Journal of Computing and Information Technology - CIT 14, 2006, 2, 81-100 81

doi:10.2498/cit.2006.02.01

Translating XML Update Language

into SQL

Pensri Amornsinlaphachai*, Nick Rossiter and M. Akhtar Ali

School of Computing, Engineering & Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Several techniques for translating XML query languages
into SQL have been proposed, but no work to date trans-
lates XML update languages into SQL since XQuery
has not provided any update statements. However, there
is a suggestion from W3C indicating that an update
version of XQuery will be proposed in the near future.
Furthermore, one major advantage of updating XML
documents via a relational database is that the preser-
vation of constraints can be transferred to the database
engine; thus our main contributions are translating the
XML update language, extending XQuery into SQL
and translating recursive updates into PL/SQL. XQuery
is a functional language whereas SQL is a declarative
language; therefore, translation cannot be performed
directly, so several techniques such as rewriting rules and
graph mapping are used in our work.

Keywords: XML update language, SQL, XQuery, trans-
lation, recursive function.

1. Introduction

The emergence of XML as an effective standard
for representation of (semi-)structured data on
the Web has motivated a host of researches
in the area related to XML such as storing
(6, 15, 22|, querying [24, 25, 3] and updating
(13, 19, 31] XML documents. In the area of
querying XML documents, several query lan-
guages such as Lorel [1], XPath [32], XML-
QL [5], XQL [23] and XQuery [33] have been
proposed while several translation techniques
have been presented for translating these lan-
guages into SQL. For example, [28] translates
Lorel, [16] translates XPath, [12, 35] translate
XML-QL, [29, 10] translate XQL and [9, 7, 27]
translate XQuery. In the area of updating XML
documents, several researchers pay attention to

designing XML update languages such as XUp-
date [34], SiXDML [26], XML-RL Update Lan-
guage [19] and XML Update Extension [30], but
none of the published work has proposed trans-
lating these languages into SQL.

Our motivation comes from three reasons as
follows. Firstly, none of the published work
has presented the translation of XML update
language into SQL although many researchers
have proposed a number of XML update lan-
guages. Secondly, translating recursive query-
ing in XQuery is still an open problem. How-
ever, in our research we focus on translating
the update language. Thus, instead of translat-
ing recursive querying, we translate recursive
updating in the XML update language, an ex-
tension to XQuery. Nevertheless, it is still pos-
sible to apply our technique to translate recur-
sive querying in XQuery. Finally, if updating is
performed directly on an XML document in the
manner of the native XML database, much work
must be handled such as preserving constraints,
while updating XML documents via a relational
database has the advantage of using the database
engine to preserve constraints. This is because
before updating XML documents, both struc-
ture and constraints of XML will be mapped to
the schema of the relational database, while the
XML update language will be translated into
SQL and this SQL is used to update data in the
database.

In this paper, we will express how to translate
the XML update language into SQL, including
translating a recursive function into PL/SQL
since XQuery has not provided statements for

*This work was supported by the Royal Thai Government via Nakhonratchasima Rajabhat University.

82

Translating XML Update Language into SQL

querying data recursively. For this task, the re-
cursive function is needed. In order to demon-
strate our translation techniques, a database rep-
resenting XML documents and an update lan-
guage are necessary. In this respect we adapt ex-
isting researches to our work because our main
contribution is elsewhere.

The rest of this paper is organized as follows.
Related work is discussed in section 2. A
database and a language for updating are de-
scribed in section 3. Section 4 presents tech-
niques for translating XML update language
into SQL commands and section 5 presents how
to translate the recursive function into PL/SQL.
Finally, conclusion and further work are dis-
cussed in section 6.

2. Related Work

Several techniques [8, 11, 20] for translating
XML query languages have been proposed and
these techniques may be classified according
to the method for representing XML in the
database. There are three methods for repre-
senting XML to the database: by the edge ap-
proach, by the shredding approach and as a view
created from the database.

There are several ways in which XML query
languages are translated into SQL; however, we
will describe only the general approach of trans-
lating XPath into SOL based on representing
XML by the edge and shredding approaches
since XPath is used as a part of other XML
query languages. Until now, for translation
based on representing XML as view, we see only
the translation of XQuery into SQL. Because
XQuery is a functional language whereas SQL
is a declarative language, translation cannot be
performed straightforwardly: there is no gen-
eral approach for translating it and thus we will
describe each technique for translating XQuery
that we have found.

The general approach [35, 14| for translating
XPath into SQL based on representing XML
by the edge approach is as follows. In storing
XML by the edge approach, elements and paths
of elements are kept in one table and attributes
and path of attributes are kept in another table.
Thus, to translate XPath to SQL, PathIDs from

XPath are created and then an SQL statement
1s used to retrieve rows in tables, based on the
condition that the PathIDs derived from XPath
are the same as the path-IDs kept in the tables.
The path-IDs are used to join the tables.

The general approach [16] for translating XPath
into SQL by the shredding approach is as fol-
lows. In storing XML by the shredding ap-
proach, complex elements are converted to ta-
bles while simple elements and attributes are
converted to fields; thus, to translate XPath into
SQL, relations and fields can be identified from
their path expressions and the relations are then
joined together.

In the case of translation based on representing
XML as a view created from the database, Fer-
nandez M. et al. [8] translate XQuery to SQL by
using a view forest. Semantically, a view forest
defines a mapping from a relational database to
an XML document. Any XQuery expression
can be rewritten as a forest view. The SQL
fragments are stored in each node of the view
forest. The internal nodes will contain FROM
and WHERE clauses, whereas the leaf nodes
contain only SELECT clause. Another transla-
tion method proposed by Fernandez M. et al. [7]
is translating XQuery into SQL by decompos-
ing an XML view definition into smaller SQL
queries and submitting the decomposed SQL
queries to the database.

Shanmugasundaram J. etal. [27] translate XQue-
ry into SQL as follows. Firstly, the XQuery
query is parsed and converted to an internal
query representation called XML Query Graph
Model (XQGM). Secondly, the query is com-
posed with XML views to which it refers. Fi-
nally, optimizations are performed to elimi-
nate the construction of intermediate XML frag-
ments and predicates are pushed down.

To summarize, none of the previous work trans-
lates XML update languages into SQL although
several XML update languages, which are ex-
tensions to XQuery, have been proposed and
the official update version of XQuery may be
presented shortly; moreover, fully fledged rela-
tional technology can be exploited when XML
is updated via the relational database. The vary-
ing methods for translating the XML query lan-
guage into SQL are summarized in Table 1.

Translating XML Update Language into SQL

83

Researches Linear Non-linear | Optimisation | Represent Translated
Recursion | Recursion XML to Language
Database
Krishnamurthy R. et al. [16] Y Y N Shredding Path
Expression
Fong J.; Dillon T. [10] N N N Shredding XQL
Jain S. et al. [11] N N Y Shredding XSLT
Shanmugasundaram J. et al. [28] | Y N N Shredding Lorel
Fernandez M. et al. [7] N N Y XML view XQuery
Fernandez M. et al. [8] N N Y XML view XQuery
Shanmugasundaram J. et al. [27] | N N Y XML view XQuery
Shimura T. et al. [29] N N N Edge approach | XQL
Jensen, E.C. et al. [12] N N N Edge approach | XML-QL
Manolescu I. et al. [20] N N N Edge approach | Quilt
Manolescu L. et al. [9] N N N Edge approach | XQuery
Khan L. et al. [14] N N N Edge approach | XPath
Yoshikawa M. [35] N N N Edge approach | XPath

Table 1. Comparison of Techniques for Translating XML Query Languages into SQL.

3. A Database and a Language for
Updating

To demonstrate how to translate the XML up-
date language into SQL, a database and an up-
date language are necessary. In this section, we
apply and adapt existing work so that we can
express our translation techniques in the next
section. In this section firstly, we will describe
representing XML in a relational database and
secondly, we will present an XML update lan-
guage used for updating.

3.1. Mapping XML to Relational Database

To map XML to a relational database, we fol-
low the technique presented in work [16] since
it is compact and easy to understand. The re-
searchers of this work represent mapping via
annotations on the DTD schema graph; how-
ever, we adjust the rules in the part for mapping
the recursive form and naming key fields. The
DTD schema graph is shown in Figure 1.

The annotations on the graph correspond to the
following decomposition. Each non-leaf node
is mapped to a table name and each leaf node is
mapped to a column name. Each table has an
id as the primary key, while each table which is
not the root has parent-id as a foreign key for
preserving document structure. The name of
the primary key is the table-name followed by
‘id” while the name of a foreign key is the same
as the name of the primary key of the parent-
table. When an element has an attribute whose
type is ID, this ID will be used as the primary
key. For IDREF(s) and the recursive structure,
a separate table is created to hold the primary
keys of tables of the referencing element and the
referenced element. The name of the separate
table is the name of the referencing element fol-
lowed by the name of the referenced element.
The database derived from mapping the graph
shown in Figure 1 is given in Figure 2 in the
form of a database schema graph. In the graph,
the symbol (T) stands for table while the arrow
with a dashed-line stands for recursion.

84

Translating XML Update Language into SQL

Publication *

B A

@PublicationID Title Author+ PubType?

N\

@AuthorID Name EMail

Year Reference?

/

@Refl[D RefType

Tel? @QRefPub

Fig. 1. DTD schema graph.

Publication (

///\\

[
[
PublicationID Title Author (T)+ PubType? Year Reference (\
[
[

AuthorID// \ // \\

PublicationID RefID RefType PublicationID (QRefPub)
EMail Tel?

Name ReferencePublication (T)

RefID PublicationID

Fig. 2. Database schema graph.

(ForClause |LetClause)+
WhereUpdateClause |IfUpdateClause

where each clause is:

ForClause For $var in XPathExp(,$var in XPathExp)*

LetClause := Let $var := XPathExp(,$var := XPathExp)*
WhereUpdateClause := WhereClause? UpdateClause

WhereClause := Where Condition

UpdateClause ;= DeleteClause | ReplaceClause | InsertClause
DeleteClause := Delete node WhereClause? (,Delete node WhereClause?)*

ReplaceClause Replace node with content WhereClause?

(, Replace node with content WhereClause?)*

Insert content Into node (Before | After condition pasedon X Path)?
(,Insert content Into node (Before | After condition pgsedon X Path)?)*
If Condition Then UpdateClause

(Elself Condition Then UpdateClause)*

(Else UpdateClause)?

InsertClause

IfUpdateClause

Fig. 3. Syntax of XML Update Language.

For propagating the constraints of XML to the
relational database, the rules proposed in work
[18, 17, 31] can be applied. By applying these
rules, preserving the constraints of XML is
pushed to the database engine.

3.2. An XML Update Language

For the update language, we adapt the syntax
proposed by Tatarinov, L. et al. [30] and the
syntax of XQuery [33]. The syntax after this

adaptation is shown in Figure 3. The seman-
tics of the update language is the same as that
presented in [30].

4. Translating XML Update Language into
SQL

When compared with existing XML query lan-
guages, XQuery is the most powerful, provid-
ing many features [21, 4, 33]. In this sec-
tion, five important features will be translated

Translating XML Update Language into SQL

85

into SQL: FLW(RJ|I|D), an abbreviation for a
For-Let-Where-(Replace|Insert|Delete) expres-
sion, conditional expression, quantifier, aggre-
gate functions and (non-recursive) user-defined
function. XQuery is a functional language
whereas SQL is a declarative language; there-
fore translating the XML update language, an
extension to XQuery, into SQL is not straight-
forward; thereby several techniques such as
rewriting rules will be used during the trans-
lation. In this section, firstly, four techniques
for translating the update language will be de-
scribed. Secondly, the steps for translating the
update language into SQL will be proposed and
finally an example will be presented.

4.1. Four Techniques for Translating XML
Update Language

Our translation uses four main techniques: up-
date/delete join commands (joins in update/de-
lete commands), rewriting rules, graph mapping
and optimization rules for translating XML up-
date language into SQL. These four techniques
are as follows.

4.1.1. Update/Delete Join Commands

In the SQL standard, update/delete join com-
mands cannot be performed; however the trans-
lation of XML update commands can produce
joins of several tables. Therefore, it is necessary
that we translate XML update commands into
update/delete join commands and then rewrite
them to SQL with sub-query commands. The
syntax of update/delete join commands is as
follows:

e Syntax of joins in update command

Update table whose fields will be updated
from all related tables
Set fieldl = valuel, field2 = value2, ...
Where Condition;

e Syntax of joins in delete command

Delete table whose data will be deleted
from all related tables
Where Condition;

Note: Insert ... select-joins can already be per-
formed in the SQL standard.

4.1.2. Rewriting Rules

There are six categories of rewriting rules: FLW
(R|I|D) expression, aggregate function, quan-
tifier, conditional expression, (non-recursive)
user-defined function and SQL rewriting rules.
The first five categories are classified according
to features of the update language and these fea-
tures will be rewritten as SQL functions while
the last category of rewriting rules: SQL rewrit-
ing rules is used to rewrite update/delete join
commands as SQL commands. In this section,
we explain the SQL function and then describe
the six categories of rewriting rules.

SQL Functions. To translate XML update
commands, all clauses of XML update com-
mands must be rewritten as SQL functions.
SQL functions are conceptual functions repre-
senting the operations of SQL commands. The
SQL functions are used to group XML update
clauses and their conditions together since one
XML update command can consist of several
update clauses and each update clause can have
its own condition. Thus, these update clauses
are grouped by using function number (funcNo)
which is a parameter of every SQL function.
The funcNo 0 will be assigned to ForClause,
LetClause and WhereClause of the XML update
command. These clauses will be shared clauses
for the UpdateClause. Each update clause will
have its own funcNo, a running number starting
from 1. The update clause and its own condition
will have the same funcNo. The SQL functions
are as follows:

bindF(path, $var, funcNo)
bindL(path, $var, funcNo)

insert (node, value |funcNo, funcNo)
delete(node, funcNo)

update(node, value [funcNo, funcNo)

AN S B

where|LogicalOper(node,
ComparisonOper, value |funcNo, funcNo)

7. aggFunc(node, funcNo)
where aggFunc ::=max |min |count |avg
|sum

8. group_by(node, funcNo)

9. having(aggFunc(node),
ComparisonOper, value [funcNo, funcNo)

10. select(node, funcNo)

86

Translating XML Update Language into SQL

Four SQL functions, where|Logical(), having(),
insert() and update(), have the parameter value
| funcNo since sometimes the value in the pred-
icate, in inserting or in updating, is not the con-
stant value, but it may come from selecting a

value from other nodes.

Hence in this case,

funcNo has the same number as that for the
funcNo of the select() function.

Rewriting rules for FLW(R|I|D).

The ex-

pression FLW (R|I|D) will be rewritten as SQL
functions as follows:

1.

10.

11.

For $var in XPathExp is rewritten as:
bindF(XPathExp, $var, funcNo)

Let $var := XPathExp is rewritten as:
bindL(XPathExp,$var, funcNo)

Where predicate is rewritten as:
where(node, ComparisonOper,
value [funcNo, funcNo)

LogicalOper predicate 1s rewritten as:
LogicalOper(node, ComparisonOper,
value [funcNo, funcNo)

For $var in XPathEXp, egicare 18 translated
into:

For $var in XPathExp Where predicate
Then this clause is rewritten as SQL func-
tions according to rules 1, 3, 4.

Let $var := XPathEXp,redicare 15 translated
into:

Let $var := XPathExp Where predicate
Then this clause is rewritten as SQL func-
tions according to rules 2-4.

Select node |Return node is rewritten as:

select(node, funcNo)

Replace node with content is rewritten as:
update(node, content’s value, funcNo)

Delete node 1S rewritten as:

delete(node, funcNo)

Insert simple content into node is rewritten
as:
Insert(node, content’s value, funcNo)

Insert complex content Into node

The complex content is shredded into many
simple contents. The Insert command is
rewritten in the form of the commands based
on the simple contents which are in turn
rewritten as SQL functions as follows:

Define: complex content e, = {ey, ey,...,
ei—1, €, a1, 4, ...a;} where eq, €,...,6i_1,
e; are elements, aj, a»,..., a; are attributes,
ei={ei{en-{ei}..}, ail, ap,..., @i}

Vels Vedseers Vei—1> Vals Va2s-.., Vgi are values
of ey, es,..., €i_1, a1, 2,.., a; and Vi, Vail,
Vai2,..., Vgii are values of e;;, a;1, ap,..., aj
respectively.

Insert e, Into node is rewritten as:
insert(node/e., , funcNo)
insert(node/e. /ey, ve1, funcNo)

insert(node/e. /e, V2, funcNo)

insert(node/e./e;—1, vi—1, funcNo)
insert(node/e.@ay, v,1, funcNo)
insert(node/e. @ay, v, funcNo)

(
(
(
(
(
(
insert(node/e.@a;, v,;, funcNo)
insert(node/e./e;, , funcNo)
insert(node/e./e;/e;1, , funcNo)
insert(node/e./e;/e;1 /en, , funcNo)
(
(
(
(
(

insert(node/e./e;/ei1 /ein/.../€ii—1, , funcNo)
insert(node/e./e;/ei1/eir/.../€iis Veii, funcNo)
insert(node/e./e;@a;1, v,;1, funcNo)
insert(node/e./e;@a;, v4, funcNo)

insert(node/e./e; @a;;, Vi, funcNo)

Rewriting rules for aggregate functions.

1. Define: For $varl in XPathExpl

Let $var2 := $varl /XPathExp2
aggFunc($var2) is rewritten as:
aggFunc($var2, funcNo)
group_by($varl, funcNo)

Then:

. Define: Let $var := XPathExp

Then: aggFunc($var) is rewritten as:

aggFunc($var, funcNo)

. Define: For $varl in XPathExpl

Let $var2 := $varl /XPathExp2
Then:
Where aggFunc($var2) ComparisonOper
value 1s rewritten as:
group_by($varl, funcNo)
having(aggFunc($var2),ComparisonOper,
value, funcNo)

Translating XML Update Language into SQL

87

Rewriting rules for quantifier. In XQuery,
there are two quantifiers: existential quantifier
(some) and universal quantifier (every). Both
quantifiers can be translated into a count () func-
tion since the existential quantifier is used to
test whether at least one item in the sequence
satisfies the condition while the universal quan-
tifier is used to test whether every item in the
sequence satisfies the condition; thus, before
rewriting these quantifiers to SQL functions,
their meanings will first be translated and then
rewritten as SQL functions as follows:

1. For $varl in XPathExpl
Where some $var2 in $varl /XPathExp2
Satisfies (Condition) is translated into:
For $varl in XPathExpl
Let $var2 := $varl /XPathExp2
Where count($var2) > 0
And Condition is rewritten as:
$varl = bindF(XPathExp1, funcNo)
$var2 = bindL($varl /XPathExp2,
funcNo)
where (node, ComparisonOperator,
value |:funcNo, funcNo)
(LogicalOper(node,ComparisonOperator,
value |:funcNo, funcNo))*
group_by($varl, funcNo)
having(count($var2), >, 0, funcNo)

2. For $varl in XPathExpl
Where every $var2 in $varl /XPathExp2
Satisfies (Conditionl)
[And Condition2 |
For $varl in XPathExpl
Let $var2 := $varl /XPathExp2
Where Conditionl
[And Condition?2 |
And count($var2) =
(For $var3 in XPathExpl
Let $vard := $var3 /XPathExp2
Where $var3 = $varl
[And Condition?2]
Return count($vard)
is rewritten as:
$varl = bindF(XPathExp1, funcNo)
$var2 = bindL($varl /XPathExp2,
funcNo)
where (node,ComparisonOper,
value |:funcNo, funcNo)
(LogicalOper (node, ComparisonOper,
value |:funcNo, funcNo))*
[and(node,ComparisonOper,
value |:funcNo, funcNo)

is translated into:

(LogicalOper(node,ComparisonOper,
value |:funcNo, funcNo))*

group_by($varl, funcNo)

having(count($var2), =, :1, funcNo)

$var3 = bindF(XPathExpl, :1)

$vard = bindL($var3 /XPathExp2, :1)

select(count($vard), :1)

where ($var3, =, $varl, :1)

[and(node,ComparisonOperator,value, :1)

(logical operator(node,
ComparisonOperator, value, :1))*

group_by($var3, :1)

Besides ‘some’ and ‘every’ quantifiers, there
are two functions: empty() and exists() which
can be rewritten as count() functions. These
functions and quantifiers can be used along with
‘not’. To summarise, the meaning of these func-
tions and quantifiers can be translated before
rewriting as follows:

some 1s translated into count >0
not (some) is translated into count = 0
every is translated into

Countpredicate = countyithout predicate

not (every) is translated into

countpredicate < countyithout predicate
and countpedicate > 0

empty is translated into count =0
not (empty) is translated into count >0
exists is translated into count >0
not (exists) is translated into count = 0

Rewriting rule for conditional expression.
The construction

(ForClause|LetClause)+

If (Condition;) then
UpdateStm;

Else If (Condition,) then
UpdateStm,

[

Else [If (Condition,,)]

88

Translating XML Update Language into SQL

UpdateStm,,
]

is translated into a series of commands as
follows:

(ForClause|LetClause)+
Where Condition;
UpdateStm;

(ForClause|LetClause)+
Where Condition;

And not(Condition;)
UpdateStm,

.[.

(ForClause|LetClause)+
[Where condition,, |

Where |And not(condition;)
And not(condition;)

And not(condition,,_1)
UpdateStm,,

]

The series of commands are then rewritten as
SQL functions according to the category of ex-
pressions. The number of commands in the
series corresponds to the number of conditions
if-then-else.

if T1 is table
Update T1
From all related tables
Set fieldl = value, field2 = value, ...
Where Condition

Update T1
Set fieldl = value, field2 = value, ...

Then

is rewritten to:

Where PK(T1) in (select PK(T1) from all related tables where Condition)

Elself T1 is separate table derived from recursive structure or IDREF(s)
Define:
T2 is table containing primary key(PK1) referrenced by foreign key(FK1) of T1
T3 is table containing primary key(PK2) referrenced by foreign key(FK2) of T1
valuel, value2 are constant values
If predicate of T1.FK1 is T1.FK1 = valuel OR
predicate of T1.FK2 is T1.FK2 = value2
Update T1
From all related tables
Set FK1 = value, FK2 = value
Where Condition
And T1.FK1 = valuel|T2.PK1
And T1.FK2 = value2|T3.PK2

Then

Update T1
Set FK1 = value, FK2 = value
Where T1.FK1 (= valuel|
in (Select T2.PK1 From all related tables except T1
Where Condition without join to T1))
And T1.FK2 (= value2|
in (Select T3.PK2 From all related tables except T1
Where Condition without join to T1))
Elself predicates on T1.FK1 and T1.FK2 are not constant value Then
Update T1
From all related tables
Set FK1 = value, FK2 = value
Where Condition
And T1.FK1 = T2.PK1
And T1.FK2 = T3.PK2

Update T1

Set FK1 = value, FK2 = value

Where T1.FK1 in (Select T2.PK1 From all related tables except T1 and T3
And T1.FK2 in (Select T3.PK2 From all related tables except T1 and T2

EndIf
EndIf

Then

is rewritten to:

is rewritten to:

Where Condition without join to T1 and except predicates on T3)

Where Condition without join to T1 and except predicates on T2)

Fig. 4. Rewriting rules for joins in update command.

Translating XML Update Language into SQL

89

if T1 is table
Delete T1
From all related tables
Where Condition

Delete From T1
Where PK(T1) in (select PK(T1) from all related tables where Condition)

Elself T1 is separate table derived from recursive structure or IDREF(s)
Define:
T2 is table containing primary key(PK1) referrenced by foreign key(FK1) of T1
T3 is table containing primary key(PK2) referrenced by foreign key(FK2) of T1

Then

is rewritten to:

Then

valuel, value2 are constant values

If predicate of T1.FK1 is T1.FK1 = valuel OR
predicate of T1.FK2 is T1.FK2 = value2
Delete T1
From all related tables
Where Condition
And T1.FK1 = valuel|T2.PK1
And T1.FK2 = value2|T3.PK2

Delete From T1
Where T1.FK1 (= valuel|

And T1.FK2 (= value2|

Delete T1

From all related tables
Where Condition

And T1.FK1 = T2.PK1
And T1.FK2 = T3.PK2

Delete From T1

EndIf
EndIf

in (Select T2.PK1 From all related tables except T1
Where Condition without join to T1))

in (Select T3.PK2 From all related tables except T1
Where Condition without join to T1))

Elself predicates on T1.FK1 and T1.FK2 are not constant value

Where T1.FK1 in (Select T2.PK1 From all related tables except T1 and T3
Where Condition without join to T1 and except predicates on T3)

And T1.FK2 in (Select T3.PK2 From all related tables except T1 and T2
Where Condition without join to T1 and except predicates on T2)

Then

is rewritten to:

Then

is rewritten to:

Fig. 5. Rewriting rules for joins in delete command.

Rewriting rules for non-recursive user-de-
fined function. Calls to non-recursive func-
tions are replaced with the body of such func-
tions and parameters are replaced with proper
values. After such replacements, the update
command is rewritten as SQL functions accord-
ing to the category of expressions in the com-
mand.

SQL rewriting rules (rewriting rules for up-
date and delete join commands). Theserules
are used to rewrite update and delete join com-
mands as SQL commands. Rewriting rules for
update join commands are shown in Figure 4
and rewriting rules for delete join commands
are shown in Figure 5.

4.1.3. Graph Mapping

The purpose of graph mapping is to indicate
the SQL functions performed on tables or fields
of the database, so that SQL commands can be
correctly generated from the graph.

The steps for graph mapping start from creat-
ing a graph whose paths correspond to paths
in the SQL functions and then the graph is
mapped to the database schema graph to iden-
tify which node is a table or field. Then the
foreign keys for joins tables and join symbols
are added to the graph and the SQL functions

90

Translating XML Update Language into SQL

are mapped to the graph. Next pushing the func-
tion down to proper nodes of the graph may be
performed depending on which function is per-
formed on which node. The graph may then
be split into several sub-graphs. The number
of sub-graphs corresponds to the number of up-
date operations performed on different tables.
Finally, optimization rules are applied to the
graph or the sub-graphs and SQL commands
or update/delete join commands are generated
from the graph or the sub-graphs.

4.1.4. Optimization Rules

There are three techniques for optimization as
follows:

1. Eliminate unnecessary previous nodes: this
technique is performed by traversing from
the root node of the graph until it finds the
first predicate or update operation on a ta-
ble or a field. Then nodes which are prior
to the table or the table of the field can be
eliminated from the graph.

2. Eliminate join of any two contiguous tables:
Define: T1 and T2 are two contiguous ta-
bles starting from the root of the graph. PK
stands for primary key and FK stands for
foreign key.

On the graph, if T1 consists of only one field
which is PK/FK linking to FK/PK of T2
and P is a predicate on PK/FK of T1, then P
can be moved to FK/PK of T2 and T1 and
its PK/FK can be eliminated from the graph.

3. Eliminate join of any three contiguous
tables:
Define: T1, T2 and T3 are three contiguous
tables starting from the root of the graph.
On the graph, if T2 consists of only one field
which is PK/FK linking to FK /PK of T1 and
FK/PK of T3 then T1 and T3 can be joined
together directly and T2 and its PK/FK can
be eliminated from the graph. If there is a
predicate on PK/FK of T2 then the predicate
will be moved to FK/PK of T3.

Note: 1If a graph is already in optimized form,
the optimization will not be applied.

4.2. Steps for Translating XML Update
Language

The steps for translating XML update language
into SQL are given below:

1. Rewrite the update command to SQL func-
tions according to the rewriting rules.

2. Create a graph whose paths correspond to
paths in the functions.

3. Map the graph into the database schema
graph to identify which node is a table or
field.

4. Addkey fields (PK and FK) which are used
to join tables. However, in the case of recur-
sion on the path of the command (keys of
elements referring back to ancestors in the
path of the command) key fields will not be
added. Then add the join symbols by using
the capital L followed by numbers (L1, L2,
..., Ln) to indicate which pair of the keys
is used to join the tables.

5. Map the functions to the graph
If an insert function is performed on a node
converted to the primary key of a table, this
insert function must be copied to the foreign
key of child-tables to maintain parent-child
relationships.
If a delete or insert function is performed on
nodes converted to fields, without a delete
or insert function on an ancestor-node con-
verted to a table, the function will be con-
verted to an update function.
If an insert or delete function is performed
on a node converted to a table, this indicates
that the function will insert or delete a row
of the table. In this case the function will
not be converted to an update function.
If an update, where or group_by function
is performed on a node converted to a ta-
ble, the function will be pushed down to the
appropriate primary key of the table.

6. In the case that there is more than one up-
date function on different tables, the graph
will be split into sub-graphs. The number of
sub-graphs is equal to the number of update
operations performed on the different tables
having different funcNo.

Translating XML Update Language into SQL 91

7. For each sub-graph, some join symbols can ~ 4.3. An example of Translating XML
be eliminated when Update Language into SQL

e onlyonetableisinvolved in the updating.

e an update statement and all of its where For $p in doc(“Library.xml")/Publication,

clauses are in the same table. $a in $p/Author
o a select statement and all of its where Where $p/Title = “Java"
clauses are in the same table. Delete $p/PubType, Delete $a

8. Optimize each (sub-)graph according to op- Where $a/Name = “John §.

timization rules. 1. Parse the command and rewrite it to SQL

9. Generate SQL commands or update/delete functions as follows
join commands from each (sub-)graph. The bindF (/Publication, $p, 0)
insert functions, omitting the second param- bindF ($p/Author, $a, 0)
eter (value |:funcNo) and the bindF/bindL where ($p/Title, =, ‘Java’, 0)
functions, will be ignored in generating the delete($p/PubType, 1) delete($a, 2)
commands. where($a/Name, =, ‘JohnS., 2)

10. If the generated commands are in the form
of update/delete join commands, the com- 2. Create a graph whose nodes correspond to
mands are rewritten according to the SQL paths in the functions, map the graph to the
rewriting rules. database schema graph, add key fields (PK

— 1\
PublicationID/ | PubType | deletets 1)

Publication(T) ’where(., =, ‘Java’, 0) ‘ Title ’update(., null, 1) ‘
1 1 -r—- - - — - I
PubhcatlonID/\ PubType bindF(., $a, 0)
; Author(T) =
Title Author(T) /\ delete(., 2)
PublicationID Name PublicationID Name ’where(., =, ‘John S.’, 2)‘
(a) Graph after mapping (b) Graph after mapping SQL function
database schema graph and after delete function is changed to update function

/
77777 PublicationID

[|
Publication(T) _bindF(., $p, 0) ’Where(.7 — Java’, 0)‘ Title

O B |

bindF (., $a, 0) |

PubType | update(., null, 1) Author(T) =
’ ‘ delete(., 2)
’where(., =, Java’, 0) ‘ Title PublicationID Name ’where(., =, ‘John S.’, 2)‘

(c) Two sub-graphs of updating Publication table and Author table respectively

Fig. 6.

92

Translating XML Update Language into SQL

and FK) which are used to join tables and fi-
nally add the join symbols to indicate which
pair of keys is used to perform the join be-
tween tables. The result is shown in Figure
6(a).

3. Map the SQL functions to the graph. Since
the delete function is performed on the node
‘PubType’ converted to a field and there is
no delete function on the ancestor of this
node converted to a table, then the function
is changed to an update function The result
is shown in Figure 6(b).

4. Split the graph into sub-graphs. There are
two updated target tables: Publication and
Author. Therefore the graph is split into two
sub-graphs as shown in Figure 6(c).

5. Eachsub-graphis already in optimized form.
So commands can be generated from each
sub-graph as follows: For the first sub-
graph, only one table is involved in the up-
date; thus, there is no join in the update op-
eration so the SQL command is generated as
follows:

Update Publication P
Set P.PubType = null
Where P.Title = ‘Java’;
For the second sub-graph, a delete join com-
mand is generated as follows:
Delete Author A
From A, Publication P
Where P.Title = ‘Java’
And P.PublicationID = A.PublicationID
And A.Name = ‘John S.’;
The delete join command is rewritten as an
SQL command with a sub-query by using
the SQL rewriting rules as follows:
Delete Author A
Where A.AuthorID in
(Select A.AuthorID
From Author A, Publication P
Where P.Title = ‘Java’
And P.PublicationID = A.PublicationD
And A.Name = ‘John S.’);

5. Translating the Recursive Function into
PL/SQL

The recursive function is processed in the man-
ner of loop processing, whereas a loop structure
cannot be translated into pure SQL commands.
Thus a possible way is translating the function

into some SQL forms such as persistent stored
modules (standard SQL) or PL/SQL (Oracle).
In our research, the recursive function will be
translated into PL/SQL because it is a very well
designed tool in Oracle.

In our translation, we apply the concept of vari-
ables to the concept of tables since only the
tables can be directly manipulated by SQL com-
mands. In this section, firstly, the mechanism
for passing a variable’s value is described. Sec-
ondly, the rewriting rules for translating the re-
cursive function are proposed. Thirdly, steps
translating the recursive function into PL/SQL
are presented and finally an example is ex-
pressed.

5.1. The Mechanism for Passing
a Variable’s Value

The mechanism for passing a variable’s value is
applied to selecting and inserting data from /into
tables as follows.

1. The concept of passing a value of a variable
to another variable is applied to the concept
of selecting data from a table and then in-
serting this data into another table.

2. The notion of passing a variable’s value is
that the old value in a variable will be over-
written with the new value passed by another
variable. To use tables instead of variables
means that before inserting the data into a ta-
ble, the old data in the table must be deleted.

5.2. Rewriting Rules for Translating
the Recursive Function

The clauses of the XML update command will
be rewritten as SQL functions or SQL-syntax
commands subject to the following rules.

1. In the rewriting rules for FLW(R|I|D) ex-
pression, the Where|Replace|Insert|Delete
clause is rewritten as an SQL function as
mentioned earlier, whereas the rule of For|Let
clause is changed. Instead of binding vari-
ables to nodes in XPath, the meaning of op-
eration in For|Let clause is interpreted as the
meaning of the operation in SQL because the
number for calling the function is dynamic

Translating XML Update Language into SQL

93

depending on the result derived from the pre-
vious loop processing. Thus the number of
binding variables cannot be determined in
advance and hence the rule is as follows.
For $var in XPathExp |

Let $var := XPathExp

is rewritten as:

Insert into $var

select(XPathExp, funcNo)

. The variable which passes value in the call-
ing function is called ‘argument’ while the
variable which receives the value from the
argument is called ‘parameter’. Thus

In function call, passing $argument to $pa-
rameter

1s rewritten as:

Insert into $parameter Select * from $argu-
ment

. Replace the variables (parameter, argument)
in SQL functions or SQL-syntax commands
derived from rules 1 and 2 with their corre-
sponding tables and/or elements. The vari-
ables are categorized into two types: vari-
ables which are not a part of XPathExp (in-
dependent variables) and variables which are
a part of XPathExp. Thus the rules for re-
placing variables are as follows:

The independent variables will be replaced
with tables. Here we define that the argu-
ment will be superseded by table ‘Array’,
whereas the parameter will be substituted
with table ‘ProcessingArr’; thus
If $var is argument then
$var is rewritten as:
table ‘Array’
Elself $var is parameter then
$var is rewritten as:
table ‘ProcessingArr’
EndIf

The variable which is a part of XPathExp
cannot be replaced with tables directly. There
are two cases for these variables: variables
in a where function and variables in other
SQL functions which are not where func-
tions. In both cases, the variables will be
replaced with their corresponding elements.
In the case of the function which is not a
where function, besides replacing the vari-
able with its corresponding element, the fol-
lowing condition must be specified: the
value in the element must be the same as the
value held in the variable. The variable must

be replaced with table Array/ProcessingArr
depending on whether the variable is an ar-
gument or a parameter; thus it means that the
value in the element must be the same as the
data kept in the table. Therefore, the rules
are as follows.

Suppose that E1 is the element correspond-
ing to the variable $var; ergo
where($var/XPath, funcNo) is rewritten as:
where(E1/XPath, funcNo)

Suppose that E1 is the element correspond-
ing to the variable $var and SQLFunct is
any SQL function which is not the function
‘where’; ergo

SQLFunct($var/XPath, funcNo)

is rewritten as:

SQLFunct(E1/XPath, funcNo)

where (EL, in, , funcNo)

(select * from Array/ProcessingArr)

5.3. Steps for Translating the Recursive
Function into a PL/SQL Command

1. Rewrite each clause of the update command
until the first calling function in the body of
function is found by using the rules 1-2. The
first calling function will not be rewritten in
this step.

2. Create a loop structure when the first call-
ing function in the body of the function is
found. In the loop, the first calling function
and each clause in the body of function is
rewritten by using the rules 1-2. The second
calling function will not be rewritten.

3. Replace the variables in SQL functions and
SQL-syntax commands derived from steps
1-2 by using rule 3.

4. Follow the concept of passing a variable’s
value; therefore before inserting data into
tables, the old value in such tables must be
deleted; thereby each clause for insertion of
data is preceded by a clause for deleting old
data in the table.

5. Translate SQL functions embedded in PL/
SQL into SQL commands by using graph
mapping, as mentioned in translating XML
update language into SQL.

94

Translating XML Update Language into SQL

5.4. An Example of Translating the
Recursive Function into PL/SQL

3 For $rp in
$pub/Reference/ @RefPub —>Publication
4 Replace $rp/Year with <Year>2004</Year>

In this example we want to update the year of g allRef($rp)

both direct and indirect references of the pub-
lication whose title is ‘XQuery’. The recursive
function and the command calling the function
are as follows. (This function follows the syn-

tax of XQuery)

1 define function allRef($pub as element()*)

24

7 For $p in doc(“Library.xml") /Publication
8 Where $p/Title = “XQuery"
9 allRef($p)

The process starts from the clause in line 7.
Then it is translated into PL/SQL as follows.

Clauses in the update command

Result of rewriting

7 For $p in doc(“Library.xml”)/Publication
8 Where $p/Title = “XQuery”

Insert into $p
select(/Publication, 0)
where($p/Title, =, ‘XQuery’, 0);

9 allRef($p)
1 define function allRef($pub as element()*)

Insert into $pub
Select * from $p;

3 For $rp in $pub/Reference/@RefPub—>Publication | Insert into $rp

select($pub/Reference/@RefPub—>Publication, 1);

4 Replace $rp/Year with <Year>2004</Year>

update($rp/Year, ‘2004’, 2);

Fig. 7. Result of rewriting clauses in the update command.

Clauses in loop

Result of rewriting

5 allRef($rp)
1 define function allRef($pub as element()*)

Insert into $pub
select * from $rp;

3 For $rp in $pub/Reference/QRefPub—>Publication | Insert into $rp

select($pub/Reference/@RefPub—>Publication, 3);

4 Replace $rp/Year with <Year>2004</Year>

update($rp/Year, 2004°, 4);

Fig. 8. Result of rewriting clauses in the body of the function which are processed in loop.

Clauses in the update command

Result of replacing variables

Insert into $p
select(/Publication, 0)
where($p/Title, =, ‘XQuery’, 0);

Insert into Array
select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Insert into $pub
Select * from $p;

Insert into ProcessingArr
Select * from Array;

Insert into $rp
select($pub/Reference/@RefPub—>Publication, 1);

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, , 1)

(Select * from ProcessingArr);

update($rp/Year, ‘2004’, 2);

update(/Publication/Year, ‘2004, 2)
where(/Publication, in, , 2)
(Select * from Array);

Fig. 9. Result of replacing variables in clauses which are outside loop.

Translating XML Update Language into SQL

95

Clauses in loop

Result of replacing variables

Insert into $pub
select * from $rp;

Insert into ProcessingArr
Select * from Array;

Insert into $rp
select($pub/Reference/@QRefPub—>Publication, 3);

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 3)

where(/Publication, in, ,3)
(Select * from ProcessingArr);

update($rp/Year, ‘2004’, 4);

update(/Publication, ‘2004’, 4)
where(/Publication, in, ,4)
(Select * from Array);

Fig. 10. Result of replacing variables in clauses which are inside loop.

Delete from Array;

Insert into Array

select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Array;

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, ,1)

(Select * from ProcessingArr);

update(/Publication, ‘2004’, 2)
where(/Publication, in, ,2)
(Select * from Array);

Loop
If SQL%RowCount >0 then
Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;
Delete from Array;
Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 3)
where(/Publication, in, ,3)
(Select * from ProcessingArr);
update(/Publication, ‘2004’, 4)
where(/Publication, in, ,4)
(Select * from Array);
Else
Exit;
End If;
End Loop;

Note: If SQL%RowCount >0 then...Else Exit; EndIf; is added since
looping will continue until no more data can be updated.

Fig. 11. Adding a delete clause before each insertion of data into tables.

96

Translating XML Update Language into SQL

. Rewrite each clause until the first calling
function in the body of function is found.
The clauses in the update command and the
result of rewriting these clauses by using
rewriting rules 1-2 are shown in Figure 7.

. Create loop structure (Loop...EndLoop)
when the first calling function in the body
of function is found. Clauses in the loop
which are rewritten by using rewriting rules
1-2 are shown in Figure 8.

. Replace the variables by using rule 3. The
results after replacing variables are shown in
Figures 9 and 10.

. Follow the concept of passing a variable’s

value; thus each clause for insertion of data
is preceded by a clause for deleting old data
in the table. The result which is a PL/SQL
command is shown in Figure 11.

. Translate SQL functions embedded in PL/

SQL into SQL commands. From Figure 11,
there are 5 groups of SQL functions identi-
fied by the function number 0-4. However
SQL functions in group 1 are the same as the
ones in group 3 and SQL functions in group
2 are the same as the ones in group 4. Thus
we will only show translating SQL functions

o o select(., 1)
Publication (T} acteet(, 0] SRR N

\

’Where(.7 =, ‘XQuery’, O)‘Title ‘ PubhcatlonID
! Reference(T)

(a) Graph of SQL function in group 0 : /

| ReflD | PublicationID| L1 |
\

L — — — (RefPub)
ReferencePublication(T')

RefID

(b) Graph of SQL function in group 1

Publication(T where(., in, , 2)

/

’update(.7 2004°, Qi Year

PublicationID

(¢) Graph of SQL function in group 2

Fig. 12.

pushdown

Publication(T i seleet{0)

|~ — ™ Publication(T pushdown

seleet{m)
where{im—1)

| where(., =, ‘XQuery’, 0)| Title PublicationID| L1

where(., in, , 1}

Y

PublicationID | select(., 0) Reference(T)

Reé

[

[

[

[

[

[

[

[
Publication(T —in—2) L — — — (RefPub)
ReferencePublication(T)

RefID

(b) Graph after pushing
select and where functions in group 1

(a) Graph after pushing select function in group 0
PublicationID

’update(.7 2004°, 21 Year

PublicationID select(., 1)
PublicationID | where(., in, , 2)

(¢) Graph after pushing where function in group 2

Fig. 13.

Translating XML Update Language into SQL

97

SQL functions

SQL commands

select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Select P.PublicationID
From Publication P
Where P.Title = ‘XQuery’;

select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, , 1)

Select RP.PublicationID

From Publication P, Reference R, ReferencePublication RP
Where RP.RefID = R.RefID

And R.PublicationID = P.PublicationID

And P.PublicationID in

update(/Publication/Year, ‘2004’, 2)
where(/Publication, in, , 2)

Update Publication P
Set P.Year = ‘2004’
Where P.PublicationID in

select(/Publication/Reference/ @RefPub—>Publication, 3)
where(/Publication, in, , 3)

Select RP.PublicationID

From Publication P, Reference R, ReferencePublication RP
Where RP.ReflD = R.RefID

And R.PublicationID = P.PublicationID

And P.PublicationID in

update(/Publication/Year, ‘2004, 4)
where(/Publication, in, , 4)

Update Publication P
Set P.Year = ‘2004’
‘Where P.PublicationID in

Fig. 14. SQL commands generated from the graphs.

in groups 0, 1 and 2. SQL commands will be
generated from each group of SQL functions
independently as follows:

(a) Graphs of SQL functions in groups 0, 1
and 2 are created according to paths in
SQL functions.

(b)The graphs are mapped to the database
schema graph, join keys and join sym-
bols are added to the graphs and finally
each group of SQL functions is mapped
to its corresponding graph. The results
of mapping SQL functions in groups 0, 1
and 2 are shown in Figures 12(a), 12(b)
and 12(c) respectively.

(c) The select function in group 1 acting on
Publication element is pushed down to
the field linking to this element since this
function is performed on the node which
is on the recursive path. The select func-
tion in group 0, where function in group
1 and where function in group 2 acting
on Publication element converted to table
are pushed down to the primary key of
this table. The results of pushing SQL
functions in groups 0, 1 and 2 are shown
in Figures 13(a), 13(b) and 13(c) respec-
tively.

(d)SQL commands generated from the
graphs are shown in Figure 14. The SQL
functions in groups 3 and 4 are the same
as the ones in groups 1 and 2 respectively;
hence the generated SQL commands from
the functions in groups 3 and 4 will be the
same as the generated SQL commands
from the functions in groups 1 and 2 re-
spectively.

(e) SQL functions in the PL/SQL command
are replaced with the SQL commands
generated from the graphs. The result
is shown in Figure 15.

6. Conclusion and Further Work

Our work translates five important features of
the XML update language inherited from XQue-
ry into SQL: FLW(RJI|D), conditional expres-
sion, quantifier, aggregate functions and (non-
recursive) user-defined function. Four tech-
niques are used: rewriting rules, graph map-
ping, optimization and update/delete join com-
mands. The recursive function is translated
into PL/SQL by applying the concept of vari-
able to the notion of table and then using graph
mapping technique to generate SQL commands

98

Translating XML Update Language into SQL

Begin
Delete from Array;
Insert into Array
select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Array;

Insert into Array

select(/Publication/Reference/ @RefPub—>Publication, 1)
where(/Publication, in, ,1)

(Select * from ProcessingArr);

update(/Publication, ‘2004’ 2)
where(/Publication, in, ,2)
(Select * from Array);

Loop
If SQL%RowCount >0 then

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Array;
Insert into Array

select(/Publication/Reference/ @RefPub—>Publication, 3)

where(/Publication, in, ,3)
(Select * from ProcessingArr);

update(/Publication, ‘2004’, 4)

Else
Exit;
End If;
End Loop;
End;

where(/Publication, in, ,4)
(Select * from Array);

Note: Begin...End; block is added to make PL/SQL command completed.

Fig. 15. PL/SQL command after replacing SQL functions.

from SQL functions. One major benefit of up-
dating XML documents through the database
is that presevering constraints can be pushed
to the database engine. Our translating ap-
proach can apply to updating other (object) re-
lational databases whose schemas are derived
from mapping XML documents by the shred-
ding approach. Examples of translating XML
update language into SQL to update object-
relational database are presented on our website
12].

In our further work, we will propose how to han-

dle the order of elements in XML documents
when elements are inserted or deleted and we
will present a mechanism for propagating the
change in the database to the XML documents.

References

[1] S. ABITEBOUL, D. QUASS, J. MCHUGE, J. WIDOM
AND J. L. WINER, The Lorel query language for
semistructured data. Proceedings of International
Journal on Digital Libraries, (1997), pp. 68-88.

Translating XML Update Language into SQL

99

[2] P. AMORNSINLAPHACHAL, N. ROSSITER AND A. AL,
Translating XML update language into SQL
based upon object relational database. 2005:
http://computing.unn.ac.uk/pgrs/cgpa2/.

[3] S. CERL S. COMAL, E. DAMIANI, P. FRATERNALL, S.
PARABOSCHI AND L. TANCA, XML-GL: a Graphical
Language for Querying and Restructuring WWW
Data. Computer Networks: The International Jour-
nal of Computer and Telecommunications Network-
ing, 31 (1999), pp. 1171-1187.

[4] D. CHAMBERLIN, XQuery from experts: A Guide to
the W3C XML Query Language. Addison-Wesley,
(2003).

[5] A. DEUTSCH, M. FERNANDEZ, D. FLORESCU, A.
LEVY AND D. Suctu, A query language for XML.
Proceedings of the 8th International World Wide
Web Conference (WWW8), Toronto. Canada,
(1999).

[6] A. DEUTSCH, M. FERNANDEZ AND D. SucIu, Stor-
ing Semistructured Data with STORED. SIGMOD
Conference, Pennsylvania, United States, (1999),
pp- 431-442.

[7] M. FERNANDEZ, Y. KADIYSKA, D. SuCIU, A. MOR-
ISHIMA AND W. TAN, SILKROUTE, A Framework for
Publishing Relational Data in XML. ACM Transac-
tions on Database Systems (2002), pp. 1-55.

[8] M. FERNANDEZ, A. MORISHIMA AND D. Suclu, Ef-
ficient Evaluation of XML Middle-ware Queries.
ACM SIGMOD, Santa Barbara, California, USA,
(2001).

[9] D. FLORESCU, I. MANOLESCU AND D. KOSSMANN,
Answering XML Queries over Heterogeneous Data
Sources. Proceedings of the 27th VLDB Conference,
Roma, Italy, (2001).

[10] J. FONG AND T. DILLON, Towards Query Translation
From XQL to SQL. Proceedings of the 9th IFIP 2.6
working conference on database semantics (DS9),
Hong Kong, (2001), pp. 113-129.

[11] S. JAIN, R. MAHAJAN AND D. Sucliu, Translating
XSLT Programs to Efficient SQL Queries. Pro-
ceedings of the eleventh international conference
on World Wide, ACM Press New York, NY, USA,
Honolulu, Hawaii, USA, (2002), pp. 616-626.

[12] E. C. JENSEN, S. M. BEITZEL AND D. A. GROSSMAN,
Using a Relational Database Management System
to Implement XML-QL. Proceedings of the 17th
International Conference on Advanced Science and
Technology (ICAST’2001), Chicago, (2001).

[13] B. KANE, Consistently Updating XML Documents
using Incremental Constraint Check with XQueries.
Worchester Polytechnic Institute, (2003).

[14] L. KHAN AND Y. RAO, A Performance Evaluation
of Storing XML Data in Relational Database Man-
agement Systems. ACM (2001).

[15] M. KLETTKE AND H. MEYER, Managing XML Doc-
uments in object-relational databases. Computer
Science Department, University of Rostock, Ros-
tock, Germany, (1999).

[16] R. KRISHNAMURTHY, V. T. CHAKARAVARTHY, R.
KAUSHIK AND J. F. NAUGHTON, Recursive XML
Schema, Recursive XML Queries, and Relational
Storage: XML-toSQL Query Translation. ICDE
2004 (2004).

[17] D. LEE AND W. W. CHU, Constraints-preserving
Transformation from XML Document Type Def-
inition to Relational Schema. /9th International
Conference on Conceptual Modeling, Salt Lake
City, Utah, USA, (2000), pp. 323-338.

[18] D. LEE AND W. W. CHU, CPL Constraints-
Preserving Inlining Algorithm for Mapping XML
DTD to Relational Schema. Data & Knowledge
Engineering, 39 (2001), pp. 3-25.

[19] M. L1u, L. LU AND G. WANG, A Declarative XML-
RL Update Language. Proceedings of 22nd Inter-
national Conference on Conceptual Modeling (ER
2003), Springer-Verlag, Chicago, Illinois, USA,
(2003), pp. 506-5109.

[20] I. MANOLESCU, D. FLORESCU AND D. KOSSMANN,
Pushing XML Queries inside Relational Databases.
INRIA Technical Report No. 4112, (2001).

[21] J. MCGOVERAN, P. BOTHNER, K. CAGEL, J. LINN
AND V. NAGARAJAN, XQuery Kick Start. Sams Pub-
lishing, (2003).

[22] Y. Mo AND L. T. WANG, Storing and Maintain-
ing Semistructured Data Efficiently in an Object-
Relational Database. The Third International Con-
ference on Web Information Systems Engineering,
Singapore, (2002), pp. 247-256.

[23] J. ROBIE, The Design of XQL. 1999: http://wuw.
ibiblio.org/xql/xql-design.html.

[24] T. SCHLIEDER, Querying and ranking XML doc-
uments. Journal of the American Society for In-
Sformation Science and Technology, 53 (2002), pp.
489-503.

[25] A. SCHMIDT, M. KERSTEN, M. WINDHOUWER AND
F. WAss, Efficient Relational Storage and Retrieval
of XML documents. International Workshop on the
Web and Databases, Dallas, TX, USA, (2000), pp.
47-52.

[26] SHAMKANTE B. NAVATHE, A Proposal for an XML
Data Definition and Manipulation Language. VLDB
Conference, Hong Kong China, (2002).

[27] J. SHANMUGASUNDARAM, J. KIERNAN, E. SHEKITA,
C. FAN AND J. FUNDERBURK, Querying XML Views
of Relational Data. Proceedings of the 27th VLDB
Conference, Roma. Italy, (2001).

[28] J. SHANMUGASUNDARAM, K. TUFTE, G. HE, C.
ZHANG, D. J. DEWITT AND J. F. NAUGHTON, Rela-
tional Databases for Querying XML Documents:
Limitations and Opportunities. Proceedings of
the 25th VLDB Conference, Edinburgh, Scotland,
(1999), pp. 302-314.

[29] T. SHIMURA, M. YOSHIKAWA AND S. UEMURA, Stor-
age and Retrieval of XML Documents using
Object-Relational Databases. IPSJ Transactions on
Databases Abstract, 40 (2001).

100

Translating XML Update Language into SQL

[30] I. TATARINOV, Z. IVES, A. Y. HALEVY AND D. S.
WELD, Updating XML. Proceedings of 2001 SIG-
MOD Conference, Santa Barbara, CA, USA,,
(2001), pp. 413-424.

[31] I. VARLAMIS AND M. VAZIRGIANNIS, Bridging
XML-Schema and relational databases. A system
for generating and manipulating relational databases
using valid documents. ACM Symposium on Docu-
ment Engineering (2001), pp. 105-114.

[32] W3C: XQuery 1.0 and XPath 2.0 Data Model.
W3C working draft. 2003: http://www.w3.org/
TR/query-datamodel.

[33] W3C: XQuery 1.0: An XML Query Language.
2003: http://www.w3c.org/TR/xquery.

[34] XML:DB working group: XUpdate. 2002.
http://www.xmldb.org/xupdate/xupdate-
wd.html: http://www.xmldb.org/xupdate
/xupdate-wd.html.

[35] M. YOSHIKAWA, T. AMAGASA, T. SHIMURA AND S.
UEMURA, XREL: A Path-Based Approach to Stor-
age and Retrieval of XML documents using Re-
lational Databases. ACM Transactions on Internet
Technology, 1 (2001).

Received: October, 2004
Revised: July, 2005
Accepted: September, 2005

Contact address:

Pensri Amornsinlaphachai

School of Computing, Engineering & Information Sciences
Northumbria University

Pandon Building (Room 113), Camden Street,

Newcastle upon Tyne, NE2 1XE, UK

e-mail: pensri.amornsinlaphachai@unn.ac.uk

PENSRI AMORNSINLAPHACHALI is a Ph.D. student at School of Com-
puting, Engineering & Information Sciences, Northumbria University,
Newcastle, UK. She received her MSc. with Distinction in 2001 and
Sun Certified Programmer For THE JAVA 2 in 2002.

DR NICK ROSSITER is a reader at School of Computing, Engineering
and Information Sciences, Northumbria University, Newcastle, UK. He
is interested in interoperability of information systems.

DR M. AKHTAR ALI is a senior lecturer at School of Computing, Engi-
neering and Information Sciences, Northumbria University, Newcastle,
UK. He received his Ph.D. in 2003 from Manchester University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

