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In this paper, we analyse three statistical models for the
machine translation of Slovenian into English. All of
them are based on the IBM Model 4, but differ in the type
of linguistic knowledge they use. Model 4a uses only
basic linguistic units of the text, i.e., words and sentences.
In Model 4b, lemmatisation is used as a preprocessing
step of the translation task. Lemmatisation also makes
it possible to add a Slovenian-English dictionary as an
additional knowledge source. Model 4c takes advantage
of the morpho-syntactic descriptions (MSD) of words.
In Model 4c, MSD codes replace the automatic word
classes used in Models 4a and 4b. The models are
experimentally evaluated using the IJS-ELAN parallel
corpus.
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1. Introduction

Machine translation (MT) from one human lan-
guage to another is a longstanding goal of com-
puter science. Statistical data analysis has been
a minority approach in this field for a long time.
The growing availability of bilingual, machine-
readable text has stimulated interest in statisti-
cal methods. The use of statistical methods was
first published by IBM in the early nineties [2].
The statistical machine translation (SMT) sys-
tem constructs a general model of the translation
process. It acquires specific rules automatically
from bilingual and monolingual text corpora.
A number of SMT systems have been presented
over recent years. They share the same basic
underlying principles (will be defined in Sec-
tion 1.2), but differ in the structures and sources
of their translation models. Some of them use
word-based translation models [18, 16, 4, 15].
More sophisticates use complex phrase struc-
tures [27].

The historical enlargement of the EU has brought
many new and challenging language pairs for
machine translation. A lot of work has been
done on Czech [4], Polish [12], Croatian [3],
Serbian [20] and not at last Slovenian [6].

The Czech-English machine translation system
is based on dependency trees. Dependency trees
represent the sentence structure, as concentrated
around the verb. The presented system was out-
performed by the statistical translation system
GIZA++/1ISI ReWrite Decoder [16, 10, 18],
trained on the same corpus.

The Polish-English MT system[12] uses an elec-
tronic dictionary annotated for morphological,
syntactic, and partly semantic information. The
dictionary is based on the corpus of Polish texts
from the domain of computer science.

The Croatian language was used as one of the
target languages in multilingual example-based
MT [3]. Examples to be used were selected
based on string matching, and inflectional and
other heuristics, with no deep structural analy-
sis.

Statistical machine translation of Serbian to En-
glish was also studied [20]. It was reported that
reducing Serbian words into stems decreases er-
ror rates for the translation.

A Slovenian-English translation system called
Presis has been developed by Amebis, d.o.o.
company [21]. It is a rule-based MT, which
includes translation memory technology. Rule-
based MT analyses the morphology, syntax and
semantic of a source sentence according to pre-
viously defined rules. Translation memory en-
hances the human translation effort. It stores
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the source and target language strings of words
translated by the translator in a database. These
strings are much shorter than sentences, usu-
ally two or three words in length. A tool was
developed, being a translation aid for human
translators [22]. The translation output given
by a system is reviewed and completed by the
human translator. As the translation effort pro-
gresses, the translation memory grows.

To our knowledge, pure statistical machine trans-
lation from/in the Slovenian language has only
been published once within a very limited
scope[26]. SMT cannot compete against rule-
based systems with translation memory. SMT is
language-independent and uses bilingual corpus
as the only knowledge source. Consequently,
the results are much worse, but they add some
valuable observations about the translation pro-
cess. It has been shown that SMT and rule-
based MT can be successfully combined in a
hybrid approach [5].

In this paper we present our first experimental
results in SMT. They are intended to be used in
our speech-to-speech translation (SST) system,
which is still under development. It consists of
three complex components: speech recognition
(converts speech to text), translation (translates
text in one language to text in another language)
and speech synthesis (converts text to speech).
To date only the language resources used in our
SST system have been published [25].

Our idea in this paper is to use bilingual corpus
as the sole knowledge source of an MT system
and to avoid language specific rules. Statistical
methods are the path to follow.

1.1. Overview

In Section 1.2, we present a short review of the
statistical machine translation models. In Sec-
tion 2 we describe the alignment model, named
IBM Model 4. Section 3 introduces lemmati-
sation, which yields significantly better results,
especially for a small training corpus. The use
of morpho-syntactic classes is briefly described
in Section 4. In Section 5 we give some data
about IJS-ELAN Corpus. Section 6 describes
two well known evaluation criteria, which have
been used in our experiments. The experiments
are discussed in Section 7.

1.2. Statistical Machine Translation

The following mathematical notation of the sta-
tistical machine translation, taken from the pa-
per [2], will be used: a source string of words
f = fif2...fj...fs is to be translated into a tar-
get string of words e = ejep...ej...e;.  The
string with the highest probability is chosen
from among all possible target strings, as given
by the Bayes decision rule:

e = arg max P(elf) = arg méaxP(e)P(ﬂe)
(1)

P(e) is the language model of the target lan-
guage, whereas P(f |e) is the translation model.
The language and translation models are inde-
pendent knowledge sources. The arg max oper-
ation denotes the search for an output string in
the target language.

All SMT systems share these underlying princi-
ples for applying a translation model in order to
capture the lexical and word reordering relation-
ships between two languages. They are com-
plemented by a target language model to drive
the search process through translation model
hypotheses.

Language model is essentially the same as that
for speech recognition and has been dealt with
elsewhere in that context [14, 23|. Search pro-
cess is also not our topic. It is described in
[10].

This paper concentrates on the translation model.
A translation model is a generative model be-
cause it is a theory as to how Slovenian sen-
tences are generated. Although we are building
a Slovenian-to-English machine translation sys-
tem, we reason in the opposite direction when
training the translation model (see P(f|e) in
Equation 1).

A series of five translation models (Model 1 to
Model 5) were proposed by IBM in the nineties
[2] and remain the most attractive to this day
[16]. They are based on word alignments and
are indexed according to their increasing train-
ing complexity. The parameters are transferred
from one model to another, for example from
Model 2 to Model 3. It means that the final
parameter values of Model 2 are the initial pa-
rameter values of Model 3. Models 4 and 5 are
the most sophisticated. We will focus on Model
4 and, partly, on Model 5.
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One major disadvantage of single-word-based
approaches is that contextual information is not
taken into account. The translation model prob-
abilities are based only on single words. For
many words, the translation depends heavily on
the surrounding words. This problem is partly
addressed by the language model.

2. IBM Model 4 (4a)

In this section the translation model is described.
We focus on Model 4 although some observa-
tion will also be made of Model 5.

In our translation model the term ‘target lan-
guage’ refers to the Slovenian language and
the ‘source language’ refers to the English lan-
guage. The translation model is based on word
alignment. Given an English string e and a
Slovenian string f', a word alignment is a many-
to-one function. More than one Slovenian word
can be mapped onto the same English word (see
Figure 1).

thickeners

sredstva za zgo$cevanje

Fig. 1. Many-to-one mapping (example taken from
anx2.en.77 and anx2.s1.77).

Each word in f is mapped onto exactly one
word in e, or onto the NULL word ey. The
NULL word is an artificial construct in the ini-
tial position of an English sentence. It accounts
for Slovenian words that have no counterpart in
the English sentence (see Figure 2).

NULL products used

izdelki ki se uporabljajo

Fig. 2. NULL word as counterpart of Slovenian words
that have no translation in English (example taken from
anx2.en.203 and anx2.s1.203).

In the Slovenian string of words, we distinguish
the heads from the non-heads. The head is the
leftmost word of the group mapped to the same

English word. All subsequent words in the same
group are non-heads. In Figure 1 the Slove-
nian word ‘sredstva’ is a head word and words
‘za’ and ‘zgosCevanje’ are non-head words. A
group of Slovenian words does not always con-
tain neighbouring words.

An additional sample of word alignment is shown
in Figure 3. Each Slovenian word has its coun-
terpart in an English sentence. Two Slovenian
words (‘Bil’ and ‘je’) are mapped to the same
English word (‘was’). The word ‘Bil’ is a head
word and ‘je’ is a non-head word. In this ex-
ample, the head word and non-head word are
neighboring words, but this is not always the
case.

NULL It was a scrap of paper folded into a square.
Bil je kos papirja zganjen v kocko.

Fig. 3. A sample alignment of sentences orwl.en.2018
and orwl.s.2018 from the IJS-ELAN corpus.

Word-for-word alignments of the translated sen-
tences are unknown. All possible alignments
for a given sentence pair (e,f ) are taken into
account. An alignment for a sentence pair is
denoted by a.

Model 4 computes the probability P(a, f |e) of a
particular alignment and a particular sentence f
given a sentence e. This probability is a product
of five individual decisions:

t(fj|e;) — translation probability. It is the prob-
ability of Slovenian word f; being a trans-
lation of English word e;.

n(¢yle;) — fertility probability. An English
word can be translated into zero, one or
more than one Slovenian word. This phe-
nomenon is modelled by fertility. The fer-
tility ¢(e;) of an English word e; is the
number of Slovenian words mapped to it.
The probabilities of different fertility val-
ues ¢ for a given English word are trained.

Ppo, p1 — fertility probability for ey. Instead of
fertilities ¢(eg) of a NULL word, one sin-
gle parameter p; = 1 — pg is used. It is
the probability of putting a translation of
a NULL word onto the some position in a
Slovenian sentence.
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di(Aj)A(e;), B(fj)) — distortion probabilities
for the head word. Aj is the distance be-
tween the head of current translation and
the previous translation. It may be either
positive or negative. Distortion probabili-
ties model different word order in the target
language in comparison to the word order
in the source language. Classes of words
are used instead of words.

d-1(Aj|B(f;)) — distortion probabilities for the
non-head words. In this case Aj denotes the
distance between the head and non-head
words.

Model 4 has some deficiencies. Several words
can lie on top of one another and words can be
placed before the first position or beyond the
last position in the Slovenian string. An empty
word also causes problems. Training results in
many words aligned to the empty word. Model
5 is a reformulation of Model 4 in order to over-
come some problems. An additional parameter
is trained. It denotes the number of vacant po-
sitions in the Slovenian string. It is added to the
parameters of the distortion probabilities. In
our experiments Models 4 and 5 will be trained,
but only Model 4 will be used when decoding.
Model 5 is not yet supported by the decoding
program.

This was a short overview of the translation
model. Readers interested in a more detailed
description are referred to the paper [2].

2.1. Automatic Word Classes

Word mapping into classes is performed before
training the distortion probabilities. The group-
ing of words into classes is based on the assump-
tion, that word displacement depends on certain
features, which are common to many words.
We construct two independent mappings, A for
English words and B for Slovenian words. f {V[
denotes the Slovenian part of the bilingual cor-
pus and M is its length. We have the following
probability model:

p('1B) = [ [ p(BU#)IB(fi-1)) - p(F1B(F)
j=1
(2)

A maximum likelihood approach is performed
in order to determine the optimal classes 5 for

a given number of classes:

B = arg maxp(f"|B)

Words are mapped into classes so as to preserve
mutual information between adjacent classes in
a corpus. It is necessary to determine the num-
ber of classes in advance, as the optimum is
reached if every word is in a class of its own.
Such word classes are useless. The aim of
word classes is to solve the problem of sparse
data. The number of distortion probabilities is
reduced. We use the implementation of an opti-
mization algorithm used for language modelling
[14], where we face the same problem of data
sparsity. Having classes, bigrams of words are
replaced by bigrams of classes. For example, if
we use the mapping of 20 000 words into 100
classes, the max. number of word-bigrams is
20000? and the max. number of class-bigrams
is 1007,

Having described the formation of word classes,
we have embraced all ideas about IBM Model
4, (our Model 4a).

3. Lemmatisation (Model 4b)

The Slovenian language as a highly inflectional
language needs some additional linguistic pre-
processing. Lemmatisation is introduced as the
first type of transformation, used in the Slove-
nian part of the parallel corpus.

Lemmatisation represents a normalisation step,
where all inflected forms of a word are reduced
to its common lemma. The term ‘lemma’ means
a word form in its canonical form (e.g., infini-
tive for verbs, nominative singular for regular
nouns, etc.). We distinguish between a lemma
and the stem of a word form. For example,
the feminine noun dual postelji, has postelja
(eng. bed) as its lemma, postelj- as its stem and
—i as the inflectional ending. Lemmatisation
consists of morphological analysis, to identify
the ending and isolate the stem and synthesis,
to join the canonical ending to it. Lemmati-
sation based on a single word is ambiguous.
For example, the word postelji can have two
different lemmas, postelja and postlati (eng. to
make the bed). Unambiguous lemmatisation
of words is only possible if the words in cor-
pus are morphologically analyzed. Lemma is
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produced from a word form given its morpho-
syntactic description (MSD). For example, the
word postelji has postelja as its lemma, if it
has MSD Ncfsd, Ncfsl, Ncfdn or Ncfda, and
postlati, if it has MSD Vmp3s-a------ e.
Morpho-syntactic description will be discussed
in Section 4.

Lemmatisation was not part of our work. It has
been done by the authors of the corpus [8]. Only
the lemmatised Slovenian part of the corpus is
used in our experiments. The English counter-
part is used in basic unlemmatised form. When
using lemmatisation, the frequency statistics of
Slovenian and English parts become similar.
This observation will be presented in Section
7. On the other hand, using lemmatisation we
discard information about number, tense, gen-
der and other features which are, in some cases,
relevant for English translation.

The model with a lemmatised Slovenian corpus
is referred to as Model 4b. In Model 4b, f de-
notes a Slovenian lemma. In this model, the
automatic clustering of Slovenian lemmas has
to be performed.

3.1. The Slovenian-English Dictionary

Intuitively, the bilingual dictionary could im-
prove the translation model, essentially the prob-
ability #(f;|e;). The use of a dictionary changes
the co-occurrence counting in the first itera-
tion of Model 1. In parallel sentences f =
f]fz j..f] and e = ei1ep...ei...er,a pair (fj, e,‘)
is counted as a co-occurrence pair if one of the
following two conditions is met:

e fjand e; occurs as an entry in the dictionary,
or

e fj does not occur in the dictionary with any

e (i € {1,1}) and ¢; does not occur in the
dictionary with any f; (j € {1,J}).

The use of a dictionary improves, not only the
alignment of the words in the dictionary but also
indirectly for other words.

Dictionary entries, which are not seen in the
training corpus, fall out of use during the train-
ing, according to the previous two conditions.
Some entries are still of great value. They con-
tain alignments for vocabulary words which ap-
pear in the translation process but have not been
seen during the training. Without the proper
use of a dictionary, these words remain untrans-
lated and take the wrong positions in the target

sentence. In order to obtain full value from the
dictionary, all entries covered by the vocabu-
laries should be added to the training corpus.

In our work, a dictionary was used in one ver-
sion of Model 4b. The experiments with Model
4b were split in two experiments: one only with
lemmatisation (Model 4b-1) and the other with
the dictionary as well (Model 4b-2). Having
the Slovenian part of the corpus lemmatised,
looking-up in the dictionary was straightfor-
ward. The dictionary was extended to all word
forms associated with the English lemma, be-
cause the English part of the corpus was used in
non-lemmatised form. Only parts of the dictio-
nary were used. We limited the use of entries to
those where both the Slovenian lemma and the
English word appeared in the corpus.

4. Morpho-syntactic Classes (Model 4c)

In Section 3 we have introduced the morpho-
syntactic description (MSD), as it is used as
a basis for lemmatisation. An MSD code is
attached to each word in a corpus. It was de-
fined in the MULTEXT-East project [7]. The
MSD encodes the part-of-speech of the word
in question and the values for additional at-
tributes defined for each part-of-speech. For
example, in the Slovenian part of the corpus
the most common MSD is Ncfsn. It expands
to part-of-speech:noun (N), type:common (c),
gender:feminine (f), number:singular (s) and
case:nominative (n). A big difference between
languages is evident from the number of differ-
ent MSDs. The English part of the corpus con-
tains 134 MSDs and the Slovenian part 1100
MSDs.

The displacement of a word from its position
in the source sentence, to its position in the
target sentence depends on its syntactic fea-
tures. The displacement information could be
best inferred from a comparison of syntactic
parse trees [4]. The only information we have
relates to morpho-syntactic descriptions. So we
group words into classes based on their MSD
codes. The automatic word classes (used in
Model 4a and Model 4b) are replaced by MSD
classes. The distortion probabilities are then
obtained, based on MSD classes. The resulting
translation model is called Model 4c.
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5. IJS-ELAN Corpus

The translation system was tested on the IJS-
ELAN corpus [6]. The corpus has parts which
have a Slovenian origin and an English trans-
lation, and parts with origins in English and
translation in Slovenian. In spite of linguistic
differences, we use all the parts in the same
way. Half of the corpus contains documents
produced by the Slovenian government. The
remaining part: two texts, which deal with
computers, one is about pharmaceuticals, and
one is a literary work. All these collections
are examples of written language, except one,
which contains speeches by the former Pres-
ident of Slovenia. The corpus is encoded in
XML/TEIP4. Itis aligned at the sentence level,
tokenised, and the words are annotated with dis-
ambiguated lemmas and morpho-syntactic de-
scriptions (MSD)[6]. It is reported that Amebis
d.o.0. company performed lexical annotation
and that the TnT tagger was used afterwards to
solve the ambiguity. The authors of the project
reported 93% tagging accuracy.

An example sentence from the corpus is given
in Figure 4.

Some corpus statistics are collected in Table
1. The exact values are given throughout the
paper to encourage any interested reader to re-

<seg id="ekol.sl.1676" corresp="ekol.en.1676">
<w ana="Ncmpg" lemma="podatek">Podatkov</w>

<w ana="Spsa" lemma="za">za</w>

<w ana="Npfsa" lemma="slovenija">Slovenijo</w>
<w ana="Q" lemma="&scaron;e">&scaron;e</w>

<w ana="Vmiplp--y" lemma="imeti">nimamo</w>

<c ctag=".">.</c>

</seg>

<seg id="ekol.en.1676" corresp="ekol.sl.1676">
<w ana="Ncnp" ctag="NNS NNS" lemma="figure">
Figures</w>

<y ana="Sp" ctag="IN IN" lemma="for'">for</u>
<w ana="Np" ctag="?NN NP" lemma="slovenia'">
Slovenia</w>

<w ana="Vmip-p" ctag="VBP BER" lemma="be">
are</w>

<y ana="Rmp" ctag="RB XNOT" lemma="not">not</w>
<w ana="Rmp" ctag="RB RB" lemma="yet'">yet</w>
<w ana="Afp" ctag="JJ JJ" lemma="available">
available</w>

<c ctag=".">.</c>

</seg>

Fig. 4. Sentence pair from the IJS-ELAN corpus.

peat (and/or improve) the experiments. The re-
sources used are widely available and we only
use publicly available third-party tools.

H Slo Eng
Sentences 31900
Aver. sentence length 15.72 18.51
Tokens 498906 587481
— types 50331 24382
— singletons 24830 10575

Table 1: 1JS-ELAN corpus.

It is interesting to note that the English part con-
tains 18% more words than the Slovenian part.
The average English sentence is 3 words longer
than the average Slovenian sentence. One rea-
son lies in determiners and pronouns. The sub-
ject pronouns in English (I, he, they) usually
have a zero form in Slovenian. This is called
pronoun-dropping. The Slovenian corpus con-
tains twice as many unique words than the En-
glish corpus, this is because of the highly inflec-
tive nature of the Slovenian language. Almost
half of the words are singletons (they appeared
only once in the training corpus). This fact in-
dicates the difficulty of the translation process.

5.1. Training and Testing Sets

We discarded sentences longer than 15 words
because of computational complexity. The rest
of the corpus was split into training and test sets
in the ratio 8 : 2. The test sentences were taken
at regular intervals from the corpus. Corpus
division was obtained by using the Whittle pro-
gram [11] with the following parameters: base-
line ratio: 0.2, interleave ratio: 1 and sentence
length restriction: 15.

The training set contained 12064 sentences.
The Slovenian part was 86 177 words long and
the English part contained 97 258 words. The
test set consisted of 3123 sentences. Some
statistics from the training corpus are collected
in Table 2.

The vocabulary contained all the words which
appeared in the training set or in the test set.
Almost half of the vocabulary units were single-
tons. Zerotons are units, which do not appear
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Slo  Eng Slo
Words Words Lemmas
Sentences 12064
— units 86177 97258 86177
Vocabulary size 22072 12725 12643
— singletons 11411 5645 5636
— zerotons 2564 1272 1289
lS;)i-r(s)ccurence 857770
— unique 486312 413696
— singletons 385451 312333

Table 2: Training corpus.

in the training corpus, but occur in the test set.
These units not only remained untranslated, but
also “added noise” to the translation process of
other words. The statistics for the lemmatised
Slovenian corpus are given in the third column.
The average counts for words and lemmas were
compared. Average count for Slovenian word
was 9.97 and of lemma 19.94.

6. Evaluation Criteria

We used automatically computable metrics for
the evaluation of translations. The first evalua-
tion was performed after training, and before de-
coding of the test set. We measured the train-set
perplexity (PP(Train)) and test-set perplexity
(PP(Test)) of the translation model. Perplexity
measures how well a translation model fits the
(training /test) data. It is a function of probabil-
ity. The translation model assigns a probability
P(f |e) to any pair of sentences f and e. Train-
set perplexity PP(Train) is computed as

Z(ef)eTrain log P(f |€)
PP(Train) =2 N

Train denotes sentence-pairs from the training
set. Test-set perplexity PP(Test) has an analog
definition.

In all translation experiments, we used the fol-
lowing two error criteria:

e WER (word error rate)[9]. It is computed as
the minimum number of substitutions, inser-
tions and deletions that have to be performed

to convert the hypothetical into the reference
sentence. WER is expressed in percentage.

e BLEU (bilingual evaluation understudy) [19,
1]. Word order in Slovenian sentences is
quite relaxed.

As aresult the word order in a hypothetical sen-
tence can be different from that of a reference
sentence, but nevertheless acceptable. We com-
pute Bleu metric to partly overcome the prob-
lem of WER measurement. Bleu compares n-
grams of both sentences and counts the number
of matches. Its value ranges from O to 1. Only
a translation identical to a reference translation
will attain a score 1. It should be noted that

human translators are usually scored as approx.
0.35[19].

7. Experimental Results

The experiments were carried out for the trans-
lation direction Slovenian to English. The trans-
lation model training was performed using the
program GIZA++ [16, 17]. IBM Models 1-4
were used as stepping stones. For example, the
final estimates of Model 1 were used as initial
estimates of Model 2. HMM model should be
seen as a link between Model 2 and Model 3.
10 iterations for each Model were performed in
all experiments. Model 5 was also trained, al-
though it was not used in decoding. It was kept
in training schema, because it improved Model 4
probabilities. Model 5 training yielded some in-
teresting observations, which will be discussed
in Section 7.3. The decoding of test sentences
was performed using the ISI ReWrite Decoder
[10, 13], which supports only Model 4.

Experiments were performed on Pentium [V 2.4
GHz with 2GB RAM, which runs SUSE Linux
8.2. Average training took 4 hours. Most of the
time was spent on building automatic classes.
Average decoding of the whole test set lasted
for 5.6 mins.

7.1. Language model

All models use the same language model for
the English language. The whole English part
of the IJS-ELAN corpus was used for train-
ing. The language model was made by using
the CMU-SLM toolkit [23, 24]. A conventional



54

Statistical Machine Translation from Slovenian to English

trigram model was built with Good-Turing dis-
counting for bigrams and trigrams with counts
lower than 7. No trigrams and no bigrams were
discarded. The corpus was relatively small, so
there were a lot of singletons with significant
information. The language model perplexity of
the test set was 48.

7.2. Automatically built classes

Models 4a and 4b use automatically built classes.

Some experiments were performed to find the
optimal number of classes. The number of
classes was chosen to be 10, 100 and 1000,
respectively. 9 experiments were performed to
test all combinations (for classes of Slovenian
and English words). 50 iterations of cluster-
ing algorithm were performed. The best results
were obtained when English words were clus-
tered into 10 classes, and Slovenian words into
100 classes. Some final classes showed slight
semantic or morpho-syntactic resemblance be-
tween words, at least in English. In most classes
words did not show any similarity. It was felt
that data sparsity in the Slovenian part of the cor-
pus was not reduced enough. The corpus was
too small to build ‘good’ classes automatically.
The Slovenian language (as a highly inflectional
language) needs some additional linguistically
oriented processing.

9000 -
8000 -
7000 +
6000 -+

5000 -

PP

4000 -

3000 +

2000 +

1000 -

Model2 20 HMM

0 Model 1 10

7.3. Model 4a

Model 4a is a conventional IBM Model 4. All
word forms appear as unique tokens and were
exposed as candidates for word-for-word align-
ments. Before training, the words were mapped
into classes (as discussed in Section 7.2.).

After the training some interesting observations
were made. Figure 5 shows the training-set
and test-set perplexities computed after each it-
eration. Although the training-set perplexity
continuously decreased, the test-set perplexity
jumped at each transition point from one model
to the next one (marked with the filled square
in Figure 5). At the transition point, the final
estimates of one model initialized the estimates
of the next. In subsequent iterations after tran-
sition points, the test-set perplexity slowly in-
creased, especially in Models 1 and 4. Each
iteration of Model 4 made the test-set perplex-
ity worse. The only exception was the transi-
tion to Model 5, although the estimates never
improved on those estimates obtained at the be-
ginning of the training. The same observations
have also been made in Czech-English experi-
ments [18]. We speculated that the reason was
the small size of the training corpus, so the trans-
lation probabilities become over-trained. Better

30 Model 3 40  Model 4 50 Model 5 60

Iteration

|~ PP(Train) -o- PP(Test) |

Fig. 5. Train-set and test-set perplexities during the Model 4a training.
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alignments for training-sets did not lead to bet-
ter translations of previously unseen test-sets.
It was hoped the problem could be solved by
reducing the sparsity of the training corpus.

Figure 6 shows the averaged distortion prob-
abilities d; and d~;. Relative displacement
for one position has the highest probability
(di,>1(1|—,—) = 0.71). The reason is prob-
ably due to some determiners (the, a, an) and
pronouns (I, we), which are zero-fertility words.

d.d

>1

07
06 ||
0,5 I
04| |

03 | |

Aj

-20 -15 -10 -5 0 5 10 15 20

Fig. 6. Averaged distortion probabilities.

The probability p; was also determined in the
training of Models 3, 4 and 5. Figure 7 shows
the values of successive iterations (see the curve
of Model 4a). The p; is relatively high until the
end of Model 4 training.
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Fig. 7. Probability of NULL translation (p;).

The evaluation of test-set decoding is given in
the first rows of Tables 3 and 4. These values are
used as a reference for further improvements.

7.4. Model 4b

Experiments with the lemmatised Slovenian part
of the corpus were performed in two Models 4b.
Lemmatising the Slovenian corpus reduced the
data sparsity to a great extent (see Table 2).
New clustering of Slovenian lemmas was per-
formed. The Slovenian lemmas were automat-
ically clustered into 100 classes. The training
was repeated. Figure 8 shows the training-set

0 : :
o Model 1l 10 Model2 2 HMM

s Model3 4 Modeld s Model5  eo

Iteration

|~ PP(Train) -o- PP(Test) |

Fig. 8. Train-set and test-set perplexities during the Model 4b-1 training.
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and test-set perplexities. It confirms the as-
sumptions (from section 7.3) about Model 4
over-training. Each iteration of Model 4 pro-
duced a slight reduction of the test-set perplex-
ity. Transition to Model 5 brought further im-
provements.

The test sentences were also lemmatised before
decoding. The results of decoding are given in
the second rows (see Model 4b-1) in Tables 3
and 4. The relative improvement of WER was
8% and of Bleu metric 21.71%.

In the Model 4b-2 we used our internal Slovenian-
English dictionary, which we are building in our
research laboratory. 10000 dictionary entries
were added, which occur in the vocabularies
of our experiments. Note that the addition of a
dictionary was possible, because the corpus was
lemmatised. The results are given in the third
rows (see Model 4b-2) in Tables 3 and 4. The
WER and Bleu were improved in comparison to
Model 4b-1. The relative improvement of WER
was 1% and of Bleu metric 9%.

The drawback of Models 4b-1 and 4b-2 is the
use of a lemmatiser during the on-line decoding
process. An attempt was made to avoid this in
Model 4c.

7.5. Model 4c

In Model 4c it was hoped to improve distortion
probabilities. Words with the same morpholog-
ical features were grouped into classes. The
model is called Model 4c-1. Note that words
were used as modelling units. Words were not
lemmatised, because MSD codes are assigned
to words and not to lemmas. The results are
given in the fourth rows of Tables 3 and 4. The
Model 4c-1 is better than Model 4a, but worse
than Model 4b-1 and Model 4b-2.

Finally, in Model 4c-2, it was hoped to com-
bine the advantages of Models 4b-2 and 4c-1.
Translation probabilities were trained by Model
4b-2 and distortion probabilities by Model 4c-1.
Translation probabilities, which had been asso-
ciated with lemmas, were expanded to all word
forms. The probabilities had to be normalized
afterwards. The results are given in the last rows
of Tables 3 and 4.

The final model (Model 4c-2) improves the
WER of reference model (Model 4a) by 9%
relatively and the value of Bleu metric by 39%.
It can be seen that the results are very close to
the results of Model 4b-2, without using a lem-
matiser during the decoding. This model saves
decoding time. It is particularly important, if
requiring the translation system in real-time ap-
plications. Nevertheless, lemmas and MSD tags
provide valuable information during the train-
ing of Model 4c-2.

Model PP(Train) PP(Test)
Model 4a 10 1324
Model 4b-1 7 229
Model 4b-2 11 121
Model 4c-1 11 1121

Table 3: Final translation model perplexities.

Model WER (%) | Bleu (%)
Model 4a 69.3 18
Model 4b-1 63.7 22
Model 4b-2 62.9 24
Model 4c-1 67.9 20
Model 4c-2 63.0 25

Table 4: Evaluation of translation quality.

The training scheme of Model 4c-2 is our main
achievement. Some (good and/or funny) trans-
lation examples obtained with our final Model
4c-2 are given in Table 5. Words are written
with capital letters, because our goal is speech-
to-speech translation (SST) system.

7.6. Comparison with related work

In this section we compare the results with re-
lated work.

Training corpus of the same size was used
in experiments on Czech-English translation
[4]. Using tectogrammatical parsing of Czech
brought 95% relative improvement of Bleu met-
ric. Using only lemmatisation has brought more
than 100% relative improvement. In the latter
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Hyp:

In: IZDELKI ZIVALSKEGA IZVORA KI NISO NAVEDENI IN NE ZAJETI NA DRUGEM MESTU
Ref: PRODUCTS OF ANIMAL ORIGIN NOT ELSEWHERE SPECIFIED OR INCLUDED
ARTICLES OF ANIMAL ORIGIN ELSEWHERE SPECIFIED OR INCLUDED

Hyp:

In: TA NOVA PARTICIJA MORA BITI ZDAJ PRIKLOPLJENA NEKAM V DREVO IMENIKOV
Ref: NOW THIS NEW PARTITION MUST BE MOUNTED SOMEWHERE IN YOUR DIRECTORY TREE
THIS NEW PARTITION MUST BE NOW MOUNTED SOMEWHERE IN A DIRECTORY

Hyp:

In: MORATA JE DEJALA CE JE LE MOGOCE NAREDITI OTROKA
Ref: THEY MUST SHE SAID PRODUCE A CHILD IF THEY COULD
BIDIRECTIONAL IF IT IS POSSIBLE EXTRACTING BABY

Hyp:

In: GOTOVO JIM PREJ ALI SLEJ MORA PRITI NA MISEL DA JE TO TREBA STORITI
Ref: SURELY SOONER OR LATER IT MUST OCCUR TO THEM TO DO IT
FALLEN THEM SOONER OR LATER IT MUST COME THOUGHT THAT IT MUST DO

Hyp:

In: NAJHUJSA PA JE BILA BOLECINA V TREBUHU
Ref: THE WORST THING WAS THE PAIN IN HIS BELLY
THE WORST BUT THERE WAS PAIN IN HIS BELLY

Table 5. Some examples. In denotes the sentence given as input to the decoder and Hyp is the output of the decoder.
Ref is a reference sentence. The evaluation is done by comparing Hyp and Ref.

case they used the same translation as we did
(GIZA++-/ISI ReWrite Decoder). We spec-
ulate that the extent of improvement is due to
the better type/token statistic of Czech WSJ
training corpus (less singletons and zerotons)
in comparison to IJS-ELAN corpus.

Polish-English translation includes grammar de-
scription and syntactic-semantic parsing. The
translation system is transfer-based, so the focus
is given to the process of converting an Oxford-
PWN English-Polish dictionary to a format ap-
plicable for machine translation. It is difficult
to compare the results, because the training data
and the translation algorithm are not sufficiently
described.

In experiments on Serbian-English SMT, Ser-
bian words were reduced into stems. This pro-
cedure is, to some extent, comparable to lem-
matisation. For translation direction Serbian to
English stemming improves the translation by
8.3% (WER). Their results are comparable with
ours. Our final model resulted in 9% relative
improvement in WER.

8. Conclusion

In this paper, we have discussed different types
of the IBM Model 4 translation model. The
problem of data sparsity was outlined in exper-
iments. Three new knowledge sources were
added (lemmas, dictionary entries and MSD
codes) successively, which partly reduced the
sparsity. Finally, we have shown a method of
overcoming the use of a lemmatiser in decoding
(but not in training).

The results are far from being practically useful.
One reason is the corpus size and its complex-
ity. This problem could be solved. A more
serious problem is the difficulty of the transla-
tion process. We hope to reduce it by adding
more linguistic knowledge into the probabilistic
framework.

Our work was done along the translation direc-
tion Slovenian to English. Translation in the
opposite direction would require some changes
in the system’s architecture. At least the lem-
matiser should be replaced with the module,
which will produce the morphologically correct
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Slovenian word forms from lemmas (using the
context information). In addition, the language
model for English should be replaced with the
language model for Slovenian.
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