
Journal of Computing and Information Technology - CIT 12, 2004, 3, 211–222 211

Automated Learning Applied to
Functional Argument Identification

Vasile Rus
Department of Computer Science, The University of Memphis, USA
Institute for Intelligent Systems, Fedex Institute of Technology, USA

This paper reports experiments on applying machine
learning for identifying functional arguments of verbs
such as logical subjects. In particular, it is shown that us-
ing decision trees for functional arguments identification
is beneficial. The paper also argues that linguistically-
motivated features gathered from a large corpus can
capture functional information.
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1. Introduction

Syntactic functional information is vital for ad-
vanced text understanding technologies such
as information extraction, machine translation,
question answering and others.

Treebank II �18� includes functional tags as part
of its annotation tags. In spite of this, mod-
ern parsing technologies generated from Tree-
bank only offer surface syntactic information in
the form of a bracketed representation in which
main constituents and major structural phrases

of sentences are identified. Null elements and
markers to co-indexed elements are not han-
dled at all, thereby leading to major gaps in
the relational information available to possible
users. Moreover, from the bracketed represen-
tation produced by parsers one can easily iden-
tify the surface syntactic subject. Nevertheless,
the logical subject requires further processing,
as illustrated in Table 1: the bracketed form for
the two examples is the same �it was generated
with a state-of-the-art statistical parser� and thus
a surface level pattern that identifies as subject
the first NP in a �S �NP VP��1 phrasal structure
would wrongly label something as the subject
of tell2.

Moreover, for verbs in coordinations the parsers
are not able to correctly distinguish among which
arguments are shared and which are not. This
latter issue is illustrated by arguments ball and
newspaper in Table 2: ball is shared by throw
and catch as opposed to what the bracketed form
encodes.

Sentence Bracketed Form Grammatical Function

Something told John. �S �NP �NN something�� �VP �VBD told�� �NP �NNP John��� l-sbj�John

d-obj�something

John told something �S �NP �NNP John�� �VP �VBD told�� �NP �NN something��� l-sbj�John

d-obj�something

Table 1. Examples of similarly bracketed sentences by state of the art parsers
but with different underlying logical structure.

1 NP stands for noun phrase, VP for verb phrase and S for sentence.
2 Something told John is the inverted form of John told something a frequent sentential form in Treebank.
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Sentence Bracketed Form Shared

Grammatical Function ?

John throws and �S �NP �NNP John�� �VP �VP �VBZ throws�� �CC and��� d-obj�ball

catches the ball . �VP �VBZ catches� �NP �DT the� �NN ball� �. .��� shared�yes

John eats and �S �NP �NNP John�� �VP �VP �VBZ eats�� �CC and��� d-obj�newspaper

reads the newspaper . �VP �VBZ reads� �NP �DT the� �NN newspaper� �. .��� shared�no

Table 2. Examples of shared and non-shared direct objects for verb in coordination for which the sharing
problem cannot be solved only looking at the output of state-of-the-art parsers.

To overcome those drawbacks of modern pars-
ing technology, novel methods are necessary
in order to offer accurate, robust and scalable
solutions to the problem of finding syntactic
functional information.

In this work a model is introduced and further
used to induce automated tools able to detect
functional information �logical� in English sen-
tences. The tools are obtained using the C4.5
package for decision tree induction.

In addition, this paper argues that linguistically
motivated features gathered from a large corpus
can capture functional information.

The paper is organized as follows. The next
section presents related work. In Section 3 we
describe our approach and Section 4 details ex-
periments and results. The following section
compares our approach with similar approaches
and Section 6 describes the impact of our solu-
tion on the task of logic form identification. We
then conclude the paper.

2. Related Work

Usually, when syntactic information is used
to study a certain linguistic problem, people
either use the bracketed form and are happy
with surface level syntactic information or have
their own pattern-based methods, which lack
generality and scalability: in �25� a general
method for word sense disambiguation is pre-
sented which yields high performance by taking
advantage of full sentential context including
raw surface syntactic information provided by
a parser. Lapata in �15� proposed a technique

which acquires alternating verbs from large bal-
anced corpora by using partial-parsing meth-
ods. As part of the process, syntactic patterns
to guess, i.e. heuristics, the double object frame,
are applied on top of a parser’s output: if the
syntactic pattern contains at least two proper
names adjacent to each other �e.g. killed John
Kennedy�, then reject. Similarly, in �26�, a set
of heuristics are used to find counts of transitive
frames for verbs: a number, a pronoun, a deter-
miner, an adjective, or a noun were considered
to be indication of a potential object of the verb.

We already mentioned that Treebank II includes
functional tags in its annotation guidelines �about
20 of them that can be appended to constituent
labels, e.g. NP-LGS to denote a noun phrase,
which is also a logical subject�. Those tags were
manually inserted in Treebank.

Attempts to enrich the output of parsers with in-
formation available in treebanks were described
by Johnson �12� and Collins �6�. They develop
methods for recovering non-local dependen-
cies in phrase trees. Jijkoun �11� uses pattern-
matching methods to solve non-local dependen-
cies in parse trees.

An attempt to address the issue of assigning
functional tags was made in �2�. They use a sta-
tistical algorithm for assigning the 20 function
tags in Treebank �classified in four categories�.
The reported precision over all four categories is
87.17% on text already parsed. In our work, we
limit ourselves to assigning only grammatical
labels �one of the four categories in �2��.

The present work is similar to the approaches
to the problem of shallow semantic parsing pre-
sented in �21� �27� �9� �4�. Shallow semantic
parsing is the process of annotating texts with
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semantic roles specified, either using predicate
specific labels �3� or predicate independent la-
bels �13�. They address the problem of shal-
low semantic parsing as a classification problem
and use different machine learning methods to
induce a classifier �Support Vector Machines,
Decision Trees�. Our work is similar to those
approaches in several ways: �1� we address the
task of detecting logic roles �as opposed to se-
mantic roles� as a classification problem �2� we
use a set of features similar, to some extent, to
those used by the mentioned studies and �3� the
induced classifier plays an important role in a
natural language-based knowledge representa-
tion: the Logic Form �20� and Propbank �13�
respectively.

The PropBank project adds a layer of seman-
tic annotation to the Penn English TreeBank. It
provides a consistent argument labeling of pred-
icates, particularly verbs, participial modifiers
and nominalizations. In the sentence John broke
the window, the breaking event is described by
the following argument structure break(John,
window). In PropBank, the arguments of the
verb are labeled sequentially from ARG0 to
ARG5, where ARG0 is usually the subject of
a transitive verb; ARG1, its direct object, etc.
Adjunct arguments are also marked for tempo-
rals and locatives.

In �20� a natural language-based knowledge re-
presentation is presented, namely Logic Form,
which requires logic functional arguments for
its predicates. In �22� the logic functional ar-
guments were detected using a set of structural
patterns that were well suited for small English
sentences �definitions of concepts in electronic
dictionaries�, but for open text that approach
lacks scalability.

LF is first order, syntactically simple, logic and
was used in many language processing appli-
cations. Davidson �8� proposed the predicate
treatment of verbs and then Hobbs �10� applied
this concept to automated text processing, par-
ticularly interpretation of texts. Rus �22� em-
ployed LF to Question Answering, to search
answers that were not explicitly stated in sup-
porting documents.

In LF, a predicate is generated for every noun,
verb, adjective or adverb. The name of the pred-
icate is a concatenation of the word’s base form
and its part-of-speech.

An example on how this is done is illustrated
for the following sentence:

The Earth provides the food we eat every day.

Its corresponding logic form �LF� is:

Earth:n (x1) & provide:v (e1, x1, x2) &
food:n (x2) & we:n (x3) & eat:v (e2, x3, x2;

x4) & every:a (x4) & day:n (x4)

In the example given above, the verb provides
is mapped onto the predicate provide:v, where
provide is the base form for provides and v
stands for verb �the part of speech of provide�.
Arguments for predicates are of two types: e
- for events specified by verbs, x - for entities.
The LF of the entire sentence is the conjunction
of individual predicates.

The argument’s position is also important as it
encodes syntactic information: the second ar-
gument for a verb is syntactic subject, the third
is direct object and the fourth is indirect object.
For instance, the second argument of the pred-
icate provide:v (e1, x1, x2) is x1 �Earth�, the
subject of the providing event. Arguments after
; �semicolon� are adjuncts �arguments which
are not mandatory to convey the message of the
sentence — such as time or place� and were
introduced in �23�.

The Role Assignment (RA) Problem

We look at a few examples that will show the
complexity of the task of identifying functional
arguments of verbs, also called the role assign-
ment problem. Role assignment is an important
step for Logic Form Identification �LFI�, the
task of mapping English sentences onto LF.

In the following sentence:

The judges hear or try a court case.

there are two verbs hear and try in a coordina-
tion �indicated by preposition or� and one direct
object a court case. The issue is whether the di-
rect object is shared by the two verbs or not. In
other words, out of two possible interpretations,
which one is correct:
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I1: The judges (hear or try) a court case.
LF1: judge:n �x1� & hear:v �e1, x1, x2� & or
�e3, e1, e2� & try:v �e2, x1, x2� & nn �x2, x3,

x4� & court:n �x3� & case:n �x4�
I2: The judges hear or (try a court case).

LF2: judge:n �x1� & hear:v �e1, x1� & or
�e3, e1, e2� & try:v �e2, x1, x2� & nn �x2, x3,

x4� & court:n �x3� & case:n �x4�

In I1, the compound noun court case is shared
since hear and try are bracketed together. In
I2, the direct object is bracketed with the sec-
ond verb �the verb hear being in an intransitive
subcategorization frame�. For this particular
instance the correct interpretation is I1.

An example in which the direct object should
not be shared is:

They steal or commit a violent act.

It is very unlikely to state steal a violent act and
thus, the correct interpretation is:

I: They steal or (commit a violent act).
LF: they �x1� & steal:v �e1, x1, x2� & or�e2,
e1, e3� & commit:v �e3, x1, x2� & violent:a

�x2�

Here is an example of two verbs that do not
share the subject, a situation which might be
interpreted otherwise at first sight.

An aircraft that has a fixed wing and is
powered by propellers or jets.

The reason why the noun aircraft does not play
the role of subject for both verbs has and power
is the changing of voice in coordination. The
second verb has its subject introduced by prepo-
sition by.

This paper addresses the RA problem and demon-
strates how a machine learning method can offer
a robust solution.

3. Approach

Our approach is to address the RA problem as
a classification task: given a verb in a sentence

and a candidate phrasal head, find the most ap-
propriate syntactic role that the head plays. The
set of possible roles contains: subject, direct
object, indirect object, prepositional object or
norole �a value which indicates that the candi-
date head does not play any role for the given
verb�. To preview our results, we demonstrate
that combining a set of indicators automatically
extracted from large text corpora provides good
performance.

The key to any automatic classification task is to
determine a set of useful features for discrimi-
nating the items to be classified. The features of
our model are presented below. Each feature is
accompanied by a small description explaining
the rationale of picking it.

Head The candidate head could indicate whether
it is an appropriate filler for a specific syntac-
tic role of a verb. From the previous examples,
we know that act cannot stand as an object for
steal. Similarly, the verb write takes as subject
only a person, or a referent to a person, such as
a personal pronoun �persons are able to write�.

Lexical Category of Head A noun is most
likely to be direct object of, say, the verb give,
and a pronoun the subject or indirect object of
the verb write.

Voice As we saw in the last example of the pre-
vious section, the voice of a verb can play an
important role in deciding what head word is
the subject. In case the verb is in passive voice,
the subject is most likely the prepositional ob-
ject of the following by, if any such preposition
is present in the sentence. We have a dozen
patterns to detect the voice of the verb.

Type of Clause We refer here to the type of sen-
tence �S, SINV� that includes the target verb.
An example is the main clause in I do not be-
lieve it, saidPeterDaPuzzo, head of retail equity
trading stock prices during program-dominated
trading. where said John is an inverted sen-
tence in which the subject follows the verb, as
opposed to the most common case John said.
The type is read from the parse tree by follow-
ing links from verb to parent up the parse tree
until a S �S, SINV, SBAR� node is found.

Position of Head If the head is after or before
the verb and at what distance, in terms of words
�punctuation is ignored when the position is de-
termined�.
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Those features could be automatically extracted
from a large corpus, either manually annotated,
or automatically generated.

The basic steps of the feature extraction method
are outlined below:

procedure ExtractFeatures(Sentence)
– Generate a full syntactic parse tree for

the Sentence
– Stem the words in the sentence

for verb in Sentence do
– Extract the set of features for each

node in the tree relative to the verb
– Classify each node as norole or as

logical subject
end for

4. Experimental Setup and Results

There are three major issues that we need to
address before doing any kind of experiments:
what verbs to focus on, where should we gather
training data from, and what machine learning
algorithm to use. In the next few paragraphs we
provide our answers for each of those issues.

Previous work on verb meaning research, such
as �14� and �28�, reported experiments on a set
of 14 target verbs that exhibit multiple argument
patterns: ask, begin, believe cause, expect, find,
give, help, like, move, produce, provide, seem,
swing. We adopted those 14 verbs since we be-
lieved it would be a good starting point to have
a small set of verbs with many argument am-
biguities, thus balancing manageability of the
experiments against a set of challenging verbs.

Next, we looked for a corpus as a source of
training data. Treebank �18� is a good candidate,
because it contains role annotations. We started
by developing patterns for tgrep, a tree retrieval
pattern-based tool, to identify sentences con-
taining target verbs from Wall Street Journal
�WSJ� corpus and used the online form to re-
trieve the data �http���www�ldc�upenn�edu�
ldc�online�treebank��. The set of sentences
previously obtained is further processed: a stem-
mer is applied to obtain the stem of individual
words3 and then the target verb is identified and

features extracted. One or more training exam-
ples �positive and negative� are generated from
a sentence �see the next section�.

As learning paradigm, we opted for decision
trees. Decision Trees are a popular method to
approach classification problems. The attrac-
tiveness of decision trees is due to the fact that,
in contrast to neural networks, decision trees
represent rules. Rules can readily be expressed
so that humans can understand them.

The C4.5, an algorithm for decision tree genera-
tion and an extension of ID3, is used to generate
a classifier for the RA problem. The algorithm
ID3 uses top-down induction of decision trees.

Given a set of classified examples, a decision
tree is induced, biased by the information gain
measure, which heuristically leads to small trees.
The examples are given in attribute-value rep-
resentation. The set of possible classes is finite.

Only tests that split the set of instances of the un-
derlying example languages, depending on the
value of a single attribute, are supported. De-
pending on whether the attributes are nominal
or numerical, the tests either have a successor
for each possible attribute value, or split ac-
cording to a comparison of an attribute value to
a constant, or depending on if an attribute value
belongs to a certain interval or not.

The algorithm starts with the complete set of
examples, a set of possible tests and the root
node as the actual node. As long as the ex-
amples propagated to a node do not all belong
to the same class and there are tests left, a test
with highest information gain is chosen, the cor-
responding set of successors is created for the
actual node and each example is propagated to
the successor given by the chosen test. ID3 is
called recursively for all successors.

Some of the additional features of C4.5 over
ID3 are: incorporation of numerical �contin-
uous� attributes, nominal �discrete� values of
a single attribute may be grouped together to
support more complex tests, post-pruning after
induction of trees, e.g. based on test sets. In
order to increase accuracy, C4.5 can deal with
incomplete information �missing attribute val-
ues�.

3 The stem of a word is its base form, for instance the stem of children is child
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One problem with decision trees is their ten-
dency to overfit the training data, i.e. if tested
on training cases from which it was constructed,
it may give a poor estimate of its accuracy on
new cases. The true predictive accuracy of the
classifier can be estimated by sampling, or by
using a separate test file. Either way, the classi-
fier is evaluated on cases different from the ones
used to build it. However, this estimate can be
unreliable, unless the numbers of cases used to
build and evaluate the classifier are both large.

One way to get more reliable estimate of pre-
dictive accuracy is by k-fold cross validation.
The cases are divided into k blocks of roughly
the same size and class distribution. For each
block, a classifier is constructed from the cases
in the remaining blocks and tested on the cases
in the hold-out block. The error rate of a classi-
fier produced from all of the cases is estimated
as the ratio of the total number of errors on the
hold-out cases and the total number of cases.
Here, we predict the accuracy of our induced
classifiers using k=10 or 10-fold cross valida-
tion.

In the following sections, we present two ma-
jor experiments: �1� using the set of features
presented before and �2� adding the verb as an

extra feature. Each experiment has two sub-
experiments: �i� traces in parse trees from Tree-
bank II are not solved and thus the training and
test data sets do not include examples for those
traces and �ii� traces are solved and the corre-
sponding examples are added to the training and
test data sets.4

Experiment 1

In this experiment we focus on identifying a
specific syntactic role for a specific verb: the
role values can be either subject or none.

In Figure 1 a parse tree is provided for the sen-
tence: Chris knew yesterday that Terry would
catch the ball. The numbers below individual
words is the index of that word in the sentence,
starting with 0. We will use this example to
illustrate our solution.

We pick a verb, say know, and then from an-
notated corpora, training data is generated. For
each word in the sentence a positive example is
obtained if the word is the subject of the verb.
Examples from different verbs are not mixed.
Table 3 contains results for the first trial in which
traces are not resolved �examples with traces
are eliminated from training data�. We pay spe-
cial attention to punctuation �time stamps such

Chris/NNP          knew/VBD         yesterday/NN          that/IN          Terry/NNP         would/MD         catch/VB        the/DT          ball/NN

NP

VP

VP

S

VP

S

NP −SBJ

NP−TMP NP−SBJ

SBAR−1

SBAR

*ICH*−1

0                        1                              2                          3                       4                        5                        6                      7                    8  

Sentence:

Word Index:

Fig. 1. An example of parsed sentence in Treebank II.

4 Traces are artificial links introduced in Treebank to accomodate the bracketed representation to remote dependencies. An
example is the remote relation between the verb know and its direct object, introduced later in the sentence, as a relative clause
SBAR-1 �Figure 1�. To indicate the relationship, a new tag – ICH-1 is introduced immediately after the verb which is co-indexed
with the relative clause.
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Verb Training Size Errors�%� Estimate Errors�%� Errors before Pruning

ask 6968 6.8 8.1 7.7

begin 6691 7.7 8.7 8.1

believe 8766 9.0 9.9 9.8

cause 5990 8.8 10.0 9.7

expect 27792 7.8 8.2 7.9

find 6286 7.2 8.5 7.9

give 11764 6.9 7.7 8.1

help 13359 7.7 8.4 9.1

like 18295 7.4 8.0 8.6

move 10885 7.5 8.2 8.3

produce 9579 7.4 8.2 8.3

provide 10000 7.0 7.7 8.0

seem 7536 7.3 8.4 7.8

swing 1248 9.1 9.8 7.1

all 145159 7.5 7.7 7.8

all�no-head 145159 8.5 8.8 8.9

Table 3. Errors reported by the induced decision trees with 10-fold cross validation.

as 10:40 are changed to 1040� and numbers
�350,000 is changed to 350000� to comply with
the input requirements for the C4.5. learner. In
�19�, commas, dots and columns are assigned a
special notation �CO and DO respectively� but
that was necessary because commas, dots and
columns are features in their learning model
�they used Timbl �7� which accepts C4.5-like
input�. For some sentences there is no logical
subject identified, because the logical subject is
unspecified.

Examples of training data for the sentence in
Figure 1 are given below as one training in-
stance per line:

know, Chris, NN, active, S, -1, subject
know, that, SBAR, active, S, 1, none
know, yesterday, NN, active, S, 2, none
know, that, IN, active, S, 3, none
know, Terry, NN, active, S, 4, none
know, catch, VB, active, S, 6, none
know, ball, NN, active, S, 8, none
catch, Chris, NN, active, S, -7, none
catch, know, VB, active, S, -6, none
catch, that, IN, active, S, -5, none
catch, yesterday, NN, active, S, -4, none

catch, that, IN, active, S, -3, none
catch, Terry, NN, active, S, -2, subject
catch, ball, NN, active, S, 2, none

Entries for traces, when considered, have the
corresponding lexical head and lexical category
features borrowed from the constituent where a
trace is resolved. In our example, the training
entry for ICH has that as its lexical entry and
SBAR as its category.

In Table 3 the line having all in the verb column
contains results when training examples of all
target verbs were considered together in a sin-
gle experiment, say all-verb. The training time
becomes larger, with larger training sets, while
the error and estimated error are similar �7.5
– 7.7%�. The all-verb case illustrates a more
general approach in which for all target verbs
we generate a single decision tree, as opposed
to having a single decision tree for each verb.
The last line in the table shows results when
the head feature is ignored. There is a small
increase in the error rate �1%�, but a simpler,
less-lexicalized model is obtained.
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Verb Training Size Training Size Errors�%� Estimate Errors�%� Errors before

Increment Pruning

ask 7886 13% 6.9 8.2 7.6

begin 7184 7% 7.7 8.7 8.1

believe 9624 10% 8.5 9.6 9.3

cause 6563 10% 9.2 9.5 9.7

expect 29613 7% 7.8 8.3 8.2

find 6902 10% 7.0 8.4 7.8

give 12766 9% 6.6 7.4 7.8

help 14531 8.7% 7.4 8.3 9.3

like 19811 8.2% 7.4 8.1 8.0

move 11629 7% 7.1 8.0 8.6

produce 10121 6% 6.9 7.8 8.3

provide 10754 8% 6.8 7.6 7.9

seem 8071 7% 7.2 8.4 7.7

swing 1298 4% 8.6 9.2 7.4

all 160056 10% 7.3 7.5 7.6

all�no-head 160056 10% 8.0 8.3 8.4

Table 4. Errors when traces are solved.

Table 4 contains error rates for a trial in which
traces in the corpus are resolved. The feature
extraction method includes the new step of Solve
traces:

procedure ExtractFeatures(Sentence)
- Generate a full syntactic parse tree for

the Sentence
- Stem the words in the sentence
- Solve traces
- Identify the target verb or all verbs

for verb in Sentence do
- Extract the set of features for each

node in the tree relative to the verb
- Classify each node as norole or as log-

ical subject
end for

Double link traces, such as the links between
indexes 3-2-1 in the following example, are
ignored: �SBARQ �WHNP-1 Who� �SQ was
�NP-SBJ-2 *T*-1� �VP believed �S �NP-SBJ-3
*-2� �VP to �VP have �VP been �VP shot �NP*-
3���������. The number of training examples
generated for each verb is larger �on average
there are 10% more examples� and resulting

error rates are mixed: it drops for believe, it
increases for ask, and it remains the same for
begin. Overall, there is a 0.1% decrement in the
error rate �see line all�. The last line in the ta-
ble shows results when the lexical information
about the word that plays the role is ignored. As
we notice, there is only a marginal increase in
the error rate. It seems that in the absence of
deeper semantic information about the word it-
self �for example the semantic class for objects
used to specify selectional restrictions� there is
not much impact on the original model by the
lexical feature.

Experiment 2

In this second experiment, training examples
from all chosen verbs are put together and each
example has the verb as a feature. We would
like to explore the impact on performance of
the verb itself. As shown in Table 5, there is
no change in the error rates when the verb is
considered for the all-verb experiment. This,
somehow surprising result, may be explained
with the small set of verb we used, only 14, for
our experiments. There is a small increase in the
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Verb Training Size Errors�%� Estimate Errors�%� Errors before Pruning

all�verb 145159 7.5 7.7 7.8

all�verb�no-head 145159 8.3 8.6 8.7

Table 5. Error rates with the verb as a feature and no traces.

Verb Training Size Training Size Errors�%� Estimate Errors before

Increase Errors�%� Pruning

all�verb 160056 10% 7.3 7.5 7.7

all�verb�no-head 160056 10% 7.8 8.2 8.5

Table 6. Error rates with the verb as a feature and no traces.

error rate when the head of the candidate word
is eliminated �see line all+verb+no-head�. The
same trends can be seen when the training set
is expanded with examples containing solved
traces, as illustrated in Table 6.

Class-based Generalization

An improvement in performance was obtained
by generalizing examples with named entities as
head feature. For instance, the IMA and the De-
partment of Trade and Industry were changed
to group, Angelo and Keneth Roman to person
and Arizona to location. A NE component was
used to recognize person names �PER�, orga-
nizations�groups �ORG� and places�locations
�LOC�. We applied this technique on training
data for the verb ask and obtained an improve-
ment in performance of about 2.19%. As an al-
ternative, the person category could be mapped
into a personal pronoun. This would help es-
pecially when new names �unseen data� are en-
countered. For common nouns, a related so-
lution could be implemented using a general
English taxonomy, such as WordNet, similar to
what Li and Abe �16� did for generalizing case
frames. Each common noun would be replaced
with more general concepts, carefully chosen
from the hierarchy. An important issue for such
an approach is the set of classes�general con-
cepts to be used.

The class-based generalization method leads to
a smaller training set and, consequently, to a
smaller training time and a smaller decision tree.

5. Comparing Performance with Other
Systems

Although we are not aware of any systems that
address the task of logic roles identification, we
have mentioned systems that address the related
task of shallow semantic parsing. Table 7 of-
fers a comparative view at the precision of our
model �the first model with traces resolved for
all-verb experiment� and the ones in �9��G&P
in the table� and �21��SVM in the table�, for
which we report the best overall precision on
arguments 0–5 for the gold experiments. The
gold experiments use gold standard parses.

System Precision

Logic 92.5
SVM 89
G&P 85

Table 7. Comparing logic role identification with
shallow semantic parsing.

The results reported here are considerably bet-
ter, probably due to the relatively simpler task
of identifying logical roles, as compared to the
shallow semantic parsing problem �which in-
cludes two subtasks: argument classification
and argument identification�. The performance
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of the best mentioned systems in each individ-
ual subtask is in the upper 80s or lower 90s,
thus comparable to the performance on the func-
tional arguments identification task.

6. Impact on the Logic Form Task

In this section, we study the impact our machine
learning solution on the bigger task of mapping
English sentences onto logic form �LF�.

Let us start by providing several metrics to quan-
tify the quality of LF produced by some auto-
mated system. There are two metrics we are
going to use: precision and recall.

Argument Level

At argument level we define Precision as the
number of correctly identified arguments di-
vided by the number of all identified arguments.
Recall at argument level is the number of cor-
rectly identified arguments divided by the num-
ber of arguments that were supposed to be iden-
tified.

Predicate Level

Precision at predicate level is the number of
correctly and fully identified predicates �with
ALL arguments correctly identified� divided by
the number of all attempted predicates. Recall
at predicate level is the number of correctly and
fully identified predicates �with ALL arguments
correctly identified� divided by the number of
all predicates that were supposed to be identi-
fied.

Let us suppose that a system generates the fol-
lowing logic form for the above example:

Sample Output: Earth:n �x1� provide:v �e1,
x1, x2� food:n �x2� we�x3� eat:v �e2, x3, x4�

every:a �x4� day:n �x4�
Correct Output: Earth:n �x1� provide:v �e1,
x1, x2� food:n �x2� we�x3� eat:v �e2, x3, x2,

x4� every:a �x4� day:n �x4�

where x4 is incorrectly identified as the direct
object of the eating event. In the correct output
there are 12 slots to be filled and predicate eat

should have 4 arguments. The previously de-
fined measures for the sample output are given
in Table 8.

Metric Argument Predicate
– Level Level Level

Precision 10�11 6�7
Recall 10�12 6�7

Table 8.

In addition to precision and recall, a more global
measure is reported, namely exact sentence,
which is defined as the number of sentences
whose logic form was fully identified �all pred-
icates and arguments correctly found� divided
by the number of sentences attempted.

In order to see the impact of our model on
the performance of a LFI task, we collected
from the web 200 sentences containing our tar-
get verbs in a coordination. Further, we have
manually annotated the logical subject for them,
thus obtaining a gold standard. At the same
time, we generated logic forms using the ap-
proach presented in �24�. From the generated
logic forms the subject information is retrieved
and compared with the gold standard. We re-
peated this process by applying our best model
to the 200 sentences and compared the results
with the gold standard. An increase in preci-
sion of about 13% was observed at sentence
level, 1.5% at argument level and 3.2% at pred-
icate level. The big impact at sentence level can
be explained by the fact that the method in �24�
generates many sentences which have only few
arguments wrongly assigned and, thus, correct-
ing them will make the whole sentence a cor-
rect case when computing the precision. The
recall for the learning method presented here is
100% due to the generality of the model, thus
not suffering from the coverage problem �cases
not handled by the system� in �24�. The 200
sentences were less than 40 words �to ease the
task of syntactic parsing� and exhibited a di-
verse population in terms of subcategorization
frames with regard to the target verbs in our test
set.
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7. Conclusions

In this paper we presented a method on how
to apply decision trees to induce classifiers for
the problem of functional roles detection. The
method relied on several models which were
built using a set of linguistic features gathered
from large corpora.

The reported results for the induced decision
trees are an upper bound of the performance of
the models on the given set of verbs, since the
tagging and parsing of sentences from which
we derived the training data are accurate �tag
or parse errors �noise� are present, though at a
very low rate, in Treebank�.

We plan to introduce tagging and parsing errors
in the training data to see how the models behave
in the presence of noise. Using noisy state-of-
the-art parsers for that purpose will not help,
as they do not provide information regarding
syntactic functional arguments at logic level.

The relatively small number of verbs in the test
set can constitute a drawback of our experi-
ments. Nevertheless, the reader should keep
in mind that those verbs are highly ambiguous.
We plan to extend our experiments to a set of
verbs that better resembles the natural distribu-
tion of argument ambiguity of English verbs.
Such a distribution will have an average am-
biguity level lower than that of the set of verbs
considered so far and thus, we expect our results
to improve.

The classifiers were induced from data extracted
from a large corpus, namely Treebank, and the
good performance obtained proves that gather-
ing linguistically-motivated features from such
a corpus can capture functional argument infor-
mation.
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