
Journal of Computing and Information Technology - CIT 13, 2005, 3, 225–233 225

Solving the k-center Problem
Efficiently with a Dominating Set
Algorithm

Jurij Mihelič and Borut Robič
Faculty of Computer and Information Science, University of Ljubljana, Slovenia

We present a polynomial time heuristic algorithm for the
minimum dominating set problem. The algorithm can
readily be used for solving the minimum α-all-neighbor
dominating set problem and the minimum set cover
problem. We apply the algorithm in heuristic solving the
minimum k-center problem in polynomial time. Using
a standard set of 40 test problems we experimentally
show that our k-center algorithm performs much better
than other well-known heuristics and is competitive with
the best known �non-polynomial time� algorithms for
solving the k-center problem in terms of average quality
and deviation of the results as well as the execution time.

Keywords: combinatorial problems, graph algorithms,
performance evaluation, facility location, k-center, domi-
nating set.

1. Introduction

Problems of finding the best location of fa-
cilities in networks or graphs abound in prac-
tical situations, such as determining locations
for fabrication, assembly plants, warehouses,
airline crew scheduling or tool selection �3, 15�.
One of the well known facility location prob-
lems is the vertex k-center problem,where given
n cities and distances between all pairs of cities,
the aim is to choose k cities �called centers� so
that the largest distance of any city to its nearest
center is minimal. Formally, the vertex k-center
is defined as follows.

Definition 1. (Vertex k-center problem) Let
G � �V� E� be a complete undirected graph
with edge costs satisfying the triangle inequal-
ity, and k be a positive integer not greater than
jVj. For any set S � V and vertex v � V, define

d�v� S� to be the length of a shortest edge from
v to any vertex in S. The problem is to find such
a set S � V, where jSj � k, which minimizes
maxv�V d�v� S�.

The vertex k-center problem is NP-hard �6�,
so exact polynomial algorithm is unlikely to
exist. A popular way to solve the k-center prob-
lem consists of solving a series of minimum set
cover problems �3, 5, 10, 11�, where one must
locate a minimum number of centers such that
every vertex in the graph can be reached �i.e.
covered� within a given coverage distance. At
each step, a threshold for the coverage distance
is chosen and the corresponding minimum set
cover problem is solved. If the solution contains
at most k centers the threshold is decreased,
otherwise it is increased. Each of the mini-
mum set cover problems is usually solved using
integer linear programming. Minieka �11� was
among the first to use this approach. Later, how-
ever, more elaborate versions were described,
such as Daskin �3�, Ellumni et al. �5� as well as
Ilhan et al. �10�, which applied more efficient
integer programming definition of the problem.
Another approach was given by Daskin �4� who
efficiently used maximum cover problem in-
stead of the minimum set cover problem. A set
of completely different approaches to solve the
k-center problemwas given byMladenović et al.
�12�, where the tabu search, variable neighbor-
hood search, and various greedy methods were
used. The greedy method was also applied by
Gonzalez �7�, Hochbaum and Shmoys �9�, and
Shmoys �16�. The last three papers describe 2-
approximation algorithms for the k-center prob-
lem. These algorithms are the best possible

226 Solving the k-center Problem Efficiently with a Dominating Set Algorithm

in the sense that no r-approximation algorithm
exists with r � 2, unless P � NP �8�. �Notice,
thatwhen the triangular inequality does not hold
no constant approximation ratio algorithm ex-
ists, unless P�NP.�

In this paper we solve the k-center problem as
a series of a minimum dominating set problems
�8, 9, 13� �as opposed to the series of minimum
set cover or maximum cover problems�. Given
a graph, the minimum dominating set problem
asks for a minimum size subset D of vertices,
such that every other vertex is adjacent to at least
one of vertices in D. The main reason that we
use this approach is that the minimum dominat-
ing set problem can be identified as one of the
main subproblems when solving the k-center
problem. Unfortunately, the minimum domi-
nating set problem is still NP-hard �6�, as are
the minimum set cover problem and maximum
cover problem.

In the following section we describe a heuristic
algorithm for the dominating set problem. In
Section 3 we show how this algorithm can be
applied to solve the k-center problem. Section
4 briefly gives some other possible applications
of the dominating set algorithm. Finally, in
Section 5 we present experimental results that
we obtained by comparing our algorithm with
several other well-known algorithms for the k-
center problem. For comparison, we used a
standard test library and results that were pre-
sented in recent literature.

2. A Dominating Set Algorithm

In this section we present a heuristic algorithm
for solving the minimum dominating set prob-
lem. This problem is formally defined as fol-
lows.

Definition 2. (Dominating set) LetG � �V� E�
be a graph. A set D � V, such that every vertex
v � V � D is adjacent to at least one vertex in
D, is called dominating set of G.

Definition 3. (Minimumdominating set pro-
blem) Given a graph, find a dominating set with
minimum cardinality.

Let us first briefly present the main ideas of
the heuristic algorithm for the minimum domi-
nating set problem �see algorithm in Figure 1�.

Input: graph G � �V� E�
Output: dominating set D
Algorithm:

1. for all v � V do CovCnt[v] := deg(v) + 1;
2. Score := CovCnt;
3. D := �;
4. repeat jVj times
5. x := select a node with minimal Score;
6. if �y � V : ��x� y� � E � CovCnt�y � � 1� then
7. D :� D � fxg;
8. for all y : �x� y� � E do CovCnt�y � :� 0;
9. else
10. for all y : �x� y� � E do
11. if CovCnt�y � � 0 then
12. CovCnt�y ���;
13. Score�y �++;
14. endif;
15. endif;
16. Score�x � :� �;
17. end;
18. return D.

Fig. 1. The dominating set heuristic algorithm.

Initially, the dominating set is empty, D :� �.
During the algorithm the set D grows according
to the ‘lazy’ principle, i.e. enlarge D as late as
possible. For each vertex v � V we keep the
count CovCnt�v�, which is the number of times
the vertex is covered by the remaining vertices
and is initialized to deg�v� � 1, where deg�v�
denotes the degree of v.

We also estimate the ‘importance’ of v by apply-
ing a special scoring strategy to rank the vertices
as potential centers. Then, at each step, a vertex
x with minimal score is checked, i.e. if there is
an adjacent vertex having cover count 1, then x
is added to D; otherwise x is used to decrement
cover counts and increment scores of its not yet
covered adjacent vertices.

Detailed description. Lines 1–3 are the ini-
tialization part of the algorithm. In addition
to setting D to empty set, they also initialize
two arrays. The first array is CovCnt, where
CovCnt�v� is the number of vertices currently
covered by �i.e. adjacent to� v. We assume that
v is adjacent to itself. The second array, called
Score, contains scores of vertices. Initially, the
score of a vertex equals to its cover count to

Solving the k-center Problem Efficiently with a Dominating Set Algorithm 227

reflect the rule of thumb that vertices with low
degrees should be checked first.

Lines 4–17 are the main loop of the algorithm.
At each execution of the loop a vertex x with
minimal score is selected �line 5�. Next, it is
checked if x has a neighbor with cover count
equal to 1 �line 6�. If so, the vertex x is the
only possible remaining vertex in the graph that
can cover such a neighbor. Hence, x must be
added to the current dominating set D. Cover
counts of all neighbors of x are set to 0 to des-
ignate them as covered �lines 7,8�. If x has
no neighbor with cover count 1, it is used to
improve the current heuristic scoring of those
among its neighbors that are still not covered
�lines 10–14�. To do this, cover counts of x’s
neighbors are decremented �because x doesn’t
cover them anymore� while their scores are in-
cremented �they worth more�. At the end of
the loop-body the vertex x is designated to be
checked by setting Score�x � to infinity.

Correctness. Clearly, the algorithm termi-
nates after jVj executions of the loop body. The
algorithm returns a dominating set of the input
graph. To see this, consider separately isolated
and non-isolated vertices of a graph. First, all
the possible isolated vertices �Score�x � � 1� of
the graph are checked and added �CovCnt�x � �
1� to the dominating set D. After all isolated
vertices have been checked, the algorithm con-
tinues on non-isolated vertices, i.e. vertices
with initial cover count and score greater than
1. Now consider a non-isolated vertex y. The
vertex will be covered either because one of its
neighbors, say x, has been added to D �due to
some x’s neighbor z �� y with cover count 1�
or because y’s cover count has reached 1 after

deg�y� decrements �because at each step a dif-
ferent vertex x � V is checked�. Thus, every
non-isolated vertex will be covered, too. Con-
sequently, all the vertices of the input graph will
be covered, so the algorithm in Figure 1 finds a
dominating set.

Complexity. Let us write n � jVj. The ini-
tialization �lines 1–3� takes O�n2� time. The
body of the main loop is executed n times. At
each execution the minimal score vertex can be
found in O�n� time. The condition �line 6� as
well as inner loops �lines 8 and 10–14� can all
be evaluated in O�n� time. Thus, the algorithm
terminates in O�n3� time. However, if vertices
are always processed in the same order �de-
termined by a list L�, the time complexity can
easily be reduced to O�n2� by using backtrack-
ing. More precisely, suppose that the else part
�lines 10–14� is to be executed. While process-
ing the vertices �line 10� one can also check
if the condition �line 6� is still false. If the
condition has become true, loop is broken, the
current vertex is remembered as the backtrack
vertex and backtracking procedure is started. In
this procedure x is added to D and x’s neighbors
are processed, i.e. their cover counts are set
to 0 and each neighbor’s score is decremented
if the neighbor is located before the backtrack
vertex in L. Thus, backtracking gives two sepa-
rate inner for loops each with time complexity
O�n�.

Example. Let us demonstrate a simple exam-
ple on how the dominating set algorithm from
Figure 1 works on a network shown in Figure 2.

There are 8 vertices in this network, thus the
algorithm will execute in 8 steps. Execution of
the algorithm is shown in Table 1. The first

v S�C b c h d a f g e

a 4�4 5�3 6�2 ��1 ��0
b 3�3 ��2 ��1 ��0
c 3�3 ��2 ��1 ��0
d 4�4 ��3 ��2 ��0 ��0
e 5�5 6�4 7�3 8�2 9�1 ��0
f 4�4 5�3 6�2 ��1 ��0
g 4�4 5�3 6�2 7�1 ��0
h 3�3 ��2 ��1 ��0

Table 1. Steps of the dominating set algorithm.

228 Solving the k-center Problem Efficiently with a Dominating Set Algorithm

Fig. 2. Example network for dominating set problem.

column lists all of the network vertices. The
second column S�C shows the scores and cover
counts for each vertex after initialization part
of the algorithm. Columns 3–10 give values of
score and cover count after each step �only val-
ues of processed vertices are shown�. The first
row contains the vertex that is being processed.

For example, in the third column the first step
of the algorithm is shown where vertex b is pro-
cessed �has minimal score�. Vertex b is not
added to D because all of its neighbors have
cover count greater than 1. Thus, score is in-
cremented and cover count is decremented, for
all b’s neighbors. Score of b is set to �. In
the ninth column of the table vertex g is pro-
cessed and it must be added to D because at
least one of g’s neighbors has cover count equal
to 1 �vertices a� c and g�. All cover counts of
g’s neighbors are set to 0 to designate them as
covered.

3. Application to the k-center Problem

The algorithm for solving the k-center prob-
lem uses described dominating set algorithm
and parametric pruning, an algorithmic tech-
nique presented in �9, 14, 17�, The algorithm is
called Scr and is formally described in Figure 3.
Initially, edge costs are sorted in nondecreasing

order. For each edge cost t the graph is pruned
by removing edges with cost greater than t and
the minimum dominating set C is found in the
pruned graph �BottleneckGraph�. If the size
of C is less than or equal to k, then C is also the
optimal solution of the k-center problem. As
we already mentioned, the minimum dominat-
ing set problem is NP-hard. To obtain efficient
algorithm for the k-center problem we applied
our algorithm in Figure 1 and the parametric
pruning technique from Figure 3.

Complexity. The first phase of the Scr algo-
rithm, which is sorting of the edge costs, takes
O�m logm� � O�n2 log n� time. The main loop
�lines 2–6� takes O�m� � O�n2� time. Nodes
u and v are adjacent in the pruned graph if
the distance d�u� v� � ci, which can directly
be used in DominatingSet procedure. Thus, the
algorithm Scr has polynomial time complex-
ity O�mn3� � O�n5�. Notice that by using
binary search instead of iterative search �line
2�, and by using backtracking in the Dominat-
ingSet procedure, the time complexity of the
k-center algorithm can easily be reduced to
O�n2 logm� � O�n2 log n�.

4. Other Applications

The algorithm in Figure 1 can easily be extended
to solve another version of the dominating set,
called minimum α -all-neighbor dominating set
problem where the aim is to cover every ver-
tex �even centers� with at least α � 1 vertices.
To do this, one simply changes the condition
in line 6 of the algorithm. In particular, in-
stead of checking if CovCnt�y � � 1, the equal-
ity CovCnt�y � � α must be checked. Notice,
however, that feasible solution of such a prob-
lem may not exist, so one should check at the

Input: complete graph G � �V� E� with edge costs
Output: set of centers C
Algorithm:

1. sort edge costs into nondecreasing list c1, c2, � � � , cm where m � jEj;
2. for all ci := c1 to cm do
3. Gi := BottleneckGraph(G� ci);
4. C := DominatingSet(Gi);
5. if jCj � k then return C;
6. end.

Fig. 3. The algorithm Scr for the k-center problem.

Solving the k-center Problem Efficiently with a Dominating Set Algorithm 229

beginning �after line 1� if all cover counts are
� α . Further, if applying this algorithm to the
k-center algorithm in Figure 3, we obtain the al-
gorithm for minimum α -all-neighbor k-center
problem.

Additionally, one can apply the idea of vertex
scores and cover counts to solve the well-known
minimum set cover problem where, given a fam-
ily F � fS1� S2� � � � � SNg of subsets of a finite
set X � fx1� x2� � � � � xng, such that X � �S�FS,
the aim is to find a minimum cardinality subset
C � F such that every element of X belongs
to at least one set in C. To find a minimum set
cover the algorithm in Figure 1 is changed to
track cover count for each element x � X and
score for every set S � F . Variable x in the
algorithm now represents a set with minimal
score, the variable y represents elements of X,
while the relation �x� y� � E stands for y � x.
Line 13 must also be changed to increment the
score of all sets containing y.

5. Experimental Results

In this section we briefly describe several im-
plemented and tested algorithms for the k-center
problem. After describing the testing environ-
ment we discuss experimental results obtained
on a set of 40 standard test problems �1�.

Implemented algorithms. Avery simple heu-
ristic to solve the k-center problem is the pure
greedy method, where centers are located con-
secutively so that the objective function is each
time reduced as much as possible. We tested

three approaches to locate the first center: �1�
random, �2� take the solution of the 1-center
algorithm, or �3� start from the vertex that of-
fers the best solution �here n runs have to be
made�. These approaches are called random
�GrR�, 1-center �Gr��, and plus �Gr�� version,
respectively.

Another greedy heuristic for the k-center prob-
lem was described by Gonzalez �7� and Dyer
and Frieze �2�. They were able to prove the
approximation factor of 2. At each step of Gon-
zalez algorithm the vertex that is the farthest
from the current set of centers is added to this
set. We implemented and tested the random
�GonR�, 1-center �Gon�� and plus �Gon�� version
of Gonzalez algorithm.

Shmoys �16� briefly described a 2-approximation
algorithm for the decision version of k-center
problem. Here, radius r is given and the aim is
to decide if there are k vertices so that the cov-
erage distance from these vertices is at most r.
The algorithm repeatedly chooses one of the re-
maining vertices v, adds it to the partial solution
and deletes all the vertices whose distance to v is
at most 2r. At the end, if the size of the solution
exceeds k, the algorithm outputs “no”, other-
wise “yes”. Based on this we implemented two
optimization versions of this algorithm, where
either random �ShR� vertex or vertex with max-
imum degree �ShD� is chosen at each step.

Hochbaum and Shmoys introduced the algo-
rithmic technique called parametric pruning for
solving the k-center problem �9, 17�. Initially,
edge costs are sorted in nondecreasing order
and for each edge cost t a maximal independent
set in the square of the pruned graph is found.

Approximation factor
Algorithm average deviation Description

GrR 1.697 0.559 Pure greedy first random
Gr� 1.675 0.570 Pure greedy first 1-center
Gr� 1.512 0.550 Pure greedy plus
GonR 1.495 0.130 Gonzalez first random
HS 1.462 0.177 Hochbaum-Shmoys
ShR 1.432 0.112 Shmoys random
Gon� 1.398 0.128 Gonzalez first 1-center
ShD 1.343 0.105 Shmoys degree
Gon� 1.317 0.139 Gonzalez plus
Scr 1.058 0.043 Scoring heuristic

Table 2. The quality of the Scr algorithm.

230 Solving the k-center Problem Efficiently with a Dominating Set Algorithm

If the set contains no more than k vertices, it
is returned as the solution of the k-center prob-
lem; otherwise, the threshold t is increased. The
authors have proved that this algorithm �HS� re-
turns 2-approximate solutions. The mentioned
algorithms are listed in Table 2. Notice that we
also included our algorithm �Scr�.

Testing environment. For testing the de-
scribed algorithms we used the standard OR-
Library, which contains 40 test graphs. These
graphs contain from 100 to 900 vertices while k
ranges from 5 to 90. Originally, the library was
designed for testing k-median problems �1�, but
it has become also a standard testing tool for the
k-center problem because the optimal solutions
are known. They had been obtainedmostlywith
integer programming approaches �4, 5, 10�, tabu
search or variable neighbourhood search �12�.
�The preprocessing runs the all shortest paths
algorithm with time complexity O�n3��.

We implemented all the algorithms from Table
2 in Borland Delphi 7.0 and tested on a com-
puter with Intel processor running at 1700 MHz
with 512MB of system memory.

Experimental results. Although our primary
aim was to compare the quality of the solutions,
let us mention that Gonzalez’s algorithms were
the fastest �running below 1 second�. The pure
greedy methods were quite fast �about 1.5 sec-
onds on average�, but their execution time was
very variable and dependent on the parameter k.
�Recall, that plus variants run much slower due
to the algorithm which tries all vertices for the
first center.� The average time of HS was about

Running time
Algorithm average deviation

GonR 0.006 0.01
Gon� 0.01 0.012
ShR 0.204 0.142
ShD 0.211 0.147
GrR 1.526 2.37
Gr� 1.565 2.37
Gon� 2.407 3.85
Scr 11.92 10.77
HS 37.85 45
Gr� 823 1456

Table 3. Running times of the algorithms.

38 seconds. Shmoys’ variants were also quite
fast �below 1 second� and the Scr running time
was 12 seconds on average. Average running
times of the algorithms are summarized in the
following table.

Recall that approximation factor is defined to
be the ratio between approximate and optimal
solution. Average approximation factors for the
algorithms compared are given in Table 3 above.
The entries are sorted according to the average
quality of the approximate solutions.

Having the smallest average approximation fac-
tor, our Scr algorithm performs much better
than any other heuristic approach. In addition,
this algorithm exhibits the smallest deviation of
the approximation factor. Figure 4 also shows
that there is a considerable quality leap between
Scr algorithm and Gon�, which is the second
best of these algorithms.

Fig. 4. The quality of algorithms.

Solving the k-center Problem Efficiently with a Dominating Set Algorithm 231

n k Opt GrR Gr� GrP Gon Gon� Gon� HS ShR ShD Scr

1 100 5 127 143 133 133 186 162 155 184 188 171 133
2 100 10 98 117 117 110 131 124 117 160 128 135 109
3 100 10 93 126 116 106 154 133 124 160 140 120 99
4 100 20 74 127 127 92 114 99 92 124 109 84 83
5 100 33 48 87 87 78 71 64 62 77 62 59 48
6 200 5 84 98 94 89 138 99 98 126 138 106 90
7 200 10 64 78 79 77 96 87 85 90 88 90 70
8 200 20 55 72 72 72 82 72 71 84 74 68 60
9 200 40 37 73 73 63 57 51 49 62 50 52 38

10 200 67 20 44 44 38 31 29 29 32 28 28 20
11 300 5 59 68 67 61 73 68 68 82 73 74 60
12 300 10 51 62 72 56 71 70 66 78 74 70 53
13 300 30 35 64 64 52 59 51 49 60 54 52 38
14 300 60 26 60 60 46 40 36 36 44 36 34 27
15 300 100 18 42 42 40 25 25 23 30 22 20 18
16 400 5 47 52 51 47 84 55 52 64 83 58 48
17 400 10 39 50 50 43 56 51 48 56 56 52 41
18 400 40 28 50 50 42 44 41 39 46 40 38 31
19 400 80 18 40 40 31 28 28 27 30 26 24 20
20 400 133 13 32 32 32 19 19 17 22 18 16 14
21 500 5 40 48 48 42 53 51 45 52 53 45 40
22 500 10 38 48 49 43 56 54 47 54 54 48 41
23 500 50 22 41 41 35 34 33 32 36 32 30 24
24 500 100 15 35 35 32 23 23 21 24 22 20 17
25 500 167 11 27 27 27 15 15 15 18 16 14 11
26 600 5 38 44 43 39 50 47 43 52 50 52 41
27 600 10 32 37 39 35 43 42 55 42 44 44 33
28 600 60 18 33 33 27 28 28 25 28 28 28 20
29 600 120 13 34 36 34 19 19 18 22 18 18 13
30 600 200 9 29 29 29 14 14 13 16 12 12 10
31 700 5 30 35 34 31 42 38 36 40 42 44 30
32 700 10 29 35 35 32 45 43 37 40 44 40 31
33 700 70 15 32 26 24 26 25 23 26 24 22 17
34 700 140 11 30 30 27 17 17 16 18 16 16 11
35 800 5 30 37 32 31 38 37 34 40 38 38 32
36 800 10 27 34 34 30 41 41 34 38 42 38 28
37 800 80 15 26 26 26 25 24 23 24 22 22 16
38 900 5 29 42 35 31 36 38 31 38 40 38 29
39 900 10 23 27 28 25 35 35 28 32 36 34 24
40 900 90 13 25 22 22 21 20 19 22 20 20 14

Table 4. Experimental results: # is the graph number; n represents the number of vertices; k is the number of centers;
Opt is the optimal result; other columns contain results obtained with corresponding algorithms.

The results for particular algorithms and prob-
lems are given in Table 4. Pure greedy algo-
rithms were the worst, while only slightly better
results were obtained with the plus version. By
examining Table 4 we found out that the quality
of the pure greedy method strongly depends on
the parameter k and improves for low values of

k. Gonzalez algorithms are very fast. The best
variant of the Gonzalez algorithm is the plus
variant, yet it still returns results that are about
32% above the optimal. The algorithms HS�

ShR� ShD exploit very similar problem proper-
ties, and return similar results. However, the al-
gorithm ShD proved to be the best among them.

232 Solving the k-center Problem Efficiently with a Dominating Set Algorithm

The algorithm Scr achieved better results than
any other of the implemented algorithms and
is also quite competitive with integer program-
ming and metaheuristic approaches. In particu-
lar, the solutions of Scr heuristic are on average
only 6% above the optimal.

6. Conclusions

In this paper we have presented a polynomial
time heuristic algorithm for the minimum dom-
inating set problem, which uses the so-called
scoring technique. We applied this algorithm
to efficiently solve the k-center problem. Then
we experimentally evaluated our algorithm and
several other well-known heuristic algorithms
for the k-center problem. To do this, we used
the standard set of 40 test problems. The ex-
perimental results show that our algorithm is
comparable with the best known algorithms for
solving the k-center problem �4, 5, 10�. These
algorithms were able to solve quickly enough
each of the forty test problems to optimality.
Since they rely on the integer programming,
it would be interesting to see how they per-
form on larger test instances. We have also
found that, surprisingly, the performance of the
well-known 2-approximation algorithm HS by
Hochbaum and Shmoys �9� was quite unsatis-
factory, as was noticed also by Mladenović �12�.
The same is true for all the tested approxima-
tion algorithms. These are all three versions of
Gonzalez algorithm �Gon, Gon�, Gon�� and both
Shmoys algorithms �ShR, ShD�. The pure greedy
approach is the worst among all and if, for any
reason, it is used, we suggest using it only for
small values of k.

Finally, in the paper we have shown that our
heuristic algorithm for solving the minimum
dominating set problem can easily be adapted to
solve several other important combinatorial op-
timization problems. Among these are �1� the
minimum α -all-neighbor dominating set prob-
lem, �2� the minimum set cover problem, and
�3� the α -all-neighbor k-center algorithm. An
interesting future research would be to experi-
mentally evaluate, for each of these problems,
the corresponding adapted algorithm and com-
pare it with the currently best algorithms.

References

�1� J.E. BEASLEY, A note on solving large p-median
problems, European J. Oper. Res., 21:270–273,
1985.

�2� M.E.DYER AND A.M. FRIEZE, A simple heuristic for
the p-centre problem, Operations Research Letters,
3:6:285–288, 1985.

�3� M.S. DASKIN, Network and Discrete Location:
Models Algorithms and Applications, Wiley, New
York, 1995.

�4� M.S. DASKIN, A new approach to solving the ver-
tex p-center problem to optimality: Algorithm and
computational results, Communications of the Op-
erations Research Society of Japan, 45:9:428–436,
2000.

�5� S. ELLOUMI, M. LABBE, AND Y. POCHET, New for-
mulation and resolution method for the p-center
problem, 2001. http���www�optimization�
online�org�DB HTML�����������	�html.

�6� M.R. GAREY AND D.S. JOHNSON, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., San Fran-
cisco, 1979.

�7� T. GONZALEZ, Clustering to minimize the maxi-
mum intercluster distance, Theoretical Computer
Science., 38:293–306, 1985.

�8� D.S. HOCHBAUM, ed., Approximation Algorithms
for NP-hard Problems, PWS publishing company,
Boston, 1995.

�9� D.S. HOCHBAUM AND D.B. SHMOYS, A best possi-
ble heuristic for the k-center problem, Mathematics
of Operations Research, 10:180–184, 1985.

�10� T. ILHAN AND M.C. PINAR, An efficient exact
algorithm for the vertex p-center problem, 2001.
http���www�optimization
online�org�
DB HTML�������������html.

�11� E. MINIEKA, The m-center problem, SIAM Rev.,
12:138–139, 1970.

�12� N. MLADENOVIĆ, M. LABBE, AND P. HANSEN, Solv-
ing the p-center problem with tabu search and vari-
able neighborhood search, Networks 42�1�:48–64,
2003.

�13� J. MIHELIČ AND B. ROBIČ, Approximation algo-
rithms for k-center problem: an experimental eval-
uation, Proc. OR 2002, Klagenfurt, Austria, 2002.

�14� J. PLESNIK, A Heuristic for the p-Center Problem in
Graphs, Discrete Applied Mathematics 17:263–268,
1987.

�15� CHARLES S. REVELLE AND H.A. EISELT, Location
analysis: A synthesis and survey, European Journal
of Operational Research, 165:1–19, 2005.

Solving the k-center Problem Efficiently with a Dominating Set Algorithm 233

�16� D.B. SHMOYS, Computing near-optimal solutions to
combinatorial optimization problems, Technical re-
port, Ithaca, NY 14853, 1995. http���citeseer�
nj�nec�com�shmoys�computing�html.

�17� V. VAZIRANI, Aproximation Algorithms, Springer,
2001.

Received: September, 2005
Accepted: March, 2005

Contact address:

Jurij Mihelič
Faculty of Computer and Information Science

University of Ljubljana
Tržaška 25, 10000 Ljubljana, Slovenia

e-mail: jurij�mihelic�fri�uni�lj�si
Web: http���lalg�fri�uni�lj�si��jure

JURIJ MIHELIČ received the BSc �2001� and MSc �2004� degrees in
computer science from the University of Ljubljana, Slovenia. He is
presently working towards his PhD at the Faculty of Computer and In-
formation Science, University of Ljubljana. His fields of interests are
facility location, combinatorial optimization and approximation algo-
rithms.

BORUT ROBIČ is Professor of computer science at the Faculty of Com-
puter and Information Science, University of Ljubljana, Slovenia. Fol-
lowing completion of his B.Sc. �1984�, M.Sc. �1987�, and D.Sc. �1993�
in computer science at the University of Ljubljana, he held positions
as a researcher in the Department of computer science at the Jozef
Stefan Institute, and as a Partridge visiting fellow at the University of
Cambridge, UK, before joining University of Ljubljana in 1997. His re-
search focuses on algorithms, complexity and parallel computing, with
specific interest in approximation and probabilistic algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

