
Journal of Computing and Information Technology - CIT 12, 2004, 1, 1–14 1

VHDL Design of a Scalable VLSI
Sorting Device Based on
Pipelined Computation

Enzo Mumolo�, Gabriele Capello�� and Massimiliano Nolich�

�DEEI, University of Trieste, Italy
��Neonseven, Sgonico, TS, Italy

This paper describes the VHDL design of a sorting
algorithm, aiming at defining an elementary sorting unit
as a building block of VLSI devices which require a huge
number of sorting units. As such, an attempt was made to
reach a reasonable low value of the area-time parameter.
A sorting VLSI device, in fact, can be built as a cascade of
elementary sorting units which process the input stream
in a pipeline fashion: as the processing goes on, a wave
of sorted numbers propagates towards the output ports.
In the description of the design, the paper discusses the
initial theoretical analysis of the algorithm’s complexity
VHDL behavioural analysis of the proposed architecture,
a structural synthesis of a sorting block based on the
Alliance tools and, finally, a silicon synthesis which
was also worked out using Alliance. Two points in the
proposed design are particularly noteworthy. First, the
sorting architecture is suitable for treating a continuous
stream of input data, rather than a block of data as
in many other designs. Secondly, the proposed design
reaches a reasonable compromise between area and time,
as it yields an A� T product which compares favourably
with the theoretical lower bound.

Keywords: sorting algorithms, VLSI algorithms, VHDL
language, scalability, pipeline computation.

1. Introduction

The sorting of a series of numbers is a very
important task, which embraces many different
applications, from banking �18�, signal process-
ing techniques, such as order statistics, non lin-
ear filtering �24, 8� to communication switching
systems �25, 26� to image processing �7, 13� or
pattern recognition techniques �5, 11�.

In this paper the VHDL design of an elementary
sorting unit is presented. The main contribu-
tion of this paper is to describe a case study of

a simple and general approach to VLSI sorting
device. The main goals of the design are to get
a low value of the A � T product via a simple
and regular sorting architecture which requires a
moderate silicon area and to arrange the sorting
function in a cascaded structure to extend the
sorting capability of the device. The main char-
acteristics of the design are reported hereafter.
The sorting of data is performed according to
the value of a key that accompanies the data.
The architecture presented in this paper man-
ages 16 bit keys and 16 bit data; a technique
for upsizing the data field is presented. The key
field can be represented with any type of number
representation, i.e. unsigned, two complements
or floating point; however, in the architecture
described in this paper, we consider unsigned
16 bit keys. Both ascending and descending
ordering can be implemented in the proposed
architecture. Furthermore, any number of in-
put words can be managed and, if the number
of input words exceeds a threshold related to
the internal configuration of the device, some
external memory is required.

It is very important to remark that the scheme
described in this paper is suitable for sorting a
stream of data arriving continuously at the input
of the device. Classical sorting algorithms, in
fact, work on blocks rather than streams of data.
The architecture we have worked out is based
on a cascade of simple sorting unit modules,
called SU throughout the paper, which work in
a pipeline: as new numbers are fed into an SU,
a wave of sorted items propagates to the output.
Each SU realizes an elementary sorting func-

2 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

tion using only two registers, one comparator
and two output buffers. In view of its character-
istics, the sorting block presented here is suit-
able for designs which require a huge number
of sorting devices, such as, for example, appli-
cations in switching systems or in high energy
physics.

Other algorithms, namely the algorithms be-
longing to the network sorting class, can be
more efficient from a computational point of
view, but they are less versatile. The well known
Batcher algorithm �4, 10, 15, 16�, for exam-
ple, is faster than the proposed algorithm for an
equal size of input data, but it requires a much
larger number of comparators and, should we
want to modify the size of the input data, a new
design of the sorting device would be under-
taken. The proposed algorithm, instead, leads
to a scalable architecture and the system can be
expanded simply by adding many sorting de-
vices in cascade or in parallel. Other VLSI sort-
ing algorithms that rely on a simple and mod-
ular organization have been presented over the
past years, including the compare-swap-based
sorting �17�, a sorting network-based hardware
sorter �23�, the rebound sorter �1, 2�, the parallel
enumeration sort �29� and the VLSI sorter �21�.
The design presented here, however, has a more
modular architecture than the cited algorithms.

The organization of this paper is as follows. In
Section 2 the proposed algorithm is described
and theoretically analyzed. In Section 3 the
architectural design of the sorting device is de-
scribed using VHDL pseudo-code, and Section
4 reports of the structural synthesis of the VLSI
sorter performed with Alliance, together with
the silicon synthesis with the Alliance tools. Fi-
nally, Section 5 is devoted to the final remarks
and conclusions.

2. The Sorting Algorithm

In this section we give a detailed analysis of the
algorithm. In order to prepare for this analysis,
it is worth describing very briefly some basic
issues related to the sorting problem.

2.1. Basic Issues of the Sorting Problem

Because of its practical importance, as well as
its theoretical interest, the sorting problem has
been studied extensively in the past �14�. In
computer terminology, sorting is the process of
rearranging, in ascending or descending order,
a set of values stored in contiguous memory lo-
cations. Generally speaking, sorting algorithms
can be performed in a serial or a parallel fash-
ion. Each of the two classes can lead to Internal
and External algorithms, the first making use of
internal memory and the second of some kind of
external memory. Serial algorithms, moreover,
use some approaches to make the sorting task
efficient, and can be based on counting, inser-
tion, exchanging, selection, merging and distri-
bution of data �14�. The time complexity lower
bound of serial algorithms is O�N ln N� where
N is the size of the input data1. External algo-
rithms, on the other hand, try to use the external
device efficiently. Parallel sorting, instead, is
based on the parallelism of the operations. The
main research problem in this area is to develop
algorithms whose performance reaches the the-
oretical lower bound, that is a time complex-
ity of O�ln N� with an O�N�-processors parallel
machine.

The silicon area of a VLSI circuit is one of
the principal cost-related factors involved in the
fabrication of the circuit. Generally speaking,
the area required by the circuit is related to the
logic size and to the modularity of the archi-
tecture. Another very important factor is the
speed of the circuit. As far as a VLSI sorting
algorithm is concerned, however, other figures
become relevant, such as the trade-off between
the chip area and the sorting time �28, 27�.

To compare different VLSI algorithms and ar-
chitectures for sorting, it is of great interest to
take a look at the lower bounds of area or speed,
in the sense that we cannot solve a given VLSI
problem using less than a lower bound of silicon
area, or in less than a given amount of time. Be-
cause of the trade-off between area and speed,
it is also important to consider lower bounds of
the product A�T , or of A�T2 �28�. If k � ln N,
where k represents the number of bits in a word
and N is the number of input words, well known

1 Throughout this paper, Knuth’s notation for the natural logarithm, ln, is used.

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 3

lower bounds for any sorting VLSI circuits are
given in �1�:

A � Ω�N�

A � T � Ω�N ln N� �1�

A � T2 � Ω�N2�

In many cases these bounds are weak, in the
sense that circuits as good as the bounds re-
ported in �1� do not appear to exist; in gene-
ral, the strongest of these bounds is the product
A � T2.

The earliest VLSI sorting algorithms were de-
rived from commonly known serial algorithms
�27�. A number of different approaches for
parallel sorting developed afterwards, such as
the odd-even merge rule �14, 9� and the bitonic
merge network �22�, which are based upon sort-
ing network approaches �4, 14�. The odd-even
transposition sort �14�, for example, is a parallel
version of the well-known bubble sorting algo-
rithm. It sorts a list of N items by performing
N�2 global iterations that involve a comparing–
exchanging step on even and odd pairs of list
items in parallel. Some results concerning re-
duction of the complexity of the processing ele-
ments of a sorting network have been reported
in �6, 12�.

2.2. Description of the Proposed Algorithm

The actual design we describe takes into ac-
count the fact that usual applications require the
sorting of data to be performed according to
the value of a key that accompanies the data.
With this assumption, an SU is made up of two
registers, one for the data and one for the key.
Besides, each SU consists of two sides sharing
the same architecture and a control logic which,
in its basic form, implements a three-state ma-
chine: Reset, Shift&Read1 and Shift&Read2
states. Assuming an ascending ordering, dur-
ing Reset the contents of the registers are set to
zero. Moreover, during Shift&Readx the con-
tents of the key and data registers are passed to
the output and a new value is read in it. The
structure of a SU is reported in Fig. 1.

A sorting device is made out of a cascading
of SUs, thus leading to a scalable architecture.
Each SU shares its input bus with the output
bus of the previous one and shares the output

Fig. 1. Block diagram of the sorting unit.
The boxes called “D1” and “T1” represent
the data and the key registers respectively,
the “Comp.” box is the comparator and

the “Logic” box contains the control
logic of the unit.

Reset�
for each clock cycle do �

if �T��T��
Shift�Read��

else
Shift�Read��

�

Fig. 2. Pseudocode of the sorting algorithm
for ascendig ordering.

bus with the input bus of the next one. The
algorithm performed by an SU is described in
Fig. 2.

In Fig. 3 an example of sorting the sequence
of keys �2� 1� is shown. From this figure, we
can observe that the output sequence has a de-
lay related to the number of sorting units. More
precisely, the delay is two times the number of
cascaded SUs since the input data must occupy
all the registers of the device. Clearly, after the
delay the ordered sequence appears sequentially
at the output of the sorting device, one data at
each clock cycle.

4 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

Fig. 3. Sorting example of a couple of keys with 1 SU.
The delimiter symbol # represents a number greater than all the keys in the sequence.

2.3. Complexity Analysis

In Fig. 4 another sorting example is shown with
a couple of cascaded SUs. From Fig. 4, we
would come out with the observation that the
sequence of data passing through a single SU is
equal to the sequence obtained with one pass of
the popular “Bubble Sorting” algorithm applied
on the same input. That is, the result of a single
sorting unit processing a stream of data is the
same as that of the exchanging pass of the bub-
ble sort. In the following, we will use the term
run for the operations required for processing a
block of N input data; for example the Bubble
Sort consists of �N � 1� runs.

Hence, we can use some classical solutions to
our problem. The first solution is described in
the following classical Theorem �14�.

Theorem 1. Let a1� a2� � � � � an be a permuta-
tion and let b1� b2� � � � � bn be the correspond-
ing inversion table. If one pass of the bubble
sort changes a1� a2� � � � � an to the permutation
a�1� a�2� � � � � a�n, the corresponding inversion ta-
ble b�1� b�2� � � � � b�n, is obtained from b1� b2� � � � �
bn by decreasing each non zero entry by 1.

Therefore, we can say that if a stream of data
passes through a sorting unit, each non zero ele-
ment of the relative inversion table is decreased
by 1. Since each non zero inversion table ele-
ment can be, at max, �N � 1�, we can conclude
that:

Proposition 1. A cascade of �N � 1� sorting
units realizes a complete ordering of a N-long
data sequence.

According to �14�, the execution time Te of the
bubble sort algorithm can be represented with

Te � K1 � A � K2 � B � K3 � C � K4 �2�

where A is the number of runs, B the number
of exchanges and C the number of comparisons
and K1 � � �K4 represent the implementation as-
pects, respectively. That is, the coefficients de-
pend on the actual code which implements the
algorithm and on the instruction timing char-
acteristics of the machine on which the code is
running. The average and the worst cases’ com-
plexities of the Bubble Sort are O�N2 � N� and
O�N2 � N ln N� respectively.

The execution time of the proposed algorithm
is, instead, given by

Te � K1 � A � K4 �3�

since the exchanges and comparisons are per-
formed parallelly with the input of the data at
each clock cycle. In �2�, the K4 coefficient
keeps track of the constant execution times and
K1 is related to the counterpart of the number
of runs of the Bubble Sort which, by analogy,

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 5

Fig. 4. Sorting example of 3 keys with 2 SU.
The delimiter symbol # represents a number

greater than all the keys in the sequence.
The rectangles marked in bold denote the T1

and T2 registers. In each rectangle, T1 and T2
are in the lower and upper position respectively.

is the number of times that all the N input data
pass through the first sorting unit.

Let us call the number of sorting units U, and
assume that U � �N�1� and that the input data
block is N-sized. In general, since A � �N�1�,
we have K1 � N

U and K4 � 2U. In conclu-
sion, the computational complexity, in terms
of the number of clock cycles, of a cascade of
U � �N � 1� sorting units with a N-long input
data sequence is 3N � 2. On the other hand,

this result is obvious since the number of clock
cycles needed to order the input sequence is the
sum of 2�N � 1� �which is the delay� with N
�which is the number of data�. Clearly, the exe-
cution time is given by ta�3N � 2� where ta is
the time at which every new input data enters
the device.

These considerations are summarized in the
following

Proposition 2. The complexity for a �N � 1�
sorting units device and an N-long input se-
quence is O�N�.

In order to consider cases where the length of
the input data sequence is greater than the num-
ber of sorting units �in this case �N � 1� � U�,
the algorithm has been modified by adding an
external FIFO memory, in order to store the data
which cannot be contained in the SUs. Recall-
ing that each of the S sorting units contains two
data, the size of the external FIFO must be at
least �N � 2U�. An example of that is shown
in Fig. 7, where one SU is used together with a
one element FIFO to order a sequence of three
keys.

Now, introduce the following terms:

Definition 1. Let us define the following terms2:
Pi � bN�1

U c and Pr � �N � 1�%U.

The data sequence must pass through the sort-
ing device completely Pi times and partially Pr
times. The partial passes mean that the last
number of the sequence is collected at the Pr-th
output of the cascade. This means that – for
maximum efficiency – the output of each sort-
ing unit should be available at the output of the
VLSI device.

2.4. Implementation of the Algorithm

For implementation purposes, the inputs of the
SUs are augmented with two bits called F �First�
and S �Sorted�. Thus, the input pattern of each
SU is described in Fig. 5. It is important to
note that S is provided by the internal logic and
therefore it appears in the input of each SU, but
not in the input of the overall device. On the

2 b c means floor operation, and % means a reminder operation.

6 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

other hand, the F bit appears in the input of each
SU, and also in the input of the overall device.

S bit �1� F bit �1� Key field �16� Data field �16�

Fig. 5. SU input pattern.

2.4.1. The F (First) and S (Sorted) Bits

If we have a sequence of N-sized input data
blocks, we must devise a way of separating
the different blocks, which will otherwise be
merged. To solve this problem, we extended the
sorting algorithm in the following way: every
input number is augmented with an additional
bit, here referred to as F, to be used by the algo-
rithm as a marker to identify the starting point
of a sequence. In other words, F is set at the
start of each block sequence, and is otherwise
zeroed. In this way, the different input data
blocks remain separated.

The S bit aims at solving the following question:
if a block inside a sequence needs re-circulation,
how many turns must it do? From a theoretical
point of view, in dN�1

U e turns the goal is reached.
However, the integrated circuit doesn’t know a
priori the length of the sequence of data to sort
and it doesn’t know if it has to perform a re-
circulation or not. Moreover, if it also knows
the length of the sequences, a division between
�N � 1� and U is needed and this leads to two
problems: the division is a computational bur-
den and U can be unknown to the circuit, since
there may be other sorting circuits connected in
cascade. To solve this problem, we must recall

that a block of N data is ordered when it crosses
�N � 1� sorting units; therefore an S bit, which
deals with how many sorting units are crossed,
has been added. In other words, the S bit allows
automatic re-circulation of data. Every sorting
unit then decides to clear the S bit only if the
last entered data has the S bit equal to zero or if
the last entered data has the F bit equal to one
�i.e. it is the starting data of a new sequence�.
The sequence is completely sorted when there
are no more S bits to clear.

2.4.2. External Memory

If the length of the input sequence is greater
than twice the number of sorting units, an ex-
ternal memory is needed. In Fig. 7 an example
of sorting a three-key input sequence with one
sorting unit is reported; a one-element FIFO is
used.

The block diagram of a sorting device built with
SUs and FIFO is shown in Fig. 6. A sorting ex-
ample is reported in Fig. 8, where two SUs are
used together with an external FIFO to order a
sequence of five keys.

The speed limits of this architecture depend
mostly on the speed of the comparator inside
the sorting unit and on the length of the FIFO.
Generally speaking, the clock speed depends on
the layout of the VLSI, on the technology used,
on the number of metal layers and on the cho-
sen approach for the design, namely standard
cells or full custom; this topic will be further
considered later on.

Fig. 6. Architecture of the sorting device with external memory.

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 7

Fig. 7. Sorting example of three keys with 1 SU and 1-element FIFO. The delimiter symbol # represents
a number greater than all the keys in the sequence.

Regarding the computational complexity of the
algorithm in the case N � U � 1, we have to
consider two cases separately, namely when N

Fig. 8. Sorting example of five of the keys with 2 SU.

is less or equal to 2U and when N is greater than
2U. In the first case, in fact, there is no need
for a FIFO external storage, since all the data
can be contained in the U sorting units, and the
switch depicted in Fig. 8 is connected to the A
position, while in the latter case when all the
data enter the device, the switch is connected to
the B position to allow the re-circulation of the
data into the sorting units to complete the sort-
ing. Of course, when the switch is in position
B, no new data can enter the device.

The complexity of these two cases is described
in the following Proposition.

Fig. 9. Sorting time �in terms of number of cycles� vs.
input size for the currently described algorithm.

Different curves have been obtained by varying the
number of sorting units U.

8 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

Proposition 3. The complexity of the device,
expressed in terms of number of clock cycles, is
the following

datasize FIFOsize complexity
�S�1��N�2U 0 2U�N�2Pr

N�2U N�2U N�Pi�1��2Pr

The results described in Propositions 2–3 are
reported in Fig. 9, where a family of curves is
shown, from the upper part of the panel to the
lower, for 1, 3, 7, 15, 31, 63, 127 and 255 sort-
ing units. On the ordinate, the number of clock
cycles is represented.

2.5. Comparison with Other Algorithms

An obvious way of sorting N integers is to store
the number in a computer memory and use a
known sorting algorithm. Of course this ap-
proach is not convenient, in terms of circuit area
and running time trade-off, with respect to VLSI
implementations. It is interesting, however, to
compare the running time of some known serial
sorting algorithms with the time required by
the sorting architecture proposed in this paper.
One problem in such a comparison is the de-
finition of the practical aspects of the software
implementation, namely the efficiency of the
compiler or the characteristics of the computer
hardware. In order to overcome these difficul-
ties, we have chosen Knuth’s MIX assembly
language, which refers to a very simple archi-
tecture �14�. The proposed VLSI algorithm,
with the number of sorting units fixed to 99, has
been compared with a couple of O�N ln N� algo-
rithms, namely the Quicksort and Heapsort, for
different values of input size. Table 1 compares,
in terms of clock cycles, the complexity in dif-
ferent cases. Table 1 shows that the proposed
VLSI algorithm, with 99 sorting units, has bet-
ter or similar time complexity than O�N ln N�
serial algorithms with up to 1 � 104 input num-
bers. In general, the number of sorting units

required by the proposed algorithm in order to
get a lower sorting time than O�N ln N� algo-
rithms, is approximately given by

U �
N

k ln N
� �4�

The approximation given by this result is asymp-
totically better; that is, it is better as N increases.
The value of “k" in this equation is the complex-
ity coefficient of the software algorithm. For
example, from Table 1, it is 23 for the Heapsort.

3. VHDL Design of the Sorting Algorithm

The VLSI design has been performed using
VHDL descriptive language; with VHDL, it is
quite easy to verify and improve design deci-
sions and to test if the initial specifications are
met. A behavioural study represents the higher
abstract level in the description of an electronic
device. In this Section, the behavioural aspects
of the device, in response to the external stimuli,
are given. A commercial VHDL compiler has
been used in this phase.

3.1. Design of a Sorting Device

A sorting device performs the sorting of the in-
put data; its block diagram is depicted in Fig. 10.
The data enters from the input inp dm and
exits – sorted according to the key field – to
the output out dm. The signals depicted on the
left side of Fig. 10 manage the data source and
the data switch, the signals on the right side
deal with the output devices, the signals on the
bottom control the external memory and those
on the top deal with the cascading mechanism.
Internally, a control logic manages the function
of the other internal and external circuits. The
latch has a delay function and the mark data
blocks are used to furnish a reference for the
re-circulation function.

Algorithm Average complexity N � 100 N � 1 � 104 N � 1 � 106

Quicksort 10�63�N ln N� � 2�11N 5106 1 � 106 149 � 106

Heapsort 23�08�N ln N� � 0�2N 10649 2�1 � 106 319 � 106

Proposed Proposition 3 298 1�02 � 106 1 � 1010

Table 1. Complexity comparison between classical algorithm and the proposed one.

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 9

Fig. 10. Diagram of a sorting device.

3.1.1. Sorting Unit

The fundamental component of the sorting block
is the Sorting Unit �SU�. The signals ing, usc,
clk, res n3 are the input, the output, the clock
and the reset respectively. The signals Sle and
Fle are respectively the value of the last S – or
Sorted bit, as described previously – and of the
last F bit – whose function is to separate blocks
of data in the stream – entered in the sorting
unit. Moreover, Slen and Flen are the penul-
timate values of the corresponding bits entered
in the SU. The definition of a sorting unit in
VHDL is described as:

entity su is
port �ing	in e
bus�

usc	out e
bus�
clk	in bit�
res
n	in bit�
Sle�Fle�Slen�Flen	out bit
��

end su�

The e bus is used for connecting the SU and its
format is described in Fig. 5. In addition to the
sorting function and to the separation between
data blocks, in the design of the SUs, a power
saving function has also been considered. As-
sume, in fact, that we have a block of N words
to be sorted and that the sorting block contains
a cascade of U sorting units with U � �N � 1�.

After the N words have passed �N � 1� SUs,
the comparator of the remaining SUs, from N
to U, can be turned off, because all the needed
comparisons have been already performed.

3.1.2. Behavioural Description of the Sorting
Unit

The introduction of the F and S bits, as described
in sec. 2.4.1, and some considerations on power
saving allow us to provide the complete func-
tional description of the sorting units reported
as pseudocode in Fig. 11. In order to reduce the
dimension of the pseudocode, instead of con-
sidering the couple of physical registers D0, K0
and D1, K1 and of the related bit F0, S0 and
F1, S1, we consider the last entered data, called
Dle, Kle and the penultimate data that entered
the SU, called Dlen, Klen.

The meaning of the variables used in Fig. 11
is the following: Fu and Su are the values that
the F and S bits assume according to the values
of the Sle, Fle, Slen and Flen registers. These
registers are updated from the data at the input
of the unit on the rising front of the clock. The
PS bit shows how the content of the power sav-
ing register is being modified; value “1” means
that the register must be set, value “0” means

3 In the following, the signals that are active at the low level are denoted as � in the figures and as n in the VHDL description
and in the text.

10 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

Reset�
for each clock cycle do �
�� Fle Sle Flen Slen Fu Su are single bits
COND Fle Sle Flen Slen

�� COND is composed by four bits	
�� F and S of the last entry
�� and the internal state Flen e Slen

case COND
���� 	

Fu�� Su��
perform
action�NC��

���� 	
Fu�� Su��
perform
action�NC��
Slen��

���� 	
Fu�� Su��
PS�� �� Power Saving
perform
action�PS��
Flen��

���� 	
Fu�� Su��
PS�� �� Power Saving
perform
action�PS��
Flen��

���� 	
Fu�� SuE�
PS�� �� Power Saving inactive
perform
action�NC��

���� 	
Fu�� Su��
perform
action�NC��

���� 	
Fu�� Su��
perform
action�NC��
Flen�� Slen�

���� 	
Fu�� Su��
perform
action�NC��
Flen��

���� or ���� or ���� or ���� 	
Fu�� Su��
PS�� �� Power Saving inactive
perform
action�ALlen��

���� or ���� 	
Fu�� Su��
PS�� �� Power Saving inactive
perform
action�ALlen��

���� or ���� 	
Fu�� Su��
PS�� �� Power Saving inactive
perform
action�ALlen��

Fig. 11. VHDL pseudocode of the SU functional
algorithm. Each sorting unit has another two bits, called
SLen and Flen, which record the values of the last S and

F entered in the sorting unit.

that the register must be reset. The variation of
the content of this register shall be effective in
correspondance to the rising front of the clock.
When the PS register is set, the action to per-
form is always ALlen, i.e. the data before the
next exits and a new data enters.

The action NC �i.e. Normal Comparation� lets
the field that contains the smaller key out from
the sorting unit. It is important to note that the
variable Su can assume the value E that indi-
cates an error condition: this case cannot occur
during the normal functioning of the integrated
sorting circuit. If this happens, it means that the
sorting block is damaged, or that it is used in
a wrong manner, or that there are short circuits
at its inputs, or that the maximum functioning
speed is overreached. In Fig. 11, there are no
references to the values of the key used for the
sorting, and this allows us to perform the key
comparation, the Su and Fu calculation and the
evaluation of the next action.

3.2. Scaling the Sorting Operation

The functional description reported above has
been used for the architectural design of the
sorting block and for performing tests with dif-
ferent input sequences. Here we describe how
sorting blocks can be connected in cascade to
extend the capability of the sorting device. The
block diagram depicted in Fig. 12 represents
the cascading operation of the sorting VLSI de-
vices. As it is shown in the figure, four lines
are sufficient for cascading: input and output
lines, clock and cascading lines. The input and
output lines are connected between couples of
sorting blocks, and the cascading input deter-
mines whether a sorting unit is the slave or the
master of the cascade. More precisely, if cas-
cading is set to zero level, then the sorting block
is the master. Hence, all but the last of the sort-
ing blocks of the chain set their cascading input
to a high level, and the last sorting block fur-
nishes the clock to the others according to its
fan-out.

Another important issue concerning scalability
is the dimension of the data and key registers.
In the current design these registers are fixed in
length, to 16 bits both for data and key. How-
ever, in many applications different lengths of
these registers are often requested. In the cur-
rent design, the size of the data field can be
easily increased simply by a parallel combina-
tion of sorting devices, as reported in Fig. 13.
In this figure it is shown that the 48 bit input bus
is divided into three sections, 16 bits each, and
each section is fed to a sorting block; the 16 bit
output sections are recombined to form the 48

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 11

Fig. 12. Cascade of two sorting blocks.

bit sorted flow. In this way, the data upsizing
can be increased in steps of 16 bits. The key
field, which is the basis of the sorting process, is
left unchanged to the original 16 bits. Unfortu-
nately, the key upsizing is not so easy as the data
upsizing, because it would require either some
additional external logic or a chip redesign.

Fig. 13. Data upsizing.

4. VLSI Synthesis

4.1. Structural Synthesis

In Section 3 we highlighted the VHDL design
of the sorting block using a behavioural model.
The next step, dealt with in the current Sec-
tion, is to convert the behavioural design to a
structural description. Generally speaking, this
task can be accomplished in two ways, named
manual or automatical. In the former �custom
approach�, a structural description can be ob-
tained using a layout editor like MAGIC �19�;

in this case the work is done manually by the
designer who, among other things, must have a
high degree of knowledge about the VLSI tech-
nology since transistors and wirings are directly
designed on silicon. Very high degrees of effi-
ciency can be obtained; this solution, however,
is possible only for simple chips. The other pos-
sibility is to use automatic tools, that can convert
the behavioural description into a structural one
using a set of standard cells. The latter solution
was adopted in this work. The system used for
the structural synthesis was ALLIANCE �3�.

The behavioural description of the sorting block
is automatically converted �using the Alliance
tool logic� to a structural description. The
blocks have been simulated first with differ-
ent input patterns using the tool asimut, and

Fig. 14. SU structural design.
Each SU is composed of four main blocks:

K&D, CMP, SS and COND.

12 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

K&D CMP SS COND

number of microcells 8 16 17 15
number of gates 257 98 48 25
number of inverters 50 26 11 8
area occupation �grids� 1246 417 231 89
longest path �gates� 3 9 5 3

Table 2. Main characteristics of the structural design.

then, the code of each block was optimized with
logic-o for both speed and area occupation.
Moreover, to avoid fan-out problems, some
buffers are inserted in critical points of the cir-
cuit with the Alliance tool netoptim. In Fig. 14
the structural design of the sorting unit is de-
picted. It is composed of four blocks:

� K&D: containing registers for keys and data
and an output multiplexer;

� CMP: performs the keys comparison;

� SS: composed by registers for storing the
state of the sorting unit �in particular Sle,
Fle, Slen, Flen�;

� COND: combinatorial circuits.

The main characteristics of the structural design
are reported in Table 2.

Finally, structural descriptions of the four blocks
were connected with the tool genlib.

In conclusion, to comply with the design, the
sorting unit requires 428 gates and an area of
1983 grids.

4.2. Silicon Synthesis

This section deals with the generation of the
Caltech Intermediate File �CIF�. The goal is
to deliver the sorting unit as a new macrocell,

Fig. 15. A Sorting Unit.

VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation 13

which could be used in the actual chip design or
as a subsystem of other designs. In the first step,
positioning and interconnection of the cells se-
lected from the standard library are performed.
The silicon synthesis phase is then verified in
several ways.

The final structure can be viewed with the
Alliance tool graal, which is a layout editor.
The entire sorting unit is reported in Fig. 15.

5. Final Remarks and Conclusions

In this paper the design of a sorting block based
on the connection of a number of elementary
Sorting Units �SU�working in pipeline has been
described. Its main advantage is its simplic-
ity, which makes it highly suitable for a VLSI
implementation. Moreover, the overall sorting
system is scalable, and this is fundamental from
a practical point of view. Other faster algo-
rithms do exist, but at the expense of versatility
and simplicity.

It is worth emphasizing that sorting is performed
on a stream of data according to the value of a
key which accompanies the data; in the cur-
rent design, the key is a 16 bit unsigned num-
ber. Other numerical representations of the key
field, typically 2’s complements, would require
a re-design of the CMP block only. On the other
hand, the numerical representation of the data
field doesn’t care about this, because the data
field is only passed on.

A detailed analysis of the computational com-
plexity has been briefly summarized and a
VHDL description has been reported. Recall
that to sort N input words we need to connect
�N � 1� Sorting Units �SU�, and note that one
SU can be implemented using α1 �α2 � k grids,
where k is the total number of bits of the key and
data registers and α1, α2 are structural synthe-
sis constants �by the way, from Table 2, one SU
requires about 2000 grids for 16 bit data and 16
bit keys�. Thus, we can say that the area needed
to sort N input words is O�kN�. Since the time
is O�N�, we have that A � T � O�kN2�, which
should be compared with the theoretical bound
Ω�N ln N�. In this latter sense, the design is
reasonable in terms of area and time trade-off.
For the sake of comparison, in Table 3, where
p � ln N, we report the AT and I�O orders of

Method AT I�O

Odd-even O�kN2� O�k � p�
Proposed design O�kN2� O�k�

Table 3. AT and I�O trade-offs for different designs.

complexity of the well-known odd-even trans-
position design, as reported in �20�, and the de-
sign described in this paper.

Many improvements are currently being stud-
ied. For example, the possibility of modifying
ascending or descending sorting directions can
be very easily taken into account by adding an
inverter to the logic output of the comparator.
Another useful improvement that can be con-
sidered in successive versions of the design is
the inclusion of a path for controlling possi-
ble breakdowns in the internal SUs; this can be
easily obtained using a shift register.

It is worth noting, finally, that the possibility of
realizing sorting devices directly on a FPGA can
be considered, as, using Alliance, this becomes
particularly simple.

References

�1� B. AHN AND J. M. MURRAY, A pipeline, expandible
sorting engine implemented in CMOS technology,
in IEEE Int. Symposium on Circuits and Systems,
ISCAS89, 1989, pp. 134–137.

�2� G. ALEXIOU AND D. STILIADIS, Design and imple-
mentation of a highperformance, modular sorting
engine, in IEEE European Design and Test Confe-
rence, 1994, pp. 2–8.

�3� Alliance, http	��www�asim�lip��fr�
alliance.

�4� K. E. BATCHER, Sorting Networks and their Appli-
cations, in Proc. AFIPS Spring Joint Comput. Conf.,
Vol. 32, 1968.

�5� A. BELLETTINI, A. FERRARI, R. GUERRIERI, AND G.
BACCARANI, A digital parallel VLSI architecture
for fuzzy database mining, in IEEE World Congress
on Computational Intelligence, 1994.

�6� G. M. BLAIR, Low Cost Sorting Circuit for VLSI,
IEEE Trans. on Circuits and Systems, 1996.

�7� V. BRAJOVIC AND T. KANADE, A VLSI sorting
image sensor: global massively parallel intensity-
to-time processing for low-latency adaptive vision,
IEEE Trans. on robotics and automation, 1999, pp.
67–75.

14 VHDL Design of a Scalable VLSI Sorting Device Based on Pipelined Computation

�8� C. CHAKRABARTI, Sorting Network Based Archi-
tectures for Median Filters, IEEE Trans. on Circuits
and Systems-II, 40, 1993.

�9� T. C. CHAN, K. P. ESWAREN, V. Y. LUM, AND C.
TUNG, Simplified Odd-even Sort Using Multiple
Shift-Register Loops, Int. J. Comput. Inform. Sci.,
7, 1978.

�10� T. CORMEN, C. LEISERSON, AND L. RIVEST, Intro-
duction to Algorithms, The MIT Press, 1990.

�11� S. B. GU LIN, A expansibile current-mode sorting
integrated circuit for pattern recognition, in Int.
Joint Conference on Neural Network, vol. 5, 1999,
pp. 3123–3127.

�12� J. JA’JA AND R. M. OWENS, VLSI Sorting with Re-
duced Hardware, IEEE trans. on Computers, vol.
C-33, 1984.

�13� M. KARAMAN, L. ONURAL, AND A. ATALAR, A gen-
eral purpose VLSI median filter and its application
for image processing, in Melecon 89, 1989, pp.
366–369.

�14� D. E. KNUTH, The Art of Computer Programming,
Sorting and Searching, Addison Wesley, 1975.

�15� M. KUMAR AND D. D. HIRSHBERG, An Efficient
Implementation of Batcher’s Odd-even Merge Al-
gorithm and its Application in Parallel Sorting
Schemes, IEEE Trans. on Computers, vol. C-32,
1983.

�16� J.-D. LEE AND K. E. BATCHER, Minimizing Com-
munication in the Bitonic Sort, IEEE Transaction
on Parallel and Distributed Systems, 2000.

�17� C.-S. LIN AND B.-D. LIU, Design of pipelined and
expandable sorting architecture with simple con-
trol scheme, in IEEE International Symposium on
Circuits and Systems ISCAS 2002, 2002.

�18� E. E. LINDERSTROM AND J. S. VITTER, The design
and analysis of bucket sort for bubble memory
secondary storage, IEEE Trans. on Computers, vol.
C-32, 1985, pp. 218–233.

�19� Magic, http	��bwrc�eecs�berkley�edu�
Classes�IcBook�magic�index�html

�20� G. M. MEGSON, Sorting without exchanges on a bit-
serial systolic array, IEE Proceedings, 137, 1990,
pp. 345–352.

�21� G. MIRANKER, L. TANG, AND C. K. WONG, A zero-
time VLSI sorter, IBM J. Res. Develop., 27, 1983,
pp. 140–148.

�22� D. NASSIMI AND S. SAHNI, Bitonic Sort on a Mesh-
Connected Parallel Computer, IEEE Trans. on Com-
puters, vol. C-28, 1979.

�23� S. OLARIU, M. C. PINOTTI, AND S. Q. ZHENG, An
Optimal Hardware-Algorithm for Sorting Using a
Fixed-Size Parallel Sorting Device, IEEE Transac-
tion on Computers, 2000.

�24� I. PITAS AND A. N. VENETSANOPULOS, Non Linear
Digital Filters, Kluwer Academic Publishers, 1990.

�25� D. S. K. POK, C. I. H. CHEN, J. J. SCHAMUS, C.
T. MONTGOMERY, AND J. B. Y. TSUI, Chip design
for monobit receiver, IEEE Trans. on Microwave
Theory and Techniques, 45, 1997, pp. 2283–2295.

�26� D. C. STEPHENS, J. C. R. BENNET, AND H. YHANG,
Implementing scheduling algorithms in high speed
networks, IEEE Journal on Selected Areas in Com-
munications, 1999.

�27� C. D. THOMPSON, The VLSI Complexity of Sorting,
IEEE Trans. on Computers, vol. C-32, 1983.

�28� J. D. ULLMAN, Computational Aspect of VLSI,
Computer Science Press, 1984.

�29� H. YASURA, N. TAGAKI, AND S. YAJIMA, The par-
allel Enumeration Sorting Scheme for VLSI, IEEE
Trans. on Computers, vol. C-31, 1982, pp. 1192–
1201.

Received: February, 2003
Revised: March, 2004

Accepted: March, 2004

Contact address:

Enzo Mumolo
DEEI, University of Trieste

Via Valerio 10
34127 Trieste, Italy

Phone: �39.040.558.3861
Fax: �39.040.558.3460

e-mail: mumolo�units�it

Massimiliano Nolich
e-mail: mnolich�units�it

ENZO MUMOLO received a Dr Eng degree �magna cum laude� in elec-
trical engineering from the University of Trieste, Italy, in 1982 and then
joined the Central Laboratory of Alcatel Italia, FACE division, formerly
FACE Res. Center, in Pomezia, Rome, Italy. In 1985 he was with ITT
DCD-West in S. Diego, CA. In 1987 he became responsible for research
activities within the Speech Processing Dept. of Alcatel Italia, FACE
Division. From 1990 to 1991 he was with Sincrotrone Trieste, Italy, as
head of the Electronics Group. In 1991 he joined the Computer Science
Dept. at DEEI, University of Trieste, as research engineer and assis-
tant professor. His current research interests include nonlinear systems,
adaptive filtering, operating systems and speech processing. Member
of IEEE, ACM and AEI, he has published more than 100 papers in
professional journals and international conferences proceedings and he
holds two United States Patents.

GABRIELE CAPELLO received a Dr Eng degree in electronic engineering
in 1997. He spent two years as visiting scientist in International Centre
for Theoretical Physics �I.C.T.P.� Miramare, TS, Italy working on two
main projects: fast-moving imaging system, sort chip implementation.
For four years he worked as digital electronic engineer in Telit �Sgonico,
TS, Italy� working on the design of several cellular phone terminals.
Now he is a digital electronics engineer in Neonseven �Sgonico, TS,
Italy�, working on reference designs for cellular phones.

MASSIMILIANO NOLICH received a Dr Eng degree in electronic engi-
neering in 1999 �magna cum laude� and Ph.D. degree in 2003 from
the University of Trieste, Italy, working on algorithm and software
techniques for robotic platforms. His research interests include intel-
ligent autonomous system, acoustic perception and robotics. He is an
IEEE member and he has published more than 15 papers in professional
journals and international conferences proceedings.

