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Developing a Spell Checker
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�Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
��Croatian Telecom, Zagreb, Croatia

In this paper we discuss some basic concepts of know-
ledge engineering, expressing our feeling that there is
something missing. In our opinion, the missing link,
able to clarify all the basic concepts, should be the
concept of energy, not in use in knowledge engineering
practice and theory at all. Since energy is an extremely
abstract concept, which led to misunderstandings even in
physics, we humbly introduce it by describing an existing
expert system, called Hascheck. Hascheck is a spell
checker for Croatian language, implemented as learning
�semi�automaton, accessible via E-mail and Web, and
being in public use nearly 10 years. We also present
here a mathematical model of Hascheck’s learning. The
model led to the so-called cognoelectrical analogy, which
allowed some energy considerations about learning, and
knowledge.

Keywords: spell checker, knowledge acquisition, mo-
delling of learning, energy.

1. Introduction

Knowledge management is currently attracting
a great deal of interest in scientific and busi-
ness communities. However, is knowledge en-
gineering a scientifically well-founded disci-
pline? There are some reasons to doubt this.

“Expert systems have to be an applied disci-
pline, not a theoretical one. In application, real-
word needs such as knowledge-based mainte-
nance and learning need to be accommodated.
We need to see expert systems as primarily a
discipline to do with supporting knowledge ap-
plications; primarily an applied discipline, pri-
marily concerned with the logic of the know-
ledge and only secondarily a technological dis-
cipline. This needs a modification of viewpoint
on the part of many expert systems practition-
ers.” �Taylor, 1999; p. 8�

The quoted thoughts of R.M. Taylor bring know-
ledge engineers in the position of ancient Ro-
man civil engineers constructing bridges. It is
not such a bad position. Not knowing Newton
axioms, they constructed many bridges, some
of which are still in operation, from Spain to
the Near East, from England to Africa. But, for
modern engineers, this position is very weird;
they are taught to think axiomatically. It is not
so easy when knowledge is concerned.

On the other hand, there are some attempts to
formalise fundamentals of knowledge engineer-
ing. How it works will be illustrated by quoting
only one of these attempts, �Uschold, 1998�. In
his introduction M. Uschold says: “Very impor-
tantly, this is a descriptive exercise, not a nor-
mative one” �p. 5�. A few pages later he says:
“In particular, readers are expected to know how
the term KNOWLEDGE is being used, and what
INFERENCE is. They should be familiar with
fundamental notations of LANGUAGE in gen-
eral and KNOWLEDGE REPRESENTATION
LANGUAGES in particular, as well as what is
meant by a KNOWLEDGE BASE” �p. 8�.

Do we all mean the same when using terms like
knowledge, reasoning or language? Surely not!
Speaking of language, the authors of these lines
primarily think of their own, Croatian language.

Is there any knowledge and reasoning out of
language? Of course there is. Artists produc-
ing paintings or music have such knowledge
and such reasoning. But, is there any sharable,
common knowledge and reasoning out of natu-
ral languages? We doubt it.
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Regarding Uschold’s and others’ papers about
theoretical foundations of knowledge engineer-
ing we got a strong feeling that there is some-
thing missing, something that could connect,
physically, all basic, weakly defined concepts.
Being engineers, we believe that we have found
the missing link in the concept of energy.

“Knowledge is power”, people say. Every-
one will agree that learning is difficult. Thus,
in everyday life we describe knowledge and
knowledge acquisition, or learning, with energy
terms. Nowadays many researchers and engi-
neers are trying to build up learning automata,
or knowledge-based systems. Do they consider
their attempts through energy analysis? Usually
not, because of the lack of scientific concepts
which could support such considerations.

Even in physics, energy is an extremely abstract
concept, which led to many misunderstandings:
only perpetuum mobile is to be mentioned as
an example. Therefore, our paper has to be re-
garded as a humble – but practical – attempt,
pointing where to research further in order to
enable energy considerations about knowledge
and learning.

At the very beginning we had a simple – for
many years now commonly regarded as unattrac-
tive – knowledge engineering task: to collect
word types and build up an acceptable spell
checker for Croatian language. Our approach
was unconventional: we decided to implement
our checker as a telematic service embedded in
E-mail, so the users had to send their texts to a
given address and to wait for an automatic re-
ply in the form of the checker’s report. Texts
sent for checking demonstrated to be a valuable
source of new knowledge for the checker. This
provoked our interest for learning in technical
systems.

The simplicity of our original task had two
faces: positive and negative. Firstly the neg-
ative: we dealt with common knowledge, cor-
rectly and incorrectly written Croatian words.
Each naı̈ve user, and most Hascheck users are
“naı̈ve” in the sense of the spell checker – expert
system – development problem, having some
competence reparding Croatian language, could
judge whether our product functioned well or
not. Fortunately, they accepted Hascheck. The
positive side of our job was that we did not have
to cope much with structures, relations and sim-

ilar aspects complicating most knowledge engi-
neering tasks. These circumstances allowed us
to go fairly deep in modelling learning. The
results will be presented in this paper.

Section 2 describes the checker. Section 3 pro-
vides a mathematical model of the learning pro-
cess based on data collected during the first 5
years of the checker’s life; data collected later
brought nothing new to the model. Finally,
Section 4 introduces a cognoelectrical analogy
that allows some energy considerations about
knowledge and learning.

2. Hascheck – A Learning (Semi)automaton

“Spelling is one of the best examples I’ve seen
of the need for prototyping: build something
small, try it, see how useful it is in practice,
then modify and extend” �Bentley, 1985; p.
460�. This idea led to Croatian Academic
Spelling Checker, called Hascheck �an acronym
derived from its full Croatian name: Hrvatski
akademski spelling checker�. Hascheck is the
first Croatian spell checker; some other Croatian
checkers were developed later �Sokele, 1997�.
Hascheck functions as a telematic service em-
bedded in E-mail �the address: hacheck�fer�

hr�. In the last few years it is also accessible via
World Wide Web on the address http���www�

hr�hacheck�. The service has been in operation
since March 21, 1994.

Hascheck’s initial dictionary counted less than
100,000 common word types. Here we must
explain the term word and how we use it. A
lemmatised word is what one finds on the left
side of a conventional dictionary. By apply-
ing its morphology, a natural language produces
word forms for each lemmatised word. Not all
produced word forms, regarded as alphabetic
strings, are necessarily distinct. In English, for
example, the noun work and the verb work are
two distinct word forms, because they are two
distinct lemmatised words, but one word type.
Further, it is necessary to distinguish common
words �common nouns, verbs, adjectives etc.�
from names �proper nouns, acronyms, foreign
words in original orthography etc.�, because of
their different behaviour in texts. Finally, words
in text are tokens. But, not all tokens are words.
Some tokens are nonwords �misspellings or ty-
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pos�, and the spell checker’s job is to find �de-
tect� them.

With a small initial dictionary we encountered
several problems. Croatian is a Slavic lan-
guage, like Russian, Polish, Bulgarian and oth-
ers. They all belong to the group of highly
inflected languages with a great variety of dif-
ferent word forms – and word types – for each
lemmatised word. A Russian estimation sets the
lowest limit of dictionary size for an acceptable
spell checker at 1,000,000 word types; the up-
per limit is 100,000,000 word types �Dolgopov,
1986�. Having a dictionary 10 times smaller
than the estimated lowest limit, we had to find,
in order to make the Hascheck report useful for
the users, the way to divide unrecognised tokens
from a text into legal word types and nonwords,
respectively. An idea describing how to treat
this problem was found in a paper dating from
the very beginning of practical spell checking
�Morris&Cherry, 1975�.

The AT&T Bell Labs’ spell checker typo – not
in use anywhere for many years now – used the
concept of string peculiarity. This concept –
despite its original technical implementation –
meant that strings like approachment and ap-
prchment have to be treated differently. For
any person having some knowledge of English
the first string resembles an English word much
more than the second one. Is it possible to build
up a program able to make a similar distinction?

An acceptable solution was found by apply-
ing binary n-grams �n�3,4,5,6� derived from
a common word dictionary. It is a classical
AI technique used mostly for error corrections
�Riseman&Hanson, 1974; Ullmann, 1977�. Fi-
nally, a very human-like fuzzy evaluation of
strings not contained in the dictionary appeared,
classifying them in several classes of pecu-
liarity. The solution proved to be language-
dependant. We experimented both in Croat-
ian and English �Dembitz, 1993�, but we never
managed to put more than 50% of unknown En-
glish word types in the class of the lowest pe-
culiarity; the best result in Croatian was around
80%. By all these attempts the rate of typos and
misspellings in the same class varied between
10–15% for both languages.

Using our classifying algorithm we were able
to bring majority of nonword types at the begin-
ning of Hascheck report; legal Croatian word

types not included in the dictionary,were pushed
to the end of the report. Such selectivity, taking
into account a small dictionary volume, i.e. a
poor coverage of incoming texts at the begin-
ning of service life, was of great importance for
accepting Hascheck as a useful service.

It is the variety of word endings that makes a
language highly inflected. Text sent for check-
ing became a valuable source of new word types
unknown to Hascheck. Inspired by �Weischedel
et al., 1993� we developed a tagging algorithm
for spell checking purposes. The tagging al-
gorithm is applied to collections of Hascheck
reports recorded for learning purposes. The
tagging for common words is applied on less
peculiar strings. Strings beginning with cap-
itals, or consisting of capital letters only are
assumed to be potential names and are treated
separately. The tagging for names is applied to
all classes.

Our word-guessing method succeeds in tagging
correctly more than 70% of unknown Croatian
word types. These data refer to common words
�common nouns, verbs etc.�, while efficiency of
the algorithm with name types �proper names,
acronyms etc.� is around 50%. In both cases
the noise – percentage of typos and misspellings
in a set of tagged strings is under 10%.

Final result of our research and development
was a spell checker functioning as a learning
�semi�automaton. The classifier classifies un-
recognised tokens from a text as more or less
peculiar. The tagger processes the less peculiar.
According to capitalisation, the tagger treats po-
tential common words and potential names sep-
arately. It produces collections of new word
types that should be learned. After minor hu-
man supervision and correction �therefrom pre-
fix semi- when describing Hascheck� new word
types are added to Hascheck name and common
word dictionary, respectively. If necessary, only
accepted common word types are used for up-
dating the n-gram base.

Hascheck is open to all word processors. The
service is fairly quick in responding: For a book
of 100,000 tokens, it takes Hascheck less than 1
minute to reply. During the first 5 years of pub-
lic life Hascheck received over 2,000 texts for
processing, or a text corpus amounting to more
than 12,000,000 tokens. Actual number of texts
processed by Hascheck is over 3,000, which
makes the text corpus larger than 35,000,000
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tokens. The difference between the first and
the second part of Hascheck’s life gives an idea
about the quality of its service.

As mentioned earlier, Hascheck started to ope-
rate with a dictionary of less than 100,000 com-
mon word types. In the first 5 years its know-
ledge grew to more than 300,000 Croatian com-
mon word types, and more than 80,000 name
types. The increase in the next 5 years �ap-
proximately� – this period was not taken into
account by modelling that follows – was not so
prominent. Only 100,000 new common word
types and 50,000 new name types were learned
from the corpus of over 20,000,000 tokens.

3. Learning Process

Hascheck learns words to improve its cover-
ing of Croatian texts. In order to keep track
of learning, an elementary statistical record fol-
lows each processing. On the basis of these
records, two variables – text coverage �TC� and
learning index �LI�, are calculated:

TC �

�
1 �

NumberOf UnrecognizedTokens
TextVolume

�
� 100

�1�

LI �

�
NumberOf WordTypesLearned

TextVolume

�
� 100 �2�

To describe Hascheck learning process over the
time it was necessary to find the connection be-
tween TC and LI, respectively, and the volume
of previously processed corpus �PPC�. PPC,
the total amount of text processed by Hascheck
before the checking of a particular text file, is
the only acceptable measure of Hascheck’s ma-
turity. PPC is the natural substitution for time
in analytical modelling of Hascheck’s learning.

We took 20 LI values obtained by proofreading
the Croatian Lexicon �Dembitz&Sokele, 1998�.
The Croatian Lexicon was split into 20 text
files. These files came in for checking sepa-
rately, with long time spans, during the period
between November 1994 and May 1997. The
Lexicon proofreading was an extremely well
controlled process. Therefore, we are sure that
statistical data obtained from this process are
very reliable.

Using PPC as the time variable, we looked for
functions that best fit the data. The number of

free parameters in all tested functions was lim-
ited to 3 or less. The best fit was obtained by
using:

LI � a � �100 � a� � e�
PPC�∆t

τ �3�

Construction of the function �3� needs an ex-
planation. Learning index LI, as defined in �2�,
cannot exceed the value of 100. The extreme
value of LI can be reached only at the very be-
ginning of learning, when the “time”, PPC�∆t,
equals 0. The “time” shift ∆t is also easy to ex-
plain. To put Hascheck in operation, capable to
receive the first user’s text and to give a satisfac-
tory response, some amount of research, devel-
opment and programming was needed, as well
as processing of a certain amount of text in or-
der to acquire basic Croatian word knowledge.
All these are expressed through ∆t parameter.

The result of fitting is presented in Fig. 1, to-
gether with optimal values of free function pa-
rameters a, ∆t and τ , and with obtained corre-
lation coefficient r. It is worth mentioning that
even physicists experimenting with some fun-
damental physical law, would be satisfied with
the correlation of 0.975.

Fig. 1. Fitting of learning index LI
�X � axis � PPC �tokens�; Y � axis � LI�.

Independent of learning indexes we took 20 TC
values representing average text coverage cal-
culated on the basis of a 3-month period of pro-
cessing. These 20 points have a total span of
5 years or 12,000,000 tokens, when counted in
PPC. By fitting these data we fixed the parame-
ters ∆t and τ on values obtained in the previous
fitting. The function we chose was a natural
choice:

TC � b �

�
1 � e�

PPC�∆t
τ

�
�4�
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The result of this fitting is presented in Fig. 2.
The fitting was again very good, since the cor-
relation coefficient �parameter r in Fig. 2� was
near 0.92.

Fig. 2. Fitting of text coverage TC
�X � axis � PPC �tokens�; Y � axis � TC �%��.

Functions �3� and �4� correspond to human
experience. Learning words is a never-ending
process, since every living language constantly
produces new words; this is expressed by the
small constant a in Fig. 1. “3 to 5% of word to-
kens are usually missing in the lexicon �diction-
ary� when tagging a real-world text” �Mikheev,
1996�. The value obtained for b in Fig. 2 con-
firms these borders.

This correspondence with experience is giving
us the faith that our mathematical model of
learning makes sense.

4. Cognoelectrical Analogy

Analogy is not the best way of scientific rea-
soning. However, if there is no better way of
thinking, one must take this one.

Functions very similar to �3� and �4� describe
the charging of a real capacitor connected to
a real battery �Fig. 3� where τ � C � RC �

Rs��RC � Rs�. According to the standard nota-
tion in circuit theory, the battery is represented
by an electromotive force voltage source with
constant voltage E and source resistance Rs.
The capacitor is represented by a capacitance
C and capacitor resistance RC� When they are
connected, the current �i� and the voltage �uC�

follow the equation �5� and �6�, respectively.

i �
E

RC � Rs
�

E
Rs

�

RC

RC � Rs
� e�

t
τ

�5�

uC �
E � RC

RC � Rs
� �1 � e�

t
τ � �6�

The power function, p�t� � i�uC, has an extreme
if RC � Rs. When the extreme of power exists,
it is maximum in t � τ � ln�2RC��RC � Rs��.

Fig. 3. Electrical equivalence of Hascheck learning
process.

Words are the charge for Hascheck. The flow
of words, expressed by learning index LI, can
be regarded as an equivalent to current i. Ana-
logously, the text coverage can be regarded as
voltage uC. Users, with their natural language
competence, are the battery; Hascheck is the ca-
pacitor. We call this a cognoelectrical analogy.

Having equivalences between LI and i, and be-
tween TC and uC, it is normal to construct and
analyse the power of learning function �PoL�:

PoL �
h
a � �100 � a� � e�

PPC�∆t
τ

i
� b �

�

�
1 � e�

PPC�∆t
τ

� �7�
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The function �7�has an extreme when the “time”
has a value of �parameters are taken from Fig.
1�:

PPC � ∆t � τ � ln
200 � 2a
100 � 2a

� 1� 465� 315 �tokens� �8�

Now we must go back to the consideration of
the value of “time” shift ∆t��4� 774� 792 �to-
kens�, obtained by fitting. As we have already
said, this value expresses the fact that Hascheck
needed acquisition of basic word knowledge be-
fore it could become a useful service. However
the “time” shift amounting of nearly 5 Mto-
kens cannot be verified by the text corpus used
for it; only 800,000 real tokens, processed by
Hascheck before it was offered to public use,
can be quoted �Dembitz, 1993�. The rest has to
be considered as another type of time in know-
ledge acquisition, the time needed for research,
development and programming of Hascheck.

Therefore we split the entire life of Hascheck
in two periods: its virtual time, approximately
2τ long, when Hascheck was only an idea,
and its real time, approximately 7τ long, when
Hascheck was coping with real texts.

Fig. 4. The Hascheck power of learning function:
Region A = energy spent in virtual

time of Hascheck’s life;
Region B = energy spent in real time

of Hascheck’s life;
�X � axis � PPC �tokens�; Y � axis � PoL�.

The Hascheck power of learning function PoL
is presented in Fig. 4. It is obvious that the most
energy-demanding period was the virtual time
of Hascheck’s life. The doubts, when one is
faced with many problems to be solved, con-
sume much energy. During the real time of
Hascheck’s life, when we had these problems

mainly solved, the demand for energy dropped
significantly. Here the analytic model proves
our own experience.

Generally speaking, these energy considera-
tions do not contradict common sense. Au-
tomata are built up to save human energy; users
sent their text to Hascheck to save their own
time needed for proofreading. In case of learn-
ing automata – or semiautomata, like Hascheck
– it should be compensated by the authors’ en-
ergy spent in the course of making such an au-
tomaton operable. To put it simply, learning
automata operate due to the power = knowledge
initially supplied by their authors. Whether they
will function well or not, it depends upon the
quality and quantity of knowledge initially sup-
plied, and in each concrete case an estimation
of these is still pure art.

Since expert systems are still an applied dis-
cipline, and not a theoretical one, let us con-
clude with the last Hascheck practical achieve-
ment. In the first week of September 2003
Hascheck checked the entire Comprehensive
Dictionary of Croatian Language. The 4th edi-
tion of Anić’s well known dictionary �Anić,
1991, 1994, 1998� is to appear soon under a
new title, because of an increase of vocabu-
lary volume covered by the Dictionary. Before
its appearance in the book-shops the publisher
wanted to check the final lay-out of the Dic-
tionary, so he decided to use Hascheck. The
results were astonishing �for the publisher�. In
the text of 1,300,000 tokens Hascheck detected
more than 600 typos and misspellings. Glob-
ally, for the publisher, it was a very good rate
because 0.05% error-rate is acceptable even in
better lexicographies than Croatian, but the peo-
ple who spent a decade or more working on
the Dictionary project couldn’t believe they had
never noticed these errors. From the Dictionary
proofreading Hascheck learned only 2,000 new
word types.

5. Conclusion

The results we have presented here are conse-
quences of a well-chosen and very unconven-
tional approach. Being engineers, we always
regarded natural language as an economic and
energy-balanced system. This point of view
is not new. It was very modern in technical
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literature 50 years ago �Shannon, 1951; Zipf,
1949�, but was later replaced by structural and
algebra-based approaches to language �Chom-
sky, 1957�. Inspired by Martinet’s philosophy
of language �Martinet, 1960�, we decided to
explore the hidden, natural language energy,
or geometry of language, in order to solve,
with minimal effort, the problem of developing
a good spell checker for our highly inflected
language. We believe that our achievement,
presented here, might produce some impact on
the renewal of energy considerations about lan-
guage and knowledge, since these two concepts
are inseparable.
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PETAR KNEŽEVIĆ received the BSc �1974�, MSc �1977� and PhD �1982�
degrees in electrical engineering, all from the University of Zagreb,
Croatia. He is presently an associate professor at the Faculty of Elec-
trical Engineering and Computing, University of Zagreb. His current
research interests include formal description techniques for protocol
specification, performance analysis and system modelling.

MLADEN SOKELE received the BSc �1983� and MSc �1987� degrees
in electrical engineering, both from the University of Zagreb, Croatia.
He is presently at the Corporate Strategy and Development Department
of HT �Croatian Telecom�, where he runs the Research and Informa-
tion Centre. His current research interests include economic indicators
modelling and forecasting in telecommunications.


