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Building Regression Models
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We give an example of the use of the forward search in
building a regression model. The standard backwards
elimination of variables is supplemented by forward plots
of added variable t statistics that exhibit the effect of each
observation on the process of model building. Attention
is also paid to the effect of individual observations on
selection of a transformation. Variable selection using
AIC is mentioned, as is the analysis of multivariate data.
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1. Introduction

The forward search is a powerful generalmethod
for detecting multiple masked outliers and for
determining their effect on inferences about
models fitted to data. This paper presents a
canonical example of the use of the forward
search in building a regression model. Both
the selection of variables and transformations of
the response are considered. In addition, some
mention is made of methods for the analysis of
multivariate data, including clustering.

Standard statistical techniques are based on ag-
gregate statistics; in normal theory regression
these would be the sufficient statistics for the
parameters of the linear model and for estima-
tion of the error variance. The books [12] and
[3] describe the use of single observation dele-
tion diagnostics to explore the contribution of
each observation to inference. If there are sev-
eral outliers, these can sometimes be deleted in
turn and their importance revealed. However,
particularly if there are several similar outliers,
or if the data contain unsuspected clusters, the

outliers may be masked; they may not become
apparent until several observations have been
deleted. Unfortunately, the combinatorial ex-
plosion of the number of combinations of ob-
servations that have to be deleted renders such
backwards deletion procedures impractical. An
example for regression in which deletion pro-
cedures fail to reveal a complicated structure of
outliers is in [4].

The book [18] explores the use of very robust
methods in the detection of outliers. These
methods use estimators based on a single care-
fully chosen subset of the data. On the contrary,
in the forward searchwe base estimators on a se-
ries of subsets of the data and so obtain multiple
views of any hidden structure. We monitor the
evolution of residuals, parameter estimates and
inferences as the subset size increases, present-
ing our results as “forward plots” which show
the evolution of the quantities of interest as a
function of sample size. Use of the forward
search is described by [4] for linear and non-
linear regression, response transformation and
in generalized linear models. Related forward
techniques for multivariate data are given in [8].

The forward search is described in more detail
in the next section. In §3 we define added-
variable t statistics for regression coefficients.
Theoretical results and simulations show that
the statistics have the correct t distribution, in-
dependently of the ordering of the observations
in the search. The resulting procedure for the
selection of regression variables is exemplified
in §3.4 with the analysis of data on ozone con-
centration in California.
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The next section briefly considers the related
plot for transformations using a constructed
variable. Here the null distribution is no longer
exactly t. The paper concludes with brief men-
tions of applications of the forward search in
model selection and, in §6, the analysis of mul-
tivariate data.

2. The Forward Search

Details of the forward search for regression are
given in Chapter 2 of [4]. The method typically
starts by fitting a small, robustly chosen, subset
of m0 of the n observations to the data. In the
example in this paper we take m0 = p, the num-
ber of parameters in the regression model. We
sample 1,000 subsets to each of which a regres-
sion is fitted by least squares and the median of
the n squared residuals is calculated. We take as
the starting subset S∗(m0) that which yields the
smallest median squared residual. This is the al-
gorithm for least median of squares introduced
by [17]. For general m we move forward to a
larger subset by ordering the n squared residu-
als from the least squares fit to the subset S∗(m)
of m observations and using the m + 1 obser-
vations with the smallest squared residuals to
form S∗(m + 1). In this way we obtain a series
of parameter estimates for p ≤ m ≤ n, which
progresses from very robust at the beginning of
the search to least squares at the end. In the
absence of outliers, the parameter estimates re-
main stable as m grows. The search is such
that observations which are far from the fitted
model enter at the end of the search; these may
be outliers, or an unidentified subset, or they
may indicate a systematic failure of the model.
The analysis of the Box and Cox poison data
in §4.4 of [4] illustrates the dependence of the
order in which observations enter S∗(m) on the
particular transformation of the response.

There is nothing special about the starting point
of the search. For small problems we can search
over all subsets of size p of the n observations.
Another possibility is to use the Least Trimmed
Squares estimator, for which again see [17].

During the search we can monitor quantities in-
dicative of model quality or inadequacy, such as
residuals or the score test for transformations.

In regression we can also monitor the evolu-
tion of s2, the estimate of the error variance.
Because the search orders the observations by
the magnitude of their residuals from the fit-
ted subsets, the value of s2 increases during the
search, although not necessarily monotonically.
As a consequence, even in the absence of out-
liers and model inadequacies, the values of the
t tests for the parameters in the model decrease
during the search and are hard to interpret. An
example is on p. 72 of [4]. In [5] the method
of added variables is used to provide plots of
t tests which are orthogonal to the search. We
exemplify and extend this procedure both for
testing for explanatory variables and for tests of
transformations of the response.

3. An Added Variable t Test

3.1. Added Variables

For all n observations the standard regression
model is written as

y = Qθ + ε (1)

where Q is n × p and the errors ε satisfy the
second-order assumptions with variances σ2.
We estimate the parameter θ by least squares
from the observations in S∗(m).

In order to obtain useful forward plots of t tests,
we rewrite the regression model (1) as

y = Qθ + ε = Xβ + wγ + ε, (2)

where γ is a scalar. We in turn take each of
the columns of Q as the vector w (except the
column corresponding to the constant term in
the model). Thus, if the columns of Q are the
p − 1 regression variables x2 to xp, we exclude
each in turn and reinclude it as w. We perform
a forward search using only the variables in X
and then use the well-established approach of
added variables – for example §2.2 of [4] – to
calculate the t test for the inclusion of w in a
manner orthogonal to the search.

This methodology leads to an expression for the
least squares estimator γ̂ as a function of resid-
uals from the regression of y and w on X. This
representation also leads to added variable plots
([12], p. 44; [3], p. 67) which can be used to
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detect an influential observation. Here we use
it for the derivation and properties of t tests in
the forward search.

Let the least squares estimator be

β̂ = (XTX)−1XTy (3)

when the fitted values from this regression are

ŷ = Xβ̂ = X(XTX)−1XTy = Hy (4)

and the least squares residuals of y and w are

e =
∗
y = y − ŷ = (I − H)y = Ay (5)

and ∗
w = (I − H)w = Aw. (6)

The least squares estimator of γ in (2) is

γ̂ =
∗
w

T
e/(

∗
w

T ∗
w) = wTAy/(wTAw), (7)

with variance

var γ̂ = σ2/(
∗
w

T ∗
w) = σ2/(wTAw). (8)

Calculation of the t test for γ also requires s2
w,

the residual mean square estimate of σ2 from
regression on X and w, which can be written as

(n − p)s2
w = yTAy − (yTAw)2/(wTAw). (9)

The t statistic for testing that γ = 0 is thus

tγ = γ̂ /{s2
w/(wTAw)}1/2. (10)

3.2. Testing γ = γ0

In model building interest is usually in whether
γ = 0, that is, whether a variable should be
included in the model. An added variable for-
mulation can also be used for testing that γ has
the non-zero value γ0, when the test is

tγ0 = (γ̂ − γ0)/{s2
w/(wTAw)}1/2. (11)

Under this hypothesis (2) is

y = Xβ + wγ0 + ε. (12)

Subtraction of the vector of offsets wγ0 from
both sides of (2) yields the general model

y(γ0) = y − wγ0
= Xβ + w(γ − γ0) + ε

= Xβ + wγ ′. (13)

If γ = γ0, γ ′ will be zero and there should be no
evidence of regression of y(γ0) on w. The added
variable calculations of the preceding section
go through with the residuals e replaced by the
residuals

e(γ0) = (I − H)y(γ0) = Ay(γ0). (14)

3.3. Forward Plots of Added-variable Tests

We perform one forward search for each of the
p − 1 choices of w in (2), or p choices if the
decision to include the intercept also needs to
be examined. Since we are regressing on a dif-
ferent set of variables in each search, we may
expect that the observations will enter S∗(m) in
a different order for each choice of w. However,
observations with outlying values of y will enter
at the end ofmany or all searches. To summarise
all this information, we plot these p − 1 values
of the added-variable t statistic in a “forward
plot” as a function of m. In this way we can
see whether individual observations or groups
of observations are causing changes in our as-
sessment of the significance of the explanatory
variables.

As an example, [4] analyses data from [15] (pp.
334 & 438) on the time of survival of 108 pa-
tients who had a particular kind of liver surgery.
There are four explanatory variables. The for-
ward plot of added-variable t statistics in Fig-
ure 1 of [5] shows that evidence for the signif-
icance of three out of the four variables grows
steadily during the search, with the fourth re-
maining non-significant. There is no evidence
of the egregious effect of any observations, ei-
ther singly or in groups. However, modifica-
tions of the data show how outliers can cause
a variable to be significant only when they are
included or how the significance of a variable
can be destroyed, as viewed by the t statistic
calculated at the end of the search. Despite this
masking of the effect of the altered observations,
the forward plot of added-variable t statistics in
their Figure 3 reveals how these conclusions are
caused by the presence of outliers. We now con-
sider a more complicated regression example.
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3.4. Ozone Data

Section 3.4 of [4] presents a forward analysis of
data on ozone concentration, in which there are
eight potential explanatory variables. The re-
gression model is chosen using a standard anal-
ysis based on t statistics when all observations
are fitted. A forward search is then used to ex-
plore the properties of the chosen model. We
now supplement this analysis by use of forward
plots of added-variable t tests.

The data, given by [4] in their Table A.7, are the
first 80 observations on a series of daily mea-
surements, from the beginning of the year, of
ozone concentration and meteorological vari-
ables in California. The full set of 300 obser-
vations was used by [11] when introducing the
ACE algorithm. The data are given in the sup-
porting material for [13], with a scatter plot of
two variables on p. 25 of that book, in which
it is clear that ozone concentration is related to
daily temperature, x1.

We begin by regressing ozone concentration on
the eight explanatory variables. The forward
plot of added-variable t statistics is depicted
in Figure 1. A surprising feature of the fitted
model is that none of the t tests for the coeffi-
cients are significant at the end of the search, the
most extreme value being −1.32, although the
value of R2 is 0.430. One reason for this seem-
ingly poor fit may be that some of the variables
are highly correlated, leading to small t values.

The QQ plot of raw residuals in Figure 2 shows
that the assumptions of constant error variance
for regression do not hold. In fact, [4] find evi-
dence for a log transformation of the data. We
scrutinise the evidence for this in §4. How-
ever, such a transformation is a priori likely;
regression assumes, at least approximately, con-
stant error variance, but here the non-negative
responses range from 2 to 24. In addition, Fig-
ure 3.36 of [4] shows evidence of an upwards
trend in the residuals from the fitted model with
log y as response, so they, and we, include a lin-
ear term in time in our model. The observations
that lie furthest from this trend are 65, 56, 53
and 31.

Figure 1. Ozone data: forward plot of added-variable t
statistics; horizontal band contains 99% of the normal

distribution. There are no significant variables.

Figure 2. Ozone data: QQ-plot of residuals. Some lack
of normality is evident.

Figure 3. Logged ozone data: forward plot of
added-variable t statistics; horizontal band contains 99%

of the normal distribution. The trend and x5 are most
significant. The plot reflects overfitting.
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There are now nine explanatory variables in-
cluding the trend. Figure 3 is the forward plot
of added-variable t statistics for this model. The
trend and x5 are now significant at the 1% level.

In most cases there is an appreciable decrease in
significance in the last few steps of the search;
t4 is the most extreme example, changing from
significant to not so. Each of these curves corre-
sponds to a forward search in which X is differ-
ent, so the units may enter in a different order.
However, working backwards, the units that en-
ter in the last few steps in all, or the majority, of
searches are 65, 56, 31 and 53. These are pre-
cisely the units that were found to be outlying
from the time trend. Our forward plot makes
clear their influence on inferences drawn from
the data.

Another feature of Figure 3 is the jagged nature
of the curves. This is a symptom of overfit-
ting; there are so many explanatory variables
that the values of the coefficients are respond-
ing to slight fluctuations in the data.

Initially, we used a backwards procedure to se-
lect variables, based on the t statistics at the
end of the search, but augmented by plots of
the added-variable t statistics, to ensure that
this summary value was representative of be-
haviour for all S∗(m). Proceeding in this way,
always dropping the least significant variable,
led, in turn, to the removal of x7, x3 and x1.
This analysis parallels that on p. 70 of [4], who,
however, do not plot the t statistics. As the re-
sult of this process, we obtain a model with a
logged response that includes a trend and terms
in x2, x4, x5, x6, and x8. The forward plot of the
added-variable t statistics is presented in Figure
4.

At this point x4 has the smallest t statistic,−1.64
and [4] next delete this variable. However, Fig-
ure 4 shows that there are rapid changes in the
values of the t statistics in the last few steps of
the search as the four observations we identified
as potential outliers enter S∗(m). In particular,
the significance of x8 is highest at the end of the
search, but still remains within the 99% band as
it has remained throughout the search. On the
contrary, the statistic for x4 increases steadily
in significance throughout much of the search,
lying outside the 99% region for several values
of m, just before the inclusion of the final ob-
servations appreciably reduces its significance.
We accordingly remove x8 from the model.

Figure 4. Logged ozone data: forward plot of
added-variable t statistics; horizontal band contains 99%
of the normal distribution. The least significant variable
at the end of the search is x4, but it is appreciably more

significant than x8 for most of the search.

Figure 5. Logged ozone data: forward plot of
added-variable t statistics; horizontal band contains 99%
of the normal distribution. All five terms are significant
at the 1% level either at the end of the search or before

that.

Figure 5 is the forward plot of added-variable
t statistics for this model, including four ex-
planatory variables and the trend. As the figure
shows, all variables and the trend are either sig-
nificant at the end of the search or have been so
for a part of the search just before the inclusion
of the last observations. This then is our final
model, with a logged response, the five variables
shown in the plot and, of course, a constant term.
This has been highly significant throughout the
search and so has not been included in the plots.
The final value of R2 for this fitted model is
0.67, an appreciable improvement compared to
the value of 0.43 for the first model we fitted.
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3.5. Null Distribution of t Statistics

We now consider the exact distribution of the
added-variable t statistics that we have judged in
our plots against the normal distribution. In our
searches we fit the reduced model E (y) = Xβ ,
the residuals from which are used to determine
the progress of the search. We do not include w
in the model, the choice of observations to in-
clude in S∗(m) depending only on y and X. But
the added-variable test (10) is a function solely

of the residuals
∗
w and

∗
y which are in a space

orthogonal to X. The ordering of observations
using X therefore does not affect the null distri-
bution of the test statistic. Since for normally
distributed errors the estimates γ̂ and s2 are in-
dependent, it follows that the null distribution is
Student’s t on m − p degrees of freedom. Con-
sequently, for small values of m, the percentage
points of the null distribution forming the en-
velope will be slightly greater than those in our
figures. Figure 1 of [5] shows envelopes for an
example with n = 108 and p = 5. This fig-
ure shows what is known from the properties of
the t distribution, that for degrees of freedom ν
greater than around 20, there is no practical dif-
ference between the normal and t distributions.
The distribution is confirmed by simulation en-
velopes from 10,000 forward searches that are
indistinguishable from those from the t distri-
bution. The conclusion is that the parallel sided
bands in our figures provide an excellent guide
to significance.

4. Transformation of the Response

The ozone data have been analysed using the
logarithm of time. We now test whether this
transformation is appropriate. The constructed-
variable test we use is similar in form to the
added-variable test of §3.1 but, as we see, has
different distributional properties.

The test was introduced by [2] for the value of
the transformation parameter λ in the Box-Cox
[10] family of normalized power transforma-
tions

z(λ ) =
{

(yλ − 1)/λ ẏλ−1 λ �= 0
ẏ log y λ = 0,

(15)

where the geometric mean of the observations
is written as ẏ = exp(Σ log yi/n). In this test the

variable w in (10) is replaced by a constructed
variable which, provided X includes a constant,
can be written as

w(λ ) =
{

yλ{log(y/ẏ) − 1/λ}/(λ ẏλ−1) λ �= 0
ẏ log y(0.5 log y − log ẏ) λ = 0.

(16)

In addition, the response y in the regression
model (2) is replaced with the normalized trans-
formed response z(λ ). The test of a particular
value λ0 of the transformation parameter is the t
test for the significance of the constructed vari-
able w(λ0) in a regression in which the explana-
tory variables X are also included. In this ap-
plication the added variable formulation of the
regression model arises naturally, with no need
to select successive columns of Q in (1).

Chapter 4 of [4] gives examples of the use of
forward plots of this constructed variable test
for transformations. Although forward plots
of the test statistic are easily interpreted, the
statistic cannot have exactly a t distribution; the
constructed variable (16) is a function of the re-
sponse. Thus the response and the constructed
variable are not independent and so the condi-
tions for the t distribution of tγ (10) do not hold.
The statistic depends on the properties of the
residuals of these variables, that is of z(λ0) and
w(λ0), the correlation between which depends
on the projection matrix A. Plots and simulation
are used by [6] to investigate the effect of this
projection on the distribution of the test statistic
in the forward search.

Figure 6 shows the forward plot of the t test
for the constructed variable for the logarithmic
transformation of the ozone data. At the end
of the search this lies in the centre of the con-
fidence region with a value of 0.43. The figure
also shows that the last observations to enter the
search, particularly the last two, do have a no-
ticeable effect on the values of the test statistic.
However, the significance of the value is not
changed. Also given in the figure are bootstrap
bounds from 20,000 simulations. The figure
shows that the normal approximation to the dis-
tribution holds well in the centre of the region,
but less well at the end, where what [6] call a
“trumpet effect” is evident.
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Figure 6. Logged ozone data: forward plot of
constructed-variable t statistics. Horizontal bands

contain 95 and 99% of the normal distribution. The
curved simulation envelopes come from 20,000

simulations.

The simulation of these bands is not completely
straightforward. In regression, to check the
bands of the earlier figures, the observations
can be simulated as coming from a standard
normal distribution, in effect taking the linear
parameters β as zero and the error variance σ2

as one, the plots depending only on the least
squares residuals that are invariant to these val-
ues. However, in simulating data for checking
the transformation of a particular set of data, we
use a model fitted to the particular transforma-
tion that we want to test. In addition, if outliers
are present, we exclude them from the data used
for parameter estimation. Here, since the last
few observationswere not strongly outlying, we
did not exclude them. The simulated envelopes
in Figure 6 show the typical breadth at the be-
ginning of the search, which results from the
estimation of σ2 from few observations, and so
to the statistic having a t distribution on few de-
grees of freedom. The trumpet effect at the end
of the search is shown by [6] to depend on the
value of R2 in the regression. If this is high, the

values of the residuals
∗
z (λ0) and

∗
w (λ0) are

almost independent and the normal distribution
provides a good approximation at the end of the
search. If R2 is low, the distribution is affected
by the presence of y in both z and w. Here, with
an R2 value of 0.67, there is some broadening of
the envelopes that makes the value of the statis-
tic less significant. However, the effect is not
enough to change our inferences based on the
normal theory envelopes.

This concludes our analysis of the ozone data.
Since the data are in time order, it is not sur-
prising that we found it necessary to include a
time trend. A function of day of the year for all
300 observations, found by [11], rises sharply
to a peak near day 120 and then declines more
slowly to reach the initial value towards the end
of the year. Initially, their function is almost
linear and so it matches our linear trend. Over a
longer time period, the set of functions chosen
for the effect of time should be cyclical. Sines
and cosines are a natural first choice.

5. AIC and Model Selection

We have augmented the standard procedure of
backward elimination of regression variables
with a forward search for each model consid-
ered. This backward procedure leaves unex-
plored the vast majority of models found by
dropping each variable in turn. The comparison
between this large number of models often uses
a model selection criterion such as AIC [1] in
which the increase in the loglikelihood of the
model which comes from fitting extra terms is
penalized by a multiple of the number of extra
parameters. For regression models this proce-
dure is identical to use of Mallows Cp [14], a
function solely of an aggregate statistic for each
model, in this case the residual sum of squares.
The extension of our forward procedure to de-
termine the effect of individual observations on
model selection causes considerable problems
in the cogent presentation of the large amount
of information available.

We have treated determination of the response
transformation separately from model building.
However, there is often a relationship between
the fitted model and the best transformation.
One possibility, for each fitted model, is to in-
clude the score test for transformations on the
same plot as the added-variable t tests, in effect
combining Figure 6 with, for instance, Figure
5. We would want the explanatory variables
to be significant, but not the constructed vari-
able. In model selection, inclusion of the con-
structed variable for the transformation could
be penalised in the same way as the inclusion of
any other explanatory variable.



294 Building Regression Models with the Forward Search

6. Envelopes and Multivariate Data

Our analysis of the ozone data relied heavily on
the assessment of observed values of the statistic
in the forward search by reference to normal or t
envelopes. For multivariate data [8] use forward
plots of a variety of Mahalanobis distances to
detect outliers and data clusters. In some of their
examples the structure of the data is revealed
without the need for reference distributions. If
a reference distribution is necessary, for exam-
ple in formal testing for outliers or clusters, the
best procedure depends on the dimensions of
the problem. For small datasets, we can use
envelopes from bootstrap simulations to deter-
mine the threshold of statistics during the for-
ward search. For moderate sized datasets, we
can use the polynomial approximations of [7]
instead. For large samples [9] rescale a paradig-
matic curve obtained by simulation to have the
correct sample size and number of variables. A
further possibility is the use of the bounds of
[16] derived from arguments using properties of
order statistics and trimmed estimators.
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