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In this paper we present a version of genetic algorithm
�GA� where parameters are created by the GA, rather
than predetermined by the programmer. Chromosome
portions which do not translate into fitness �“genetic
residual”� are given function to diversify control param-
eters for the GA, providing random parameter setting
along the way, and doing away with fine-tuning of
probabilities of crossover and mutation. We test the
algorithm on Royal Road functions to examine the differ-
ence between our version �GAR� and the simple genetic
algorithm �SGA� in the speed of discovering schema and
creating building blocks. We also look at the usefulness
of other standard improvements, such as non-coding
segments, elitist selection and multiple crossover on the
evolution of schema.
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1. Introduction and Motivation

Genetic algorithms �GAs, Holland, 1975, Gold-
berg, 1989� have proved to be effective search
mechanisms. They have been adapted for func-
tion optimization in a variety of ways �De Jong,
1992�, but one of the lingering problems is that
the GA performance depends on initial parame-
ter settings. In most applications the parameters
�probability of crossover, probability of muta-
tion and population size� are fixed throughout
the run. It has been acknowledged in the lit-
erature that variable parameter setting is more
effective �see Booker, 1987 and Davis, 1991 for
example�. Numerous studies have been devoted
to the disclosure of the relationship between the
GA parameters, as well as parameter “optimiza-
tion” �see Baeck, 1991, De Jong, 1975, 1980,
Grefenstette, 1986, Srinivas and Patnaik, 1994,
Wu and Cao, 1997, among others�. Tuson and

Ross, 1998 provide a comprehensive overview
of attempts in the GA literature to optimize GA
parameters in order to account for their abil-
ity to provide more fit individuals in successive
generations. Efforts have been made to cre-
ate adaptive parameters which become a part
of the selection process of the strings, but with
adaptive parameter settings the parameters are
fitness-dependent, posing a problem for systems
in which string fitness depends on the state of the
population, such as economic systems �Dawid,
1997�.

Our motivation was to create a GA which does
not require search for an “optimal” set of param-
eters, or any parameters for that matter, but to
have a reliable GA which will do the job when
applied to various real problems �Novkovic and
Šverko, 1998�. Harik and Lobo, 1999 started
from a similar search for a “parameter-less” GA,
which in this case is not a GA without param-
eters, but rather one with a set of parameters
that can work reasonably well for many prob-
lems. They stopped short of including mutation
in their algorithm, recognizing that it is a diffi-
cult task. Mutation, however, has to be included
for the GA to function as intended, for its abili-
ties are severely limited without it.

Our algorithm is an upgraded version of the al-
gorithm in Novkovic and Šverko �1998�. We
find that GA-generated random parameters are
as good as any in function optimization, while
they require relatively little in terms of algo-
rithm alterations and computation. They do not
depend on fitness and, therefore, are univer-
sally applicable. We have demonstrated else-
where �Novkovic 1999, Šverko 2003, for ex-
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ample� that a random parameter-based GA is
exceptionally effective in finding solutions to
complex and difficult practical problems.

In what follows we provide a detailed descrip-
tion of the algorithm and test it on Royal Road
functions designed to evaluate the schema pro-
cessing during genetic search �Mitchell, Forrest
and Holland, 1991�. We use Royal Road func-
tions because we can pinpoint the effects of the
algorithm on specific building blocks and com-
pare them with the performance of the simple
GA �SGA� in Forrest and Mitchell, 1992 and
Mitchell, Holland and Forrest, 1994. Our inten-
tion here is to illustrate that random parameter-
based genetic algorithm �genetic algorithm with
the residual, GAR� is at least as effective as any
alternative with parameters which are known to
be efficient, while it does not require a search for
“good” parameters. Due to sufficient diversity
provided by random mutation, it also proved to
be effective where the simple GA was deceived
�Novkovic and Šverko, 1998�.

In our version of the algorithm, the GA itself
creates random parameters. The motivation be-
hind it is a plausible interpretation of non coding
segments �Novkovic and Šverko, 1997, 1998�,
whereby untranslated portions of the DNA are
viewed as providers of diversity, and thereby
a possible source of the improvement of the
species. The introns or nonsense codons create
“genetic residual”, i.e. the portions of genes
whose function is unknown in nature �see Berg
and Singer, 1992 for example�, but which we
interpret to produce variation of parameters for
genetic algorithm. Therefore, a part of string
representation of individuals in a population is
set to provide new random parameters in each
generation for each individual and it does not
affect the fitness value in any way. A version
of non coding segments widely used in the GA
literature, on the other hand, assigns to them
no function at all �Levenick, 1991, Forrest and
Mitchell, 1992, Wu and Lindsay, 1995, Wu,
Lindsay and Smith, 1994�. These applications
result in limited or no improvement of GA per-
formance with fixed building block represen-
tation. Wu and Lindsay, 1997, find non cod-
ing segments useful when applied with floating
building blocks, so we revisit non coding seg-
ments application in Section 3.

One last clarification may be in order: the
essence of the GAR is that it functions with

a set of random control parameters – both mu-
tation and crossover are executed at variable
rates from one mating pair of strings to the next
in each generation �Section 2�. This job may
probably be performed by any good random
number generator, but we want the GA to be
self-sufficient, and serve the purpose of both
the random number generator for the parame-
ters, and the customary search tool. It turns out
that the GAR so generated is usually more ef-
fective than the SGA, while it contains a much
simpler structure than more complex versions
of the GA with dynamic adaptive operators.

In this paper we wish to: a� illustrate the relative
performance of the GAR on “Royal Road” func-
tions �Mitchell, Forrest and Holland, 1991�;
b� examine the effect of potentially useful alter-
ations such as the non coding segments reported
in Mitchell, Forrest and Holland, 1991, Forrest
and Mitchell, 1992, Mitchell, Holland and For-
rest, 1994, and Wu and Lindsay, 1995; c� eval-
uate the combination of GR and elite selection
on Royal Road functions, given the effective-
ness of this combination in other applications,
and d� combine the GAR with a form of vari-
able string representation in order to aggregate
the positive impact of the floating building block
representation on GA search �Wu and Lindsay,
1997� with the positive impact of the GR.

The paper is organized as follows. Section 2 de-
scribes the algorithm. In Section 3 we compare
the SGA and the GAR versions on the Royal
Road problem, with and without the non-coding
segments. In order to assess the usefulness of
additional algorithm complexity, we then com-
bine the GAR with other GA refinements, some
of which were also applied by Mitchell, Hol-
land and Forrest, 1994 in their search of the GA
which would outperform hill-climbing: Section
4 deals with elitist selection, while Section 5
examines the effects of variable length repre-
sentation and a multiple point crossover. Con-
clusions follow in Section 6.

2. A Genetic Algorithm With the “Genetic
Residual” (GAR)

In this section we briefly reproduce the descrip-
tion of the structure of the GAR from Novkovic
and Šverko, 1998, with some refinements. In
addition to the standard operators – selection,
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crossover and mutation, the GAR incorporates
the “genetic residual” �GR� part of the chromo-
some. The GR is decoded separately, it does
not affect the fitness value, and it provides ran-
dom parameters for the algorithm. Essentially,
one can think of the GAR as two GA-s running
in parallel: one providing random probabilities
of crossover and mutation �the GR�, while the
other encoding the problem at hand – here re-
ferred to as the ’active’ part of the string.

The algorithm is a standard GA, with binary
representation of strings, proportional selection,
σ-scaling �Tanese, 1989, Forrest and Mitchell,
1992�, one point crossover, and mutation. Ini-
tial population is created randomly. Each string
of length L in a population of n strings contains

an “active” part of length l, and the residual of
length �L � l�, as illustrated by Figure 1.

The residual, GR, provides random parameters,
and is subject to crossover and mutation on its
own. It is decoded in two parts: alleles �l�1� to
�m� as the probability of mutation and �m � 1�
to �L� as the crossover probability. The length
of the GR depends on the computing abilities at
hand, as well as the desired increment for decod-
ing of the parameters1. Residuals are selected
randomly to the mating pool, independently of
the active string and, therefore, independent of
the fitness. Figure 2 illustrates the crossover of
the GR.

Crossover of the GR occurs with certainty �pc �
1�, while for mutation of this part of the string,

Fig. 1. Initial population of n strings is created at random. Each string of length L consists of the active part of length
l which is decoded according to the problem at hand, and the GR part of length �L� l� which provides the parameters

and is not problem-specific. Here, the GR includes the probability of crossover and the probability of mutation.

1 The length of GR used in all applications is 10 alleles, changing values with the increment of 1�1024. Fifteen alleles would
change the values by 1�32768 etc. We tested different lengths of the GR and there was no significant difference in performance
between the 10 alleles, or when we extended the chromosomes.
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Fig. 2. Crossover is applied to the GR part of the string with certainty. The decoded probability of crossover is then
applied to the active string and alleles are exchanged separately.

different probability of mutation is used for each
offspring – one from each parent’s mutation
probability, set in the range �0,1�. This range
is deliberately higher than the customary muta-
tion probabilities in the literature, since the GR
provides diversity.

For the active part of the string, selection into the
mating pool is proportional to the fitness value.
Once parents are selected, single crossover is
applied – the strings cross with probability pro-
vided by the GR of one of the parents, decoded
in the range �0,1�. The probability of mutation
for each child is used from each mate’s GR, in
the range �0,0.01�.

The enhanced algorithm �GAR� provides in-
creased diversity of the population by varying
control parameters in each run, as illustrated in
Section 3. This feature may not be intuitive,
considering the distribution of random parame-
ters is uniform. Even though statistically equal
to SGA with average �fixed� probabilities, the
GAR typically shows improvements over the
simple version of the algorithm. An impor-
tant advantage of the GAR over the SGA �and
other versions of enhanced GA used in the liter-
ature� is that parameter values are automatically
provided, doing away with search for the best
combination. To that extent, the algorithm is
universally applicable.

3. The GAR and the SGA With Non Coding
Segments

3.1. The SGA and GAR Compared

As an illustration of the GAR performance, we
use the Royal Road functions �Mitchell, Forrest
and Holland, 1991 and Forrest and Mitchell,
1992�, because they provide a convenient tool
for examination of the impact which the poten-
tially disruptive rates of crossover and mutation
of the GAR may have on the building blocks,
as schemas are explicitly defined in these func-
tions. We examine two functions, R1 and R2
�Figure 1, adopted from Forrest and Mitchell,
1992�, defined as

R�x� �
X

s�S

cs � σs�x�

with x representing a bit string, cs � order �s�
is the value assigned to the schema s, and σs � 1
if x is an instance of s, and 0 otherwise. In Fig-
ure 3, R1 is represented by schemas s1 through
s8, while R2 includes all 14 schemas.

We first run the generational SGA with one
point crossover to repeat the results of previ-
ous experiments, and then run the GAR with
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s1 � ����������������������������������������������������������������� c1 � �

s2 � ����������������������������������������������������������������� c2 � �

s3 � ����������������������������������������������������������������� c3 � �

s4 � ����������������������������������������������������������������� c4 � �

s5 � ����������������������������������������������������������������� c5 � �

s6 � ����������������������������������������������������������������� c6 � �

s7 � ����������������������������������������������������������������� c7 � �

s8 � ����������������������������������������������������������������� c8 � �

s9 � ����������������������������������������������������������������� c9 � ��

s10� ����������������������������������������������������������������� c10 � ��

s11� ����������������������������������������������������������������� c11 � ��

s12� ����������������������������������������������������������������� c12 � ��

s13� ����������������������������������������������������������������� c13 � ��

s14� ����������������������������������������������������������������� c14 � ��

sopt� ����������������������������������������������������������������

Fig. 3. Royal Road functions – an optimal string is broken up into eight building blocks. R1 �x� is computed by
summing the coefficients c1 to c8, while R2 �x� adds c1 to c14.

variable probabilities of mutation, as described
in Section 2, for comparative performance. The
following parameters are employed for SGA:
Population size 128, Probability of mutation
0.005, String length 64, Probability of crossover
0.7, Number of runs 200, Max. expected off-
spring 1.5. The above parameters are used for
the simple algorithm, with σ-scaling �Tanese,
1989, Forrest and Mitchell, 1992�, restricting
maximum expected offspring by any string to
1.5.

When we run the GAR version, σ-scaling re-
mains, and so do the population size and the
number of runs. String length now increases by
20 alleles for the GR, used for provision of ran-
dom parameters, which eliminates the need to
provide fixed parameters ex ante. Let us note,
however, that a larger population size would
produce better results for both versions of the
algorithm2, but to be consistent, we apply the
parameters used by Forrest and Mitchell, 1992.
As stated earlier, our intention is to illustrate
that a random parameter-based GAR is at least
as effective as any alternative with parameters
which are known to be efficient, with the advan-
tage that one does not have to search for those
parameters with the GAR.

The results are reported in Table 1 for the SGA,
and Table 2 for the GAR; the numbers in brack-
ets represent standard errors. For performance
criteria we use the number of generations re-
quired until the optimum is found �the number
of function evaluations is proportional to the
number of generations, so we omit it from the
tables�. Our results for SGA differ somewhat
from those obtained by Forrest and Mitchell,
1992 and Wu and Lindsay, 1995, most likely

R1-SGA
generations

R2-SGA
generations

Average 566 �21� 665 �25�
Std. Dev. 292 357
Median 514 616

Table 1. Generational SGA, one point crossover,
σ-scaling, based on Forrest and Mitchell 1992.

R1-GAR
generations

R2-GAR
generations

Average 440 �15� 469 �18�
Std. Dev. 210 260
Median 405 420

Table 2. GAR with σ-scaling.

2 We tested the population size 1024, to find that the SGA result improves three-fold and becomes comparable to that of the
GAR with equal population.
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due to differences in the program structure and
randomness of the GA search process, but to-
gether with the results in Table 2 they illustrate
our point: when the GAR is used, the algorithm

performance is on average better than with the
SGA with the reported very good parameters,
confirming the findings of some previous stud-
ies3.

Fig. 4. Evolution of schemas 1, 2, and 9. The intermediate level schema appears soon after both low-order schemas
are found. The number of schemas in the population varies much more than with the SGA �Forrest and Mitchell,

1992�, indicating lower stability.

Fig. 5. Evolution of schemas 3, 4, and 10. The intermediate level schema appears soon after schema 3 is present in
sufficient numbers �around 140 generations�.

3 In the context of other applications, such as the minimal deceptive problem in Goldberg, 1987, the GAR finds better solutions
than alternative GAs �Novkovic and Šverko, 1998�.
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Fig. 6. Evolution of schemas 5, 6, and 11. Schema 6 is found late in the run �288 generation� and lost until
rediscovered at the end of the run. This is the cause of prolonged search for the optimum.

Fig. 7. Evolution of schemas 7, 8, and 12. All three schemas appear very early and maintain presence, ever though
with high variability.

An illustration of the evolution of schema for
the GAR is given in Figures 4 to 7. The al-
gorithm found the optimum in 410 generations
in a single run, which is representative of any
other run on average.

The above figures illustrate that the GAR dis-
plays more variability in the numbers of schemas

it preserves relative to the SGA �Forrest and
Mitchell, 1992, Figure 3, p.116�. Decreased
stability compared with the SGA does not ad-
versely affect its overall searching ability. Like
the SGA, the search time of the GAR was pro-
longed by its inability to find one low-level
schema. The time to find intermediate level
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schemas is typically very short once the low-
order schemas are present. We conclude that
more variability brought about by the GAR
structure does not prevent “hitchhiking” �For-
rest and Mitchell, 1992�, but it may help find
schemas faster due to the potentially larger mu-
tation4 applied on some strings.

3.2. Non Coding Segments

Non coding segments are applied next, as in
Forrest and Mitchell, 1992, Mitchell, Holland
and Forrest, 1994 and Wu and Lindsay 1995.
We use them between each schema and of equal
length �8 alleles�. Forrest and Mitchell report
no improvement when non coding segments are
used. We reiterate their results in Table 3, while
Table 4 reports the results when non coding seg-
ments are added to the GAR version of the algo-
rithm, also demonstrating no significant change.
Further exploration of the combination of non
coding segments and diversity provided by the
genetic residual is needed, before any conclu-
sive results can be reported. If the intuition that
non coding segments restrain the disruption of
the crossover is correct �Forrest and Mitchell,
1992�, then the combination of this effect with

R1-SGA with
non coding
segments
generations

R2-SGA with
non coding
segments
generations

Average 704 �27� 662 �25�
Std. Dev. 380 350
Median 621 601

Table 3. The SGA with non-coding segments.

R1-GAR with
non coding
segments
generations

R2-GAR with
non coding
segments
generations

Average 438 �19� 454 �19�
Std. Dev. 270 274
Median 377 378

Table 4. The GAR with non-coding segments.

our potentially fairly disruptive operator �GR�
should be more effective than the introns com-
bined with the SGA. Even though the combi-
nation of the GAR with non coding segments
does not seem to be significantly beneficial with
Royal Road functions, one should not a priori
dismiss it in different problems.

4. The Elite Selection

Generally speaking, elite selection improves al-
gorithm performance �De Jong, 1975, Gold-
berg, 1989�. Various forms of elite selection
have been applied in the literature, most often
the one where the string with maximum fitness
is given a 100% chance of survival, i.e. it is
carried to the next generation in one or more
copies. Elite selection is used to avoid losing
good solutions to disruptive operators. In prob-
lems of different nature �Novkovic and Šverko,
1998� random parameter setting was combined
with the elite selection, which improved GA
performance, as expected. We want to see how
the elite selection affects the GAR here, given
that in Novkovic and Šverko, 1998 it proved
to smooth the approach to the optimum and
decrease diversity of the population, offsetting
added population variance caused by mutation.
With Royal Road functions, low-order schemas
are known ex ante, and fitness measure depends
on their appearance in the string. Elite selec-
tion which preserves the string with maximum
fitness to date does not prove exceptionally ef-
fective on these functions, as it does not prevent
the disappearance of low-order schemas from
the population, even though it improves the re-
sult somewhat. See Table 5.

R1-GAR with
elite selection
generations

R2-GAR with
elite selection
generations

Average 339 �12� 354 �13�
Std. Dev. 172 180
Median 307 316

Table 5. GAR with elite selection, preserving the string
with maximum fitness for the next generation.

4 Even though mutation may be the same on average, with the GAR some strings will be exposed to high mutation, while others
to low, rather than all to an equal �average� rate, thereby producing different mating pairs in consecutive generations. For example,
two strings, one with pmut � 0, and the other with pmut � 1, will not produce the same mates as two strings with pmut � 1�2.
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While two strings may have equal �maximum�
fitness, they may contain different low-order
schemas, one of which is scarcely present in
the population and as such is more valuable for
formation of high order schemas. Mitchell, For-
rest and Holland, 1991 report that the waiting
time for intermediate-level schemas to appear
in the population is prolonged by loss of lower-
level schemas. Assigning flat fitness value to
s1–s8 will not prevent loss of relatively scarce
low-order schemas in the population. The prob-
lem perseveres with the GAR, as illustrated in
Section 3. Yet, one can make a case that the
approximate 20% improvement in performance
is worth applying the elite selection5. Still,
a more appropriate form of elite selection for
Royal Road functions would preserve a copy
of each schema as it appears, but this kind of
elite selection cannot be used in general, as we
typically do not have prior knowledge about the
placement of the schema. Mitchell, Holland
and Forrest, 1994 create the “idealized genetic
algorithm”, IDA, making use of a similar elitist
selection, with the aim to construct a type of
GA which will outperform hill-climbing algo-
rithms. It is no surprise then that a GA with this
kind of string preservation does well. We added

R1-SGA with
idealized
elite selection
generations

R2-SGA with
idealized
elite selection
generations

Average 457 �19� 525 �23�
Std. Dev. 279 328
Median 402 443

Table 6. SGA with the “idealized” elite selection which
preserves each low-order schema once it appears in the

population.

R1-GAR with
idealized
elite selection
generations

R2-GAR with
idealized
elite selection
generations

Average 139 �8� 194 �8�
Std. Dev. 109 115
Median 97 163

Table 7. GAR with the “idealized” elite selection,
preserving each low-order schema once it appears in the

population.

this feature to both the GAR and the SGA, to
conclude that this “idealized” variant benefits
the GAR more. Tables 6 and 7 illustrate.

An observation can be made that the elite se-
lection adds efficiency to GA, but fixed control
parameters of the SGA, which were extremely
good for the original version, are no longer ap-
propriate. The parameters used in Forrest and
Mitchell, 1992 were, arguably, optimal for a
given population size, but with addition of the
elitist selection the problem changed and an-
other set of “optimal” parameters is required
to improve the algorithm performance. This
is exactly what can be avoided with the use of
random parameters, as in the GAR.

The form of elite selection presented above was
motivated by the loss of low-order schemas
from the population. Although unusable in gen-
eral, its inclusion here improves the chances that
the algorithm will capitalize on the presence of
low-order schemas in the population. Interme-
diate level schemas may, however, still disap-
pear and defer finding the optimum. Of course,
one can combine different types of elitist selec-
tion with the GAR. With Royal Road functions,
fitness is assigned to parts of the string, and
we use that information. In practice, differ-
ent fitness assignment will be relevant, and one
should use whatever information is available to
preserve the most valuable individuals in future
generations. In general, if it does not help, elite
selection with preservation of strings with max-
imum fitness does not hinder the performance.

5. Variable Length Representation

Unless elite selection �Section 4� is used, GA
performance is impeded by the loss of low level
schemas, even after they initially appear in the
population. We observed that most often only
one low level schema is missing for a prolonged
time, extending the time required to find the best
solution. When elite selection is applied, inter-
mediate level schemas may still disappear. This
motivated us to consider variable building block
representation �Wu and Lindsay, 1997�. Our
version of floating representation is less com-
putationally demanding than in Wu and Lind-
say, but it suits well the Royal Road function

5 We obtain an improvement of similar magnitude for SGA �22% for R1 and 14% for R2�.
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representation. We add one tail segment to the
string, essentially creating a ring representation
connecting the string head to tail. The algo-
rithm checks for fitness of eight 8-tuples, clos-
ing the circle and sliding down one allele to
repeat the process. This one-bit slide proved
to be more efficient �by about 30%� than the
8-tuple �schema� slide, so this is what we use
here.

We first look at a zero-length tail segment, i.e.
we close the original string �64 alleles� in a cir-
cle, and we witness a change from the original
mean of 469 generations for R2 �Table 2� down
to 369 generations. Improvement could be ex-
pected, since more information is contained in
the variable representation of building blocks,
even this simple – the GA explores the overlap-
ping bits seven more times than before. Tables
8 and 9 illustrate results for the GAR with vari-
able representation when a tail with 8 bits is
added vs. when 64 bits are added to the original
64-bit string.

While extending the genome length by eight
bits improves the average performance, longer

R1- 72 bit
string
generations

R2- 72 bit
string
generations

Average 139 �5� 199 �8�
Std. Dev. 72 117
Median 122 161

Table 8. GAR with variable building block
representation. Eight alleles are added to the string in a

ring representation.

R1- 128 bit
string
generations

R2- 128 bit
string
generations

Average 269 �11� 402 �16�
Std. Dev. 151 228
Median 229 360

Table 9. GAR with variable building block
representation: 64 alleles are added to the string in a

ring representation.

string representation does not benefit it as much.
The reason is that we just transform fixed build-
ing block representation, since the low order
schemas still have to be together in a block
for the best performance. As the string length
increases, the role of crossover operator de-
creases, as it becomes more difficult to obtain a
more fit combination of schemas from different
mates when their building blocks are potentially
far apart. We therefore conjecture that multiple
point crossover is necessary when longer strings
are used �Spears and De Jong, 1991, Schaffer
and Eshelman, 1991�. We first isolate the ef-
fect of a multiple crossover on a 64-bit string.
While more than one crossover point increases
GA efficiency, there is little difference in results
if a fixed number of crossing sites are selected,
or if each mating pair is exposed to randomized
selection of the number of sites, when a differ-
ent number of crossing points �between 1 and
the number of 8-tuples in the string� is selected
for each pair of mates. The first three rows in
Tables 10 and 11 illustrate this point for R1 and
R2, respectively.

R1
crossing sites 2 4 8 Random
No NCS
Average 310 �12� 269 �14� 283 �11� 317 �12�
Std.dev 183 198 162 179
Median 275 210 245 262
With NCS
Average 308 �13� 330 �15� 398 �16� 381 �16�
Std.dev 184 223 229 235
Median 259 262 333 339

Table 10. A multiple point crossover on R1. Mean, standard deviation and median for GAR without non coding
segments – NCS �first 3 rows, 64 bits� and with non coding segments �last 3 rows, 128 bits�. Number of crossing

sites 2, 4, 8, or randomly selected.
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R2
crossing sites 2 4 8 Random
No NCS
Average 341 �14� 335 �14� 328 �12� 350 �13�
Std.dev 200 204 181 196
Median 296 271 285 300
With NCS
Average 334 �15� 338 �14� 449 �19� 414 �18�
Std.dev 223 200 275 259
Median 287 281 376 354

Table 11. A multiple point crossover on R2. Mean, standard deviation and median for GAR without non coding
segments �first 3 rows, 64 bits� and with non coding segments �last 3 rows, 128 bits�. Number of crossing sites 2, 4,

8, or randomly selected.

R1
crossing sites 1 Random
No NCS
Avg 1170 �135� 187 �24�
Std. dev 958 172
Median 904 151
128- NCS
Avg 208 �20�
Std. dev 146
Median 194

Table 12. The impact of a multiple point crossover on
R1 with string length 1024 bits �the first 3 rows�.
Addition of non coding segments �the last 3 rows�

doubles the string length to 2048 bits.

The bottom three rows of Tables 10 and 11 show
the results of implementation of multiple cross-
ing sites on strings with non coding segments
�total genome length is 128 alleles�. Addition
of non coding segments and a large number of
crossover points �8 or random� is less effective
than a smaller number of crossing sites �2 and
4�. When string length increases due to addi-
tion of alleles which can translate into fitness,
large number of crossing sites becomes the most
effective.

Tables 12 and 13 illustrate. The first three rows
of Table 12 show the mean, standard deviation
and the median for one crossing site and for a
random number of crossing sites on R1 �1024
bit string length�. When NCS are added, the
string length doubles, but the GA is equally effi-
cient as with 1024 bits and a multiple crossover.

R2
crossing sites 1 16 128 Random
No NCS
Avg 858 �87� 248 �19� 193 �10� 183 �14�
St.dev 620 139 76 99
Median 738 219 175 153
128- NCS
Avg 305 �29�
St dev 206
Median. 258

Table 13. The impact of a multiple point crossover on R2 with string length 1024 bits �the first 3 rows�. Addition of
non coding segments �the last 3 rows� doubles the string length to 2048 bits.
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Table 13 shows similar results for R2. Large
string representation without non coding seg-
ments is extremely efficient when combined
with a multiple point crossover. The addition of
non coding segments to a long string does not
significantly hamper the results.

6. Concluding Remarks

In this paper we present the GAR version of
a genetic algorithm, where non translated por-
tions of the DNA provide random control pa-
rameters, and we apply it to Royal Road func-
tions in order to capture the effect of random
parameters on schema processing. The GAR
varies the probabilities of mutation and cross-
over, rather than use fixed parameters, and rather
than invest in search for optimal parameter set-
ting, which is costly and ambiguous. The GR
�genetic residual�part of the genetic makeup en-
sures that the performance of the GA does not
depend entirely on the programmer’s ex ante
choice of control parameters �probabilities of
crossover and mutation, in particular�. Due to
potentially high mutation, GAR proves most ef-
ficient when combined with elitist selection.

We also investigate the impact of non coding
segments and variable string representation on
the algorithm to conclude that the former are not
exceptionally effective with Royal Road func-
tions. Variable string representation, on the
other hand, has a positive effect on algorithm
performance, particularly if shorter strings are
used. When long strings are created, the mul-
tiple point crossover improves the speed of
search. Contrary to findings by Wu and Lind-
say, 1997, inclusion of non coding segments in
variable string representation has the same ef-
fect as with fixed representation, but this may
be a result of our version of the variable string
length.

It is clear that the population diversity brought
about by varying of the control parameters thro-
ughout the runs is likely to improve the GA
performance. But, more importantly, there is
no need to conduct search for successful pa-
rameter setting prior to GA application. Com-
bined with some exploitation-inducing opera-
tor, such as elite selection, the GAR produces
excellent results and can be safely used for ef-
ficient search. One can combine other helpful

alterations to increase the speed of search of the
algorithm. Further research should illuminate
the most successful combinations, as well as
their shortcomings.
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