under that base station. The schema of

the master table contains Key – a 32 bit inte-
ger, Access Probability – the probability that
the data item will be accessed, Number of pull
requests – the number of explicit requests dur-
ing the current broadcast cycle, Time of Last
Update – the time at which the item was last up-
dated, Absolute Validity Interval – the expected
time duration after which the item may be up-
dated, Pointer to Data Item – a string indicating
the table name and record number of the data
item.

Master Table Manager is a component that ini-
tializes the Master Table by calculating keys,
access probabilities of all items in the server
database. The initial access probabilities are
calculated from the profiles submitted by the
users when they register in a base station.

The real time characteristic of certain data items
cause frequent updates in the database. Databa-
se Manager handles these updates to the databa-
se. When a new entry arrives, the DB manager
calculates its key, calculates new Absolute Va-
lidity Interval (AVI), based on the old AVI and
last update time, and updates the Master Table.
If the data item were updated sooner than ex-
pected, there would be a decrease in its AVI. To
alert clients that might have cached the old value
of the data item, this component broadcasts an
invalidation report (IR) which is of the follow-
ing format: Key – the key of the updated data
item, Last Update Time – the time of the update,
Absolute Validity Interval – the new expected
interval after which the item may get updated.

Mobile clients are required to submit their inter-
ests to the base station when registering them.
Profile Manager reads the profiles submitted
by the clients and loads them into the server
database. Clients can update their profiles at any
time and this component also handles these pro-
file updates. The profile is stored along with the
mobile ID in the Profile Table in the database.

Access Probability Manager maintains the ac-
cess probability for each data item initially based
on the profile and thenwith the user responses to
access in the broadcast. Broadcast Cycle Con-
structor constructs the broadcast cycle based on
the previously mentioned steps and broadcasts
to mobile clients. Mobile clients can send ex-
plicit pull requests to the server in case their
request could not be satisfied from the broad-
cast data. Pull Manager handles these explicit
requests. It searches the server’s database for

204 A Hashing Scheme for Multi-channel Wireless Broadcast

 Result

 Key

 Result
 Key
 Result

 Key Result

 Data

 Update

MOBILE CLIENT

Query

Client

Query Processor

Key Generator

Profile Manager

Access Manager

 Cache Manager
Cache

SERVER

Key

 Data Instances
 Data Instances

 Update

Broadcast Cycle Construction

Secondary Hash
Function

Channel
Identification Primary

Hash
Function

Key Generator

Database
Manager

Database

Access
Probability
Manager

Pull
Manager

Profile
Manager

BASE
STATION

Broadcast
to Clients

Profile Agent

Client

ResponseHashing

Explicit Request

Figure 1. System architecture.

the requested item and returns it to the client.
The user is informed if the requested item is not
found in the database.

4.2. Mobile Client

On receiving a query from the user, the Query
Processor computes the key of the requested
item. It then searches the cache using the key
and returns the item in case of a cache hit. In
case of a cache miss, this requests the Access
Manager to listen to the broadcast and retrieve
the item. Access Manager is the one that tunes
into the broadcast to listen to the information
that is disseminated periodically by the server.
Cache Manager is important in the mobile since
it leads to an improvement in time and power
spent by the mobile client. The Cache Man-
ager searches the cache when a client’s request
arrives. If the requested item is found and is
valid (i.e. its last update time + AVI >= current
time), updates the time of last access, incre-
ments the hit count and returns the item. When
a new item is to be inserted into the cache, the
Cache Manager searches for an Empty entry
and inserts the data item if one is available.
Otherwise, cache replacement occurs. An In-
valid entry that has the minimum last access
time is chosen as the victim. If all the entries
are Valid, the one with the least number of hits
(LFU) is chosen to be the victim. The Cache
Manager invalidates items on three counts: A
cache item is invalidated if its AVI elapses (cur-
rent time > last update time + AVI). An item is

invalidated if it is mentioned in an Invalidation
Report broadcast by the server and read by the
Cache Manager. And, finally, the mobility of
clients may cause some items to be invalidated,
for instance, information about hospitals.

Profile Manager in the mobile client allows a
new user to register with the base station by
submitting its interests. It also allows existing
users to update their already submitted profiles.
This is entrusted with the lone task of sending
the profile to the base station.

Mobility of the client is also taken care of in this
system. When a client wants to move to a differ-
ent cell, this module sends a request notification
to the current BS. When the request is granted,
the Mobility Manager updates the existing base
station information like which are the channels
to be listened etc. The mobile client can move
to the new cell and resume its activities after
this updating.

5. Simulation and Results

This section explains the simulation performed
and the results obtained thereof. To simulate
the evaluation of the proposed hashing scheme,
first the framework is developed. The frame-
work is modeled using the JSim Simulator. All
necessary components, of mobile environment
(viz Mobile Unit – which presents the query,

A Hashing Scheme for Multi-channel Wireless Broadcast 205

Base Station Unit and Mobile Switching Cen-
tre) required for this simulation are modeled as
JSim Processes.

This section also evaluates the performance of
the proposed broadcast scheme. Performance
is measured in terms of the two parameters,
access latency and tuning time. This scheme
was tested under diffferent scenarios by vary-
ing channel sizes, applying hashing, client-side
caching; and performance comparisons were
done. Figure 2 shows the performance of the
proposed scheme against a broadcasting scheme
that uses no auxiliary information. Figure 3 and
Figure 4 illustrate the tuning time and access
latency of the proposed scheme when the num-
ber of channels was kept as 0, 5 and 10 and the
number of cache entries was kept as 5, 10 and
15. Figure 5 shows the energy consumption in
a typical mobile system.

5.1. Performance Comparison of the
Hashing Scheme with Varying
Number of Channels

From Figure 2, it is observed that the tuning
time decreases considerably with hashing. It
is because when hashing is used with non flat
data broadcasts which are replicated based on
user profiles and access probabilities, the mo-
bile unit can find out the slot number in which
the required data will arrive indicating the data
arrival time, and thus it calculates the delay after
which the slot will get broadcasted. Hence, the
time it stays in active mode is reduced and thus
considerable power in the mobile unit is saved.

But, without hashing or any other indexing sche-
me, a client has to sequentially search the broad-
cast information to find the data it needs. It has

Hashing Scheme

0
1
2
3
4
5
6

0 5 10

No of Channels

Tu
ni

ng
 T

im
e

(m
s) Without

Hashing
With
Hashing

Figure 2. Tuning time reductions with hashing.

to tune the brodcast channel and stay in the ac-
tive mode until it finds the required data item.
Hence, there is an increase in tuning time as
shown in Figure 2.

When the number of channels available for
broadcast increases, there is a decrease in tun-
ing time of the mobile client. An increase in
the number of channels directly implies that
there are more data items available for access
at a given time. Data items can be replicated
and broadcastedmore frequently, which enables
quicker access.

5.2. Performance Comparison with and
without Cache of the Proposed Scheme
with Varying Number of Channels

It is observed from Figure 3 that an increase in
the number of channels and size of the cache
causes the access latency to decrease. When
there is no cache, a client has to access the
broadcast information each time to service each
query. However, with the cache, average ac-
cess latency is reduced. Only when the item
is not found in the cache, the client accesses
the broadcast information, introducing latency.
As the number of cache entries increases, more
items can be fetched quickly and cache replace-
ment occurs less often and all this leads to a
decrease in average access latency.

An increase in the number of channels causes
a decrease in access latency. The replication
bound of each item increases as the number of
channel increases. If a mobile client misses to
access an item from the broadcast, it can read the
next instance of the same item found in another
channel of the same cycle.

Figure 3. Access latency with caches of different sizes.

206 A Hashing Scheme for Multi-channel Wireless Broadcast

Figure 4. Tuning time with caches of different sizes.

From Figure 4, it is deduced that with an in-
crease in the number of channels and cache size,
tuning time is reduced for themobile unit. With-
out a cache, the client tunes into broadcast for
each item and hence there is some amount of
tuning time for each query serviced. If a cached
item is queried the overall tuning time reduces.
The proposed scheme reduces both access la-
tency and tuning time concurrently. Popular
items are replicated to reduce access latency
and this causes tuning time for these items to
decrease as well. This feature helps in achiev-
ing less tuning time when the access latency is
reduced.

5.3. Energy Consumption in the Proposed
Scheme – A Comparison with Cache
and with Varying Number of Channels

The energy consumed by a typical mobile sys-
tem is depicted in Figure 5. The system is as-
sumed to spend 0.95 watts in active mode and
0.06 watts in the power-saving doze mode.

E = (accesslatency − tuningtime).rdoze

+ tuningtime.ractive (10)

The energy consumption E by a mobile system
is directly proportional to the access latency and
tuning time given by the equation (10). When
caching is used and broadcast is done on mul-
tiple channels, both of these parameters are de-
creased, which leads to a less consumption of
energy in the mobile unit.

Energy Consumption

0
0.5

1
1.5

2
2.5

3
3.5

4

0 5 10
No of Channels

En
er

gy
 C

on
su

m
ed

(W

at
ts

)

Without
Cache
Cache
Size 5
Cache
Size 10
Cache
Size 15

Figure 5. Energy consumption graph.

6. Conclusion and Future Work

Wireless data broadcast that allows simultane-
ous access by an arbitrary number of clients
is a very efficient and scalable method of in-
formation dissemination. This paper proposes
an efficient hashing scheme for broadcasting
non-flat broadcast data over multiple channels.
Moreover, specific characteristics of the broad-
cast environment are discussed in addition to
the study of several existing single-channel and
multi-channel broadcast schemes. It is found
that each of them has its own disadvantages,
like indexing schemes increased tuning time and
so on. The proposed scheme caters to multi-
channel broadcast, while eliminating the disad-
vantages of the previous schemes. While ex-
isting schemes reduce either access latency or
tuning time, the proposed scheme reduces both
in an integrated manner.

The major contributions and advantages of this
paper are as follows.

• A Hashing scheme for multi-channel broad-
casting is proposed which optimizes both ac-
cess latency and tuning time in an integrated
fashion.

• Data items are replicated based on their ac-
cess probabilities and user profiles which
further decreases access latency. The popu-
larity of data items is continuouslymeasured
and the broadcast is streamlined to suit the
client needs.

• Error resilience is also achieved by replicas
of data items.

• The client access mechanism proposed in
this paper is simple and fast.

A Hashing Scheme for Multi-channel Wireless Broadcast 207

• Caching is introduced for enhancing the per-
formance of the system.

The results obtained from this scheme show that
the performance of the scheme is better because
of many reasons such as multiple channels,
shorter broadcast cycles and caching at mobile
clients. However, this system does not consider
the processing of window queries like, “Find a
restaurant within 200 m” using hash functions,
as they cannot aid in resolving the Cartesian
coordinates. We are investigating methods to
allow such queries using our hashing scheme
as a future work. Also, the scheme can be ex-
tended to free mobile clients from mandatorily
sending response pulses to data items that they
access from the broadcast information.

References

[1] ANDRE SEIFERT, JEN-JOU HUNG, FlexSched: A
Flexible Data ScheduleGenerator for Multi-channel
Broadcast Systems, University of Konstanz, Tech-
nical Report, 2005.

[2] D. BARBARA AND T. IMIELINSKI, Sleepers and
Workaholics: Caching Strategies in Mobile En-
vironments. In Proceedings of ACM SIGMOD In-
ternational Conference on Management of Data,
(1994) pp. 1–12.

[3] JIANLIANG XU, WANG-CHIEN LEE, XUEYAN TANG,
QING GAO, AND SHANPING LI, An Error-resilient
and Tunable Distributed Indexing Scheme for Wire-
less Data Broadcast. IEEE Transactions on Know-
ledge and Data Engineering, (2006) 18(3), pp.
392–403.

[4] JOE CHUN-HUNG YUEN, EDWARD CHAN, KAM-YIU
LAM AND H. W. LEUNG, Cache Invalidation Scheme
for Mobile Computing Systems with Real-time
Data. SIGMOD Record (2000) 29(4), pp. 34–39.

[5] KONSTANTINOS STATHATOS, NICK ROUSSOPOULOS,
JOHN S. BARAS, Adaptive Data Broadcast in Hybrid
Networks. In Proceedings of the 23rd International
Conference on Very Large Data Bases, (1997) pp.
326–335.

[6] NITIN VAIDYA, SOHAIL HAMEED, Scheduling Data
Broadcast in Asymmetric Communication Environ-
ments. In Proceedings of the 20th International
Conference on Data Engineering, (1999) pp. 171–
182.

[7] PETROS NICOPOLITIDIS, GEORGIOS I. PAPADIM-
ITRIOU AND ANDREAS S. POMPORTSIS, Using Learn-
ing Automata for Adaptive Push-based Data Broad-
casting in Asymmetric Wireless Environments.
IEEE Transactions on Vehicular Technology,(2002)
51(6), pp. 1652–1660.

[8] SHIJUN DDYU, STEFANO SPACCAPIETRA, NADINE
CULLOT, MARIE-AUDE UFAURE, User Profiles in
Location-based Services: Make Humans More No-
madic and Personalized. In the Proceedings of
IASTED International Conference on Databases
and Applications, (2004) pp. 25–30.

[9] SILVANA BADALONI, MASSIMILIANO GIACOMIN, A
Fuzzy Extension of Allen‘s Interval Algebra. Pro-
ceedings of the 6th Congress of the Italian Asso-
ciation for Artificial Intelligence on Advances in
Artificial Intelligence, (1999) 1792, pp. 155–165.

[10] T. IMIELINSKI, S. VISWANATHAN, AND B. R. BADRI-
NATH, Power Efficient Filtering of Data on Air.
Proceedings of the Fourth International Confer-
ence Extending Database Technology, (1994) pp.
245–258.

[11] T. IMIELINSKI, S. VISWANATHAN, AND B. R. BADRI-
NATH, Data on Air: Organization and Access. IEEE
Transactions on Knowledge and Data Engineering,
(1997) 9(3), pp. 353–372.

[12] W. G. YEE AND S. B. NAVATHE, Efficient Data Ac-
cess to Multi-channel Broadcast Programs. ACM
Conference on Knowledge Management, (2003)
pp. 153–160.

[13] YUXIA YAO, XUEYAN TANG, EE-PENG LIM, AIXIN
SUN, An Energy – Efficient and Access LatencyOp-
timized Indexing Scheme for Wireless Data Broad-
cast. IEEE Transactions on Knowledge and Data
Engineering, (2006) 18(8), pp. 1111–1124.

Received: August, 2007
Revised: January, 2008
Accepted: April, 2008

Contact address:

Muthuswamy Vijayalakshmi
Arputharaj Kannan

Dept of Computer Science and Engineering
College of Engineering

Anna University
Chennai-25, India

e-mail: viji mathan@yahoo.com
kannan@annauniv.edu

MUTHUSWAMY VIJAYALAKSHMI is a lecturer at the Department of CSE,
College of Engineering, Guindy, Anna University, India. She has 6
years of teaching experience. Currently, she is working toward her
PhD in computer science and engineering at Anna University, India.
Her research areas include mobile computing, databases, and artificial
intelligence.

ARPUTHARAJ KANNAN is a professor at the Department of CSE, Col-
lege of Engineering, Guindy, Anna University, India. He has 18 years
of teaching experience. He received his PhD in computer science and
engineering from Anna University, India in 2001. His research ar-
eas include software engineering, database management systems, and
artificial intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

