
Journal of Computing and Information Technology - CIT 16, 2008, 2, 119–130
doi:10.2498/cit.1001047

119

Constant Time Queries for
Energy Efficient Paths in
Multi-hop Wireless Networks

Stefan Funke1, Domagoj Matijević1 and Peter Sanders2

1Max-Planck-Institut für Informatik, Saarbrücken, Germany
2Universität Karlsruhe, Fakultät für Informatik, Karlsruhe, Germany

We investigate algorithms for computing energy efficient
paths in ad-hoc radio networks. We demonstrate how
advanced data structures from computational geometry
can be employed to preprocess the position of radio
stations in such a way that approximately energy optimal
paths can be retrieved in constant time, i.e., independent
of the network size. We put particular emphasis on actual
implementations which demonstrate that large constant
factors hidden in the theoretical analysis are not a big
problem in practice.

Keywords: ad-hoc and sensor networks, routing, power
control, wireless LANs, computational geometry.

1. Introduction

Ad hoc radio networks are an attractive way to
quickly build a communication infrastructure
without slow and expensive deployment of a
cable backbone. Since many of the stations will
be battery or solar powered, energy consump-
tion becomes a major issue in such networks.

We use the following widespread model for en-
ergy consumption: The stations are defined by
a set of n points in the plane. The energy con-
sumption for communication between points p
and q is assumed to be ω(p, q) = |pq|σ for
some constant σ > 1, where |pq| denotes the
Euclidean distance between p and q. In free
space σ = 2 gives an exact physical model.
Values σ ∈ (2, 4) can be used to approximate
absorption effects [18, 16].
We are now looking for paths connecting arbi-
trary pairs of points that minimize energy con-
sumption subject to the additional constraint
that at most k hops are used (see Figure 1).

Figure 1. A Radio Network example with 9, 4, 2, 1-hop
paths from P to Q with costs 9, 36, 50, 100.

Limiting the number of hops accounts for dis-
tance independent energy consumption (e.g.,
for encoding and decoding signals) as well as
for reliability and latency problems connected
with paths that use an unbounded number of
hops. For refinements of the model refer to
Section 4. In our considerations we assume k
to be a rather small constant.

This problem can be solved optimally in time
O(kn2) using well known algorithms for com-
puting shortest paths, aswewill see in Section 2.
However, thiswould bemuch too slow for all but
very small networks. In [11] we therefore devel-
oped an algorithm that produces paths that are
within a factor (1+ ε) from optimal in constant
time independent of the size of the network. If
k and ε are considered constants, the algorithm
needs preprocessing time O(n log n) and space
O(n) for a lookup data structure. However, this
theoretical algorithm has large hidden constant

120 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

factors and it uses sophisticated data structures
from computational geometry for which there
is little experience with respect to their practi-
cality.

The purpose of this paper is to help close this gap
between theory and practice. We study a num-
ber of implementations of simple algorithms
and new heuristics as well as a variant of the
approximation scheme from [11], but tuned for
more practicability. The solutions we present
can be modified to provide for additional re-
quirements, like dynamic maintenance or fault-
tolerance, which both improve the quality of
service (QoS).

Figure 2. Screenshot of our simulation program.

Related Work

In 1998, Bambos [3] reviewed developments in
power control for wireless networks and em-
phasized the need for minimum-power routing
protocols. Since then a vast amount of research
has been conducted on the issue of energy-
conservation in ad-hoc and sensor networks, see
for example [13], [16], [17].

In the computational geometry community,Chan,
Efrat, and Har-Peled [10, 9] have made sev-
eral interesting observations for energy opti-
mal paths with unbounded number of hops.
They observe that it suffices to compute shortest

paths in the Delaunay triangulation of the input
points, i.e., optimal paths can be computed in
time O(n log n). Note that this approach com-
pletely collapses for k hop paths because most
Delaunay edges are very short. They also give
a sophisticated O(n4/3+γ) time algorithm for
arbitrary monotone cost functions ω(p, q) =
f (|pq|), where γ is any positive constant. For
quadratic cost functions with offsets ω(p, q) =
|pq|2+C, Beier, Sanders, and Sivadasan reduce
that to O(n1+γ), to O(kn log n) for k-hop paths,
and to O(log n) time queries for two hop paths
using linear space and O(n log n) time prepro-
cessing. The latter result is very simple, it uses
Voronoi diagrams and associated point location
data structure.

2. Exact Algorithms for Finding Energy-
minimizing k-hop Paths

Before we get to the actual algorithms let us
give a more formal and abstract definition of
our energy-minimizing k-hop path problem:

Given a setP of n points inZ2 and some constant
k, report for a given query pair of points s, t ∈ P,
a polygonal path π = π(s, t) = v0v1v2 . . . vl,
with vertices vi ∈ P and v0 = s, vl = t which
consists of at most k segments, i.e. l ≤ k, such
that its weight ω(π) =

∑
0≤i<l ω(vi, vi + 1) is

minimized. By πopt = πopt(s, t) we denote the
optimal path from s to t under this criterion.

In the followingwe assume that theweight func-
tion ω is of the form ω(p, q) = |pq|σ with
σ > 1 (the case σ ≤ 1 is trivial as we just need
to connect s and t directly by one hop). For
more general weight functions, in particular if
we also have a constant, node-dependent offset
like ω(p, q) = |pq|σ + cp, we refer to Section
4 for possible refinements of the algorithms we
present in this paper.

2.1. The Naive Approach

The point set P together with the weight func-
tion ω induces the complete weighted graph
G(P, E,ω) with vertex set P and edges (v, w) ∈
E of weight ω(v, w), ∀v �= w ∈ P. This graph
has n(n− 1)/2 edges and for a given query pair
s, t ∈ P we are looking for the shortest path
πopt = π(s, t)opt from s to t in G which uses no
more than k edges.

Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks 121

This path πopt can be easily computed by dy-

namic programming. Let π(s, v)(i)opt denote the
shortest path from the source node s to node
v which uses no more than i edges. Clearly
π(s, v)(1)opt = sv, ∀v ∈ P − {s}. π(s, v)(i)opt is

determined as π(s, w)(i−1)
opt v with w chosen such

that ω(π(s, w)(i−1)
opt) + ω(w, v) is minimized.

The naive dynamic programming approach fills
a table of dimension n×k using the above rules:

• ∀v ∈ P: π(s, v)(1)opt ← sv

• for i = 2 to k do ∀v ∈ P:

∗ compute π(s, v)(i)opt by looking at
all possible w, the concatenations
π(s, w)(i−1)

opt v and their weights

ω(π(s, w)(i−1)
opt) + ω(w, v)

Clearly, this algorithm has running timeO(k·n2)
as we have to fill in a table of size k · n and de-
termine the value of one cell costs O(n) since
we look at all possible w ∈ P. It is not hard
to figure out that this approach only works for
extremely small problem instances and even for
those, it is rather slow as we get a quadratic
behavior in n per query.

2.2. Neighborhood Pruning

One obvious improvement to the above algo-
rithm is due to the observation that if we are in-
terested in the energy-minimal k-hop path from
s to t, points which are “far” away from the
segment st cannot be of any use for the solu-
tion. So, let D denote the distance between the
query points, i.e. D = |st|. If we restrict our
dynamic programming approach to all points
p ∈ P which have distance at most λ · D to the
segment |st| – we call this the λ -neighborhood
of st –, what is the smallest value of λ such that
we can still compute the optimal solution? See
Figure 3 for an example of λ -neighborhoods. It
is not hard to see that if the optimal path πopt
leaves the region which has distance at most
λ · D to st, the sum of the Euclidean lengths
of the segments of this path must be at least
2 ·D ·

√
λ 2 + 1/4. And as the “optimal” strat-

egy to chop a path of any given length into k
pieces such that the overall energy is minimized

is to chop it into pieces of equal length, we get
the following inequality

(2 · D ·
√
λ 2 + 1/4)σ

kσ−1 ≤ Dσ

which bounds λ in terms of the cost Dσ that
is encountered when taking just one direct hop
from s to t. So, we get

λmax =

√
k

2σ−2
σ − 1

2

Therefore, if there are only few points in the
neighborhood of the query points s and t (more
precisely, if there are only few points within
distance λmax|st|), we first use a standard range
query data structure from computational geom-
etry to report all those points and run the naive
approach only for those and we can expect a
reasonably fast query time, which is now only
quadratic in the number of points in the neigh-
borhood of s and t.

Cascaded Neighborhood Pruning

In the neighborhood pruning approach we used
the one-hop cost as an upper bound to limit
the size of the neighborhood that still needs to
be explored. Clearly, if we had a better up-
per bound (i.e. tentative solution) for the cost
of getting from s to t within k hops, we could
restrict the size of the neighborhood even fur-
ther. How could such a better tentative solution
be obtained? Well, we could start with a very
small value for λ , even λ = 0 is viable, it just
restricts the neighborhood to all points which
lie on the segment st. We run our dynamic pro-
gramming approach on that set of points and use
the outcome to bound the maximal value of λ
that we have to consider to guarantee the opti-
mal solution is found. So this cascaded strategy
could be implemented as follows:

1. λ ← 0.1

2. upper = |st|σ

3. while (2·D·
√

λ 2+1/4)σ

kσ−1 ≤ upper

• compute using dynamic program-
ming the optimal k-hop path w.r.t.
the λ -neighborhood of st, update
upper if necessary

• λ ← λ · 2

122 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

The procedure terminates as soon as it can prove
that no larger neighborhood has to be inspected,
which of course happens no later than after
O(logλmax) rounds. For dense point sets, this
will turn out to be a lot more effective than the
naive or simple neighborhood pruning strategy
without cascading.

s t

λ = 1/11

λ = 5/22

λ = 5/11

Figure 3. λ -neighborhoods of a segment st.

3. Approximate Algorithms for Finding
Energy-minimizing k-hop Paths

The neighborhood pruning approach – though
helpful for many problem instances – does not
improve the worst-case running time of the dy-
namic programming approach as it might be
the case that basically all the points are in the
neighborhood of the segment st and have to be
inspected.

But if we relax the exactness requirement and
only require approximate (1 + ε) solutions, i.e.
we are happy with paths π(s, t)app such that
ω(π(s, t)app) ≤ (1 + ε) · ω(π(s, t)opt) for any
ε > 0 to be chosen from the user, we can do
better. In fact, using Grid Pruning we can guar-
antee a logarithmic query time, when k, ε,σ are
considered constants.

3.1. Grid Pruning

The idea of Grid Pruning is to place a grid over
the neighborhood of the segment st and first re-
port one representative in each of the grid cells
(this can be done again using standard geomet-
ric range query in time O(log n) per grid cell).
The dynamic programming approach is then
only performed on those representative points
and the computed path is used as a result of
the computation. The smaller ε, the smaller the

grid-cells, and hence the better approximation
of the optimal path πopt.

In fact, one can show (see [11]) that putting
a grid of cell-width α · D/k with α = ln 2

2
√

2
ε
σ ,

the computed path πapp(s, t) has cost at most
(1 + ε) · ω(πopt(s, t)).

The grid pruning algorithm looks as follows:

1. Put a grid of cell-width α · |st|/k on the λmax-
neighborhood of st with α = ln 2

2
√

2
ε
σ .

2. For each grid cell C perform an orthogonal
range query to either certify that the cell is
empty or report one point inside which will
serve as a representative for C.

3. Compute the minimum k-hop path π(s, t)
with respect to all representatives and {s, t}
using the dynamic programming approach.

4. Return π(s, t).

The gain compared to the previous methods is
that we reduce the number of points to be con-

sidered toO(σ
2·k 4σ−2

σ
ε2), irrespectively howmany

points there are in the neighborhood of st. So,
considering k,σ, ε constants, the query time be-
comes O(log n) due to the range queries that
have to be performed for each grid cell.

Please look at Figure 4 for a schematic drawing
of how the algorithm computes the approximate
k-hop path.

QP

(k
δ−1

δ + 1)|P Q|

α|P Q|/k

Figure 4. 3-hop-query for P and Q: representatives for
each cell are denoted as solid points, the optimal path is
drawn dotted, the path computed by the algorithm solid.

Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks 123

Cascaded Grid Pruning

Clearly, the same trick of looking at small neigh-
borhoods of st first, which we have used to im-
prove the neighborhood pruning approach, also
works here. So first we only put the grid over
a very small neighborhood and consider larger
and larger neighborhoods until the required ap-
proximation guarantee can be proven.

3.2. The Milestone Heuristic

For very dense point sets, there is another very
simple heuristic,which uses the observation that
in the “ideal” case the segment st is divided into
k subsegments of equal length. Clearly, if such
a k-hop path can be obtained, it is the optimum
path. So, the Milestone Heuristic tries to ap-
proximate this “ideal” path by virtually placing
the k − 1 “ideal” radio stations v1, . . . vk−1 on
st. As these vi are typically not in P, we per-
form for each of them a nearest neighbor query
on the point set P and use the outcome as the
replacement for vi (each of these queries can be
performed in O(log n) time). Nearest neighbor
query data structures from computational ge-
ometry are by now standard in many software
libraries and very space- and time-efficient im-
plementations are available, e.g. in [14]. The
algorithm looks as follows:

1. determine “ideal” hop positions v1, . . . , vk−1

2. for each vi perform a nearest neighbor query
on P to obtain v′i ∈ P

3. output sv′1 . . . v′k−1t as the k-hop path

Unfortunately, this approach can be fooled quite
badly if the point set P is not equally distributed
and there are large areas without any radio sta-
tions in the area between s and t.

3.3. Path Templates via Clustering

The best query scheme we have seen so far
is able to answer a (s, t) query in O(log n)
time (considering k, δ, ε as constants). Stan-
dard range query data structures were the only
precomputed data structures used. Now we are
going to explain how additional precomputa-
tion can further reduce the query time. More
precisely, we are going to show how to precom-
pute a linear number of k-hop paths, such that

for every (s, t), a slight modification of one of
these precomputed path templates is a (1 + ε′)
approximate k-hop path and such a path can be
accessed in constant time. Here ε′ > 0 is the
error incurred by the use of these precomputed
paths and can be chosen arbitrarily small.

3.3.1. The Well-separated Pair
Decomposition

First, we will briefly introduce the so-called
well-separated pair decomposition due toCalla-
han and Kosaraju ([6]).

The split-tree of a set P of points in R2 is the
tree constructed by the following recursive al-
gorithm:

Figure 5. Example of split tree with
additional blue edges.

SplitTree (P)

1. if size (P) = 1 then return leaf (P)

2. partition P into sets P1 and P2 by halving
its minimum enclosing box R(P) along its
longest dimension

3. return a node with children (SplitTree (P1),
SplitTree (P2))

Although such a tree might have linear depth
and therefore a naive construction as above
takes quadratic time, Callahan and Kosaraju in
[6] have shown how to construct such a binary
tree in O(n log n) time. With every node of that
tree we can conceptually associate the set A of
all points contained in its subtree as well as their
minimum enclosing box R(A). By r(A) we de-
note the radius of the minimum enclosing disk
of R(A).

124 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

We will also use A to denote the node associ-
ated with the set A if we know that such a node
exists.

For two sets A and B associated with two nodes
of a split tree, d(A, B) denotes the distance be-
tween the centers of R(A) and R(B) respec-
tively. A and B are said to be well-separated
if d(A, B) > S · r, where r denotes the radius of
the larger of the two minimum enclosing balls
of R(A) and R(B) respectively. S is called the
separation constant. Roughly, this means that
the distance between the centers of R(A) and
R(B) is about the same as for any pair a ∈ A,
b ∈ B.

In [6], Callahan and Kosaraju present an algo-
rithm which, given a split tree of a point set P
with |P| = n and a separation constant S, com-
putes in time O(n(S2 + log n)) a set of O(n · S2)
additional blue edges (A, B) for the split tree,
such that

• the point sets associated with the endpoints
of the blue edge are well-separated with sep-
aration constant S

• for any pair of leaves (a, b), there exists ex-
actly one blue edge (A, B) that connects two
nodes on the paths from a and b to their low-
est common ancestor lca(a, b) in the split
tree

The split tree together with its additional blue
edges is called the well-separated pair decom-
position W (WSPD).

Minimum enclosing box

Minimum enclosing box

Figure 6. Clusters A and B are ‘well-separated’
if d > s · r.

3.3.2. Application of the WSPD

Intuitively, the W encodes in linear space all
Θ(n2) distance relationships in the point set
approximately. More precisely, for any query
pair (s, t) there exists exactly one cluster pair
(A, B) ∈ W with s ∈ A, t ∈ B and |W| = O(n).

So we precompute for each of these O(n) cluster
pairs a good k-hop path between their respec-
tive centers (e.g. a (1 + ε) path using the grid
pruning strategy), such that at query time, for
a given query pair (s, t), it only remains to find
the unique cluster pair (A, B) ∈ W with s ∈ A,
t ∈ B (see Figure 7). We output the associated
k-hop path replacing its first and last nodes with
s and t respectively.

A
B

Figure 7. Example of the blue-edge connecting
well-separated sets A and B and the template path

(red dashed line) saved with it.

Since s ∈ A and t ∈ B and d(A, B) > S · r,
the precomputed path between the centers of cA
and cB is ‘almost’ optimal for the query points
s and t. In fact, one can show formally that the
returned path is a (1 + ε′) approximation of the
lightest k-hop path from s to t, where ε′ > 0 can
be chosen arbitrarily by the user (this affects the
required choice of the separation constant). See
[11] for the details.

How to retrieve the respective cluster pair (A, B)
for a pair of query points (s, t)? The idea of our
approach is to round the centers cA, cB of a clus-
ter pair (A, B) ∈ W to canonical grid points
c̃A, c̃B and store the associated k-hop path in a
hash table under the key (c̃A, c̃B), see Figure 8.
As grid width we choose the next power of two
of dc/s, where dc = |cAcB|. For a query pair
(s, t) we have d = |st| ≈ dc as s ∈ A, t ∈ B
and (A, B) ∈ W. Hence, the same grid width as
used for (cA, cB) can be determined from (s, t)
(up to a factor of 2) and the path stored under
the key (c̃A, c̃B) can be retrieved. See [11] for
the technical details on this procedure.

In fact, in [11] we have shown that for any (s, t)
we can find exactly the respective cluster pair
(A, B) in O(1) time, but the constants hidden in
the O-notation were quite huge (in the range of
106) mainly due to the fact that there might be
many (even though O(1)) cluster pairs snapped
to the same grid position. But, for practical
purposes, the k-hop path stored with any cluster

Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks 125

pair (A′, B′) of those is good for us. Although
it might not be true that s ∈ A′, t ∈ B′, we
know that the cluster centers cA′ , cB′ are close
to s and t (otherwise they would not have been
snapped to the same grid points) and therefore
the respective k-hop path template is good for
us.

gcA

gcB

d = |cAcB |

2�log(d/s)�

Figure 8. Cluster centers cA and cB are snapped to
closest grid points c̃A and c̃B.

4. Refinements

In the following section we will mention some
refinements and extensions that are possible for
the presented algorithms, some of which have
already found their way into the current imple-
mentation.

4.1. Lazy Precomputation

In the path template approach, as presented be-
fore, the idea was first to identify a collection
of O(n) source-target pairs (namely the cen-
ters of the clusters that are connected by a blue
edge in the WSPD) and then precompute a good
k-hop path for each of these pairs. In prac-
tice, it will turn out that identifying the blue
edges can be done very quickly, and the really
time-dominating step is the computation of the
template paths (even when performed using our
O(log n) grid pruning approach).

But our data structure can easily be modified
into a “lazy precomputation” scheme. So at
precomputation time, only the blue edges are
determined. At query time for a pair (s, t), we
first identify the corresponding blue edge. If
a template path has been stored for that edge
already, we use it (and have spent O(1) time
only to answer the query). Only if no template
path has been stored already, we compute one

using the grid approach (making this query ex-
pensive, i.e. O(log n)). Observe that if a similar
query, i.e. a query (s′, t′) with s′ near s and t′
near t, arrives later, it will find the precomputed
template path and can therefore be answered in
O(1).

4.2. Dynamization

All the data-structures that we have used are
also – in theory at least – available in a dy-
namic version, where updates can be performed
in O(log n) time. Hence our whole construc-
tion could also be applied for moving and/or
changing radio stations. Whether these dy-
namic versions of the algorithms are also of
practical value, this has to be shown or proven
wrong by an experimental study. For more in-
formation on dynamic versions of the required
data structures, we refer to [2], [1], [7].

4.3. Fault-tolerance

In many real-world applications, reliability and
quality of service (QoS) play an important role.
In particular, availability of the system has a
very high priority. For our application, this
means that connections between two sites s and t
should not be prohibited or become very expen-
sive if some stations inbetween collapse. There-
fore, it is very reasonable to provide for backup
paths between the sites, i.e. if one or more sta-
tions of an energy efficient path between s and t
become unavailable, there are other equally ef-
ficient paths already precomputed at hand. But
this is easy to incorporate into our approach.
For each blue edge of the WSPD, instead of
one template path we precompute several tem-
plate paths which are all node-disjoint. These
node-disjoint paths can be obtained as follows:
First use the grid approach to compute the first
energy-efficient k-hop path. Then remove all
the used representative nodes from the grid cells
that have been used in this path. If there are still
other nodes left in the respective grid cells, use
them to get another path which looks very simi-
lar to the first one, but is node-disjoint from the
latter. If some of the used grid-cells are empty,
just run the brute-force algorithm on the remain-
ing grid cell representatives. In this way, one
can easily compute several path templates for
each blue edge, all of which are node-disjoint.

126 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

4.4. Startup-costs

In our model as presented, we restrict to a cost
model where the required energy to transmit
from p to q is ω(p, q) = |pq|σ . However, we
can generalize the model with the site depen-
dent cost offset Cp > 0, for some site p ∈ S,
in the following manner: the cost of transmit-
ting from p to q is |pq|σ + Cp. The offset cost
Cp accounts for the distance independent en-
ergy consumption of the wireless stations (e.g.
the energy consumption of the signal process-
ing during sending and receiving, or it could be
used to steer away traffic from the devices with
low battery power).

The good news is that our algorithms in Sec-
tion 3 still apply since the offset cost Cp will not
influence the size of the λ -neighborhood con-
taining the optimal path. However, in the grid
pruning approach, one would have to be a little
bit more careful and in step 2 of the algorithm
report a point with the smallest offset cost (this
can be easily incorporated into the standard ge-
ometric range query data structures) rather then
an arbitrary point inside the cell.

Unfortunately, our Milestone heuristic intro-
duced in Section 3.2 in the case of non-negative
offset looses its original intuition and it could be
easily fooled unless we made some assumption
of bound on the offset costs.

5. Implementation

All the algorithms mentioned in the previous
sections were implemented using the LEDA li-
brary of data structures and algorithms ([14]).
We used the floating-point geometry kernel
which represents points in the plane by two dou-
ble coordinates. As range query structure we
employed theLEDAdatatype point dictionary

which allows range queries in time O(log2) and
nearest neighbor queries in O(n) worst-case
time. But, as these subroutines never domi-
nated the running time in the respective algo-
rithms where they were used, we did not put
more effort into O(log n) worst-case query time
implementations.

A very critical issue was the use of an appropri-
ate hashing data structure for accessing the pre-
computed template paths. We used the LEDA

type h array which hashes 32-bit integer val-
ues to some information domain. But our im-
plementation requires to hash 4-tuples of 32-bit
integer values. So we had to reduce the number
of bits by a factor of 4. In our experiments the
best choice for a hash function was to choose
the 3rd to 10th least significant bits of each of
these 4 integers and concatenate them to obtain
the hash value for the 4-tuple. For other hash
functions we tried, the number of collisions in-
creased considerably and therefore accesses to
the hashing table required going through a long
list.

All algorithms were tested within an embedded
simulation environment where data can be ei-
ther read in or generated and then processed
by our algorithms. Using a graphical user-
interface, the different parameters and alterna-
tive algorithms can be selected and evaluated
for running-time and quality of their produced
solution. See Figure 2 for a screenshot of our
simulation environment.

6. Experiments

We conducted extensive experiments on differ-
ent test data and using different parameters for
our algorithms. All running times were mea-
sured on a low-end 700 MHz Pentium III with
256 MB of RAM. We used g++ 2.95.4 with the
−O option under a Linux 2.4.19 system.

6.1. Benchmarks

Different test data sets were used to evaluate
the quality of our algorithms. See Figure 9 for
examples of the generated data.

Figure 9. Examples for test data: random (left),
MST-based (middle) and Delaunay-based (right).

6.1.1. Random Data

Here we simply generated integer points uni-
formly at random in a square.

Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks 127

6.1.2. Simulated Real-world Data

As we had no real-world data available that
could be put into a freely-available publication,
we simulated the placement of radio stations
along a road-network between cities. We had
two simple algorithms to generate such data:

MST-based generation We first generated a
random set of points (the cities) and computed
a Euclidean minimum spanning tree. For all the
leaves of the tree inside the Convex Hull of the
random set we added a new edge. Furthermore,
we generated a cluster of points around every
city and also put randomly some points along
every edge (roads). At the end, we pruned sharp
angles.

Delaunay-based generation We first gener-
ated a random set of points (the cities) and com-
puted the Delaunay triangulation. As we did not
want to keep this “triangular” road network, we
removed some of the edges under the constraint
that the remaining graph was still strongly con-
nected to. Then we assigned random weights
to the cities and generated radio stations ac-
cordingly. Finally, we generated some random
stations along the remaining edges.

6.2. Timings and Quality

In the following section we are going to report
of the timings and quality of the computed so-
lutions for our different test data and varying
problem sizes. For the precomputation of the
template paths we chose a separation constant
of S = 5 for the WSPD and ε = 5 for the grid
pruning subroutine. Even though in theory this
guarantees only a solution within a factor of
216 (!) of the optimal solution, in practice the
returned solutions were rather close to the opti-
mum. For the used parameters of k = 5, σ = 2,
S = 5, ε = 5, in fact the returned solutions were
not more than 20 % off the optimum on the av-
erage. See Tables 1, 2, 3, 4, 5 for the timing and
quality results. Note that the ‘WSPD’ column
in our tables stands for the "path template" ap-
proach from Section 3.3. Furthermore, ‘Brute
Force’ and ‘Brute Force pruned’ (BF and BFp)
columns stand for naive algorithm from Sec-
tion 2 with neighborhood pruning and cascaded

neighborhood pruning, respectively. ‘Grid’ col-
umn reports results for O(log n) approximation
algorithm from Section 3.1 while ‘Milestone’
column reports results for Milestone heuristic.

WSPD BF BFp Grid Milestone

Av.Time 8.0 · 10−4 0.91 0.24 0.038 0.002

Max Time 2.0 · 10−3 1.45 1.24 0.080 0.01

Av.Rel.Err 15% 0 0 2.7% 2.7%

Max Rel.Err 49% 0 0 6.5% 20%

σrel.err 0.12 0 0 0.018 0.039

Table 1. 1000 points randomly generated; k = 5, σ = 2,
S = 5, ε = 5; Query time and quality.

WSPD BF BFp Grid Milest.

Av.Time 5.66 · 10−4 14.59 4.75 0.07 0.01

Max Time 0.003 24.63 14.46 0.099 0.01

Av.Rel.Err 16% 0% 0% 2.6% 0.5%

Max Rel.Err 32.6% 0% 0% 4.8% 2.5%

σrel.err 0.088 0 0 0.016 0.007

Table 2. 4000 points randomly generated; k = 5, σ = 2,
S = 5, ε = 5; Query time and quality.

WSPD BF BFp Grid Milestone

Av.Time 1 · 10−4 1.193 0.937 0.009 0.0006

Max Time 1 · 10−3 1.63 4.03 0.01 0.01

Av.Rel.Err 14% 0% 0% 3.6% 10.2%

Max Rel.Err 38.7% 0% 0% 14.4% 35.9%

σrel.err 0.123 0 0 0.047 0.114

Table 3. 1000 points from the MST model; k = 5,
σ = 2, S = 5, ε = 5; Query time and quality.

WSPD BF BFp Grid Milestone

Av.Time 1 · 10−4 18.6 10.1 0.024 0.011

Max Time 0.001 27.19 21.09 0.039 0.02

Av.Rel.Err 10.1% 0% 0% 3.3% 14.3%

Max Rel.Err 20.5% 0% 0% 8.1% 33.7%

σrel.err 0.048 0 0 0.026 0.109

Table 4. 4000 points from the MST model; k = 5,
σ = 2, S = 5, ε = 5; Query time and quality.

128 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

WSPD BF BFp Grid Milestone

Av.Time 4 · 10−4 0.772 0.303 0.014 5 · 10−4

Max Time 0.002 1.13 1.28 0.03 0.01

Av.Rel.Err 17.2% 0% 0% 5.7% 10.7%

Max Rel.Err 35% 0% 0% 56% 57%

σrel.err 0.101 0 0 0.12 0.134

Table 5. 1000 points from the Delaunay model; k = 5,
σ = 2, S = 5, ε = 5; Query time and quality.

From the results you can see that the query
time using the WSPD approach remains basi-
cally constant, independent of the problem size,
which is not true for all other algorithms. In par-
ticular, the brute-force variants suffer severely
when increasing the problem size, but also the
Milestone approach gets slower due to the near-
est neighbor queries. The Grid approach also
deteriorates a bit, but will saturate at some point
(in theory at least). With regard to the qual-
ity, the brute force approaches are clearly the
best since optimal, but also the Milestone ap-
proach is not too bad. The results obtained by
the WSPD approach are mostly comparable to
the Milestone and Grid approaches, but can be
tuned by choosing different parameters, as we
will see later.

Of course, these very fast query times have their
cost, both in terms of time for the precomputa-
tion as well as in terms of the space required
to store the template paths. For this purpose
we look again at the example of 1000 random
points, but now vary both ε (the parameter used
for the grid approach when computing the tem-
plate paths) as well as S (the separation con-
stant for the WSPD). See Table 6 for the results.
Apart from the size of the precomputed struc-
ture and the preprocessing time, we show the
average and maximal relative error that was in-
curred by the precomputed paths for 30 random
k-hop queries.

Clearly, the more time and space one is willing
to invest into computing good path templates,
the better results one gets for the queries. We
emphasize that all the precomputation can be
done in a lazy fashion as explained in Section
4, so the precomputation time would only con-
sist of the time required to construct the WSPD,
which is neglectable. If a query is “new” in a
sense that no similar query has been performed
before, the respective path templatewill be com-
puted, so the set of path templates is built up one

by one during the queries. Once all path tem-
plates have been constructed, the data structure
behaves exactly as its counterpart where all pre-
computation has taken place before the queries.

templ. time (s) avg. err max err

ε=10, S=4 7813 57.7 23% 58%

ε=10, S=5 12042 98.0 22% 47%

ε=10, S=7 21200 187.3 14% 36%

ε=10, S=11 46148 458.8 12% 29%

ε=5, S=4 8287 145.7 17% 37%

ε=5, S=5 12004 230.6 15% 27%

ε=5, S=7 21924 559.8 12% 34%

ε=5, S=11 46236 1446.5 6% 13%

ε=2, S=4 7925 433.91 22% 47%

ε=2, S=5 11724 712.31 9% 28%

ε=2, S=7 22126 1606 9% 31%

ε=2, S=11 43347 3875 5% 24%

Table 6. Time/Space for preprocessing on 1000 random
points, k = 5, σ = 2 and varying ε and S.

The choice of k – the number of allowed hops
– also affects the running time of the grid prun-
ing approach and therefore of the preprocessing
step. See Table 7.

WSPD
pre. time (s) avg. err max err

k = 2 14.6 6.1% 13.8%

k = 4 74.8 15.9% 41.6%

k = 8 530 25% 41.1%

k = 16 3471 29.2% 55.8%

Table 7. Time for preprocessing on 1000 random points,
σ = 2, S = 5,ε = 5, varying k.

As larger values for k require a finer grid,
the running time of the precomputation grows
rapidly. To keep the quality of the solution, we
would have had to increase the value for S as
well to accommodate for the finer granularity
of the solution.

As mentioned in the introduction, even though
setting σ = 2 models the exact, free-space en-
ergy consumption, in practice people use larger
values σ ∈ [2, 4] to account for absorption ef-
fects etc. As σ also affects the running time of
the grid pruning approach, we give experimen-
tal data for varying σ in Table 8.

Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks 129

WSPD
pre. time (s) avg. err max err

σ = 2 232 14% 30%

σ = 3 524 30% 60%

σ = 4 817 41% 75%

Table 8. Time for preprocessing on 1000 random points,
k = 5, S = 5,ε = 5, varying σ.

It turns out that higher values for σ induce a
considerably higher precomputation since the
grid size chosen by the grid pruning algorithm
is smaller. But still, the quality deteriorates,
as with the larger exponent in the cost function,
even small perturbations might increase the cost
considerably. So to keep the same error bounds,
a smaller value for ε and/or a larger value for S
would have to be used.

7. Conclusions

We demonstrated that near energy optimal paths
can be queried very efficiently even in large ra-
dio networks. If the network is not too large,
even slowly changing networks can be accom-
modated. Nevertheless, many questions remain
as to how such a technique could be used in real
networks.

As long as the network is static, rather large net-
works could be handled. For small networks,
the precomputed tables could even be replicated
on all nodes. For large networks, the hash table
can be distributed over the network. If paths are
used for a long time (seconds) compared to the
time needed for querying a path (milliseconds),
even a centralized server for connection queries
would be feasible. In that case, even occasional
updates for inserting, deleting, or moving sta-
tions would be feasible.

Finite maximum ranges can be accommodated
easily by ignoring all connections that exceed
this range in the path computations.

Distributed implementations that can accom-
modate large and dynamic networks are a chal-
lenge beyond the scope of this paper.

Contention of several routes using the same fre-
quency bands at the same time are an issue not
directly accessed by our shortest path model.
However, for σ = 2, our cost model minimizes
the sum of the areas covered by the transmit-
ters used in a path. This can have an indirect
positive effect on contention.

Minimal total energy consumption does not
guarantee fairness, i.e., it might happen that
one station is used so often that its batteries are
quickly drained. This effect can be mitigated
in several ways. For example, rather than stor-
ing fixed routes, we can simply store areas (e.g.
squares) where relay stations should be located.
Any combination of points in these relay areas
will yield an energy efficient path. In densely
populated areas at least, one can balance energy
consumption by picking random stations in each
relay area. One can even explicitly take energy
reserves or other priorizations into account.

References

[1] S. ARYA, D. M. MOUNT, Approximate range search-
ing, Computational Geometry: Theory and Appli-
cations, 17 (2000), 135–152.

[2] S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. SIL-
VERMAN, A. WU, An optimal algorithm for approx-
imate nearest neighbor searching. Journal of the
ACM, 45(6) (1998), 891–923.

[3] N. BAMBOS, Toward Power-sensitive Network Ar-
chitectures in Wireless Communications: Concepts,
Issues, and Design Aspects. IEEE Personal Comm.,
5 (June 1998).

[4] R. BEIER, P. SANDERS, N. SIVADASAN, Energy Op-
timal Routing in Radio Networks Using Geometric
Data Structures. Proc. of the 29th Int. Coll. on
Automata, Languages, and Programming, (2002).

[5] M. DE BERG, M. VAN KREFELD, M. OVERMARS, O.
SCHWARZKOPF, Computational Geometry: Algo-
rithms and Applications. Springer, (1997).

[6] P. B. CALLAHAN, S. R. KOSARAJU, A decomposition
of multi-dimensional point-sets with applications to
k-nearest-neighbors and n-body potential fields.
Proc. of the 24th Ann. ACM Symp. on the Theory of
Computation, (1992).

[7] P. B. CALLAHAN, S. R. KOSARAJU, Algorithms for
Dynamic Closest Pair and n-Body Potential Fields.
Proc. of the 6th Ann. ACM-SIAM Symp. on Discrete
Algorithm, (1995).

[8] J. L. CARTER, M. N. WEGMAN, Universal Classes of
Hash Functions. Journal of Computer and System
Sciences, 18(2) (1979), 143–154.

[9] T. CHAN, A. EFRAT, Fly cheaply: On the minimum
fuel consumption problem. Journal of Algorithms,
41(2) (November 2001), 330–337.

[10] A. EFRAT, S. HAR-PELED: Fly Cheaply: On the
Minimum Fuel Consumption Problem, Proc. of
the 14th ACM Symp. on Computational Geometry,
(1998).

130 Constant Time Queries for Energy Efficient Paths in Multi-hop Wireless Networks

[11] S. FUNKE, D. MATIJEVIC, P. SANDERS, Approximat-
ing Energy Efficient Paths in Wireless Multi-Hop
Networks. Proc. of 11th European Symposium on
Algorithms 2003 (ESA), number 2832 in LNCS, pp.
230–241, Springer.

[12] A. GOLDSMITH, S. B. WICKER (EDS.), Special Issue:
Energy-aware Ad Hoc Wireless Networks. IEEE
Wireless Comm., 9 (August 2002).

[13] C. E. JONES, K. M. SIVALINGAM, P. AGRAWAL, J. C.
CHEN, A Survey of Energy-efficient Network Pro-
tocols for Wireless Networks. Wireless Networks, 7
(July 2001).

[14] K. MEHLHORN, S. NÄHER, LEDA: A platform for
combinatorial and geometric computing. Cam-
bridge University Press, 1999.

[15] K. MEHLHORN, S. NÄHER, Dynamic Fractional Cas-
cading. Algorithmica, 5 (1990), 215–241.

[16] D. PATEL, Energy in ad-hoc networking for the
picoradio. Master’s thesis, UC Berkeley, 2000.

[17] C. PETRIOLI, R. R. RAO, J. REDI (EDS.), Special Is-
sue: Energy Preserving Protocols. Mobile Networks
and Applications, 6 (June 2001).

[18] T. S. RAPPAPORT, Wireless Communication. Prentice
Hall, 1996.

[19] M. THORUP, U. ZWICK, Approximate Distance Or-
acles. Proc. of 33rd Symposium on the Theory of
Computation 2001.

Received: May, 2007
Accepted: November,2007

Contact addresses:

Stefan Funke, Domagoj Matijević,
Max-Planck-Institut für Informatik

66123 Saarbrücken
Germany

e-mail: dmatijev@mpi-inf.mpg.de

Peter Sanders
Universität Karlsruhe

Fakultät für Informatik
76128 Karlsruhe

Germany

STEFAN FUNKE received his PhD in computer science from the Univer-
sität des Saarlandes, Germany in 2001. After spending some time at the
Max-Planck-Institute für Informatik in Saarbrücken and at the Univer-
sity of Illinois at Urbana-Champaign as postdoctoral researcher, as well
as at Stanford University as a visiting assistant professor, he is now a full
professor at the Ernst-Moritz-Arndt-Universität Greifswald, Germany.
His research interests range broadly from theoretical to applied algo-
rithmics, including areas like computational geometry, combinatorial
optimization, and wireless networking.

DOMAGOJ MATIJEVIĆ received his PhD in computer science from the
Universität des Saarlandes, Germany in 2007. He is now a postdoctoral
researcher at the Department of Mathematics, Josip Juraj Strossmayer
University in Osijek, Croatia. His areas of interest include computa-
tional geometry, approximation algorithms, wireless networking and
combinatorial optimization.

PETER SANDERS received his PhD in computer science from Universität
Karlsruhe, Germany in 1996. After 7 years at the Max-Planck-Institute
for Informatics in Saarbrücken he returned to Karlsruhe as a full pro-
fessor in 2004. In 2004 he was also awarded the Alcatel SEL Research
Prize. He has more than 100 publications, mostly on algorithms for
large data sets. This includes parallel algorithms (load balancing,...)
memory hierarchies, graph algorithms (route planning...), randomized
algorithms, full text indices,... He is very active in promoting the
methodology of algorithm engineering that integrate design, analysis,
implementation, and experimental evaluation of algorithms. For exam-
ple, he currently heads a focus project on AE in Germany.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

