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Shortest Pathsin Triangular Grids
with Neighbourhood Sequences
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In this paper we analyse some properties of the triangular
and hexagonal grids in the 2D digital space. We define
distances based on neighbourhood relations that can be
introduced in these grids. We present an algorithm,
which calculates the distance from an arbitrary point to
another one for a given neighbourhood sequence in the
triangular grid. Moreover, this algorithm produces the
shortest path between these points.
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1. Introduction

Digital geometry is an important part of theoret-
ical image processing. In digital geometry the
spaces we work in consist of discrete points with
integer coordinates. Consequently, we define
distance functions which take integer values.

In the first period, mainly the square grid was
investigated, since this is the most usual space
in image processing. One of the first results
was the introduction of neighbourhood rela-
tions among the points defined by Rosenfeld
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and Pfaltz [17]. They gave two types of mo-
tions in the 2D square grid. The cityblock mo-
tion allows horizontal and vertical movements
only, while at the chessboard motion the diago-
nal directions are also permitted. So, based on
these motions, in this grid we have two kinds
of distances. Figure 1 shows a point together
with those points, which have distance 1 from
it. Both cityblock and chessboard distances are
shown. In [11,16] there is a short summary of
examination of the square grid. In the case of
square grid, each coordinate value of a point is
independent of the others. In n dimension we
use n coordinates. In the n dimensional cubic
grid the structure of the nodes is isomorphic to
the structure of the n dimensional cubes. The
grid of nodes, and the grid obtained by rep-
resenting each cube with its central point, are
identical within a shift. So, the dual (a well-
known concept of graph theory) of the square
grid is a square grid as well. In Figure 1 both
options are shown.

In [18], Yamasita and Ibaraki and in [2], Das,
Chakrabarti and Chatterji introduced the con-
cept of (periodic) neighbourhood sequences,
which gives us the possibility to mix the city-

Fig. 1. *Cityblock’ and ’chessboard’ neighbourhood relations in the square grid of nodes and of regions.
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block and chessboard motions. In [7], the au-
thors extend this theory to infinite sequences,
which need not be periodic. In this paper we use
similar generalised neighbourhood sequences.

There is wide literature about the neighbour-
hood sequences in the square grids ([1-5,7,15]).
We can extend the definition of types of neigh-
bours to other grids too. We can assume that two
geometrical objects (of the same dimension as
the space where we are) are neighbours of each
other if there is at least one point which is on
the border of both. Two geometrical objects are
neighbours of type m (or shortly, m-neighbours)
if we can make msteps from one to the other in
such a way that in each step we step through a
border line of the two objects.

In the following sections we restrict our analysis
only to 2D spaces, especially to the hexagonal
and triangular grids. The hexagonal grid is also
widely investigated. One of the first papers
about the hexagonal plane is [10], in which the
name ’rhombic array’ was introduced. There
is a natural neighbourhood relation in this grid
and it is used almost every time. In [9] the dis-
tance based on this neighbourhood relation was
calculated with two independent coordinate val-
ues. Because of the symmetric properties of the
grid, in [8] the description uses three coordinates
which have zero sum. In many applications the
hexagonal grid seems to be more useful than the
square grid (for example see [6]). The dual of
the hexagonal grid is not hexagonal, but trian-
gular. This is the reason why we examine these
grids parallelly. The grid of triangular nodes is
isomorphic to the grid of hexagonal areas. We
investigate these — so-called hexagonal — grids
in Section 2.

The triangular grid is the third "basic grid". It
also has triangular symmetry, therefore three
coordinates are recommended to examine this
system, as we show here. There are three kinds
of neighbours of each point in this grid (see
[6]). We present a suitable method to formulate
the concept of neighbourhood sequences in the
triangular grid. We give an algorithm which
finds the shortest path between arbitrary two
points. The grid of the triangular areas (the so-
called triangular grid) is isomorphic to the grid
of hexagonal nodes. We analyse their properties
in Section 3.
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Fig. 2. The connection between the triangular and the
hexagonal grids.

Summarizing, in this paper we study the tri-
angular and the hexagonal grids which are the
duals of each other (see Figure 2).

2. The Hexagonal Grid

We need to overview some results about the
hexagonal grid, mainly the techniques we will
use for the triangular grid. In this section we re-
call some previous results, for instance from [9].
However, we use a different approach from [8],
which also provides a suitable way to represent
the triangular grid.

2.1. Basic Definitions

It is well known that the grids of hexagonal are-
as and triangular nodes are duals of each other.
We prefer to use the term hexagonal grid instead
of triangular grid of nodes. In digital image pro-
cessing the neighbourhood criterion, illustrated
in Figure 3, is used almost uniquely, since this
is the most natural for a human observer. This
neighbourhood criterion was investigated, for
example, in [8,9] and in [6].

By the formal definition, two objects are neigh-
bours

— in the grid of triangular nodes: if there is a
direct connection between these nodes,

— in the grid of hexagonal areas: if these

hexagons have a common side.

In Figure 3 we can easily prove that every object
has six neighbours.
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Fig. 3. Neighbours in the hexagonal grid of areas and in the triangular grid of nodes.

We introduce the coordinate system in the same
way, as it was given in [8] for nodes of the tri-
angular grid. We consider the hexagonal areas
as points and assign three coordinate values to
them, to reflect the geometrical symmetry of
the grid. The necessity of this procedure is to
be able to mathematically handle this hexago-
nal structure, for example to calculate numeri-
cally the distance between two objects. Figure
4 shows the result of this procedure.

Fig. 4. Coordinate values on the hexagonal grid.

The following procedure helps us to make this
assigning.

Procedure 2.1.1. Choose a point for the ori-
gin, whose coordinatevaluesare (0, 0, 0). Then
fix three coordinate axes as lines crossing the
centre of the origin which are orthogonal to
its two sides. The direction of the axes X, Y,
and z are taken as 0°, 120° and 240° , re-
spectively. We assign the coordinate values
to the points inductively. If the coordinates

of a point are (a1, ap, az), then let the coor-
dinates of its neighbour in the direction x be
(a1+1, ap, a3— 1), and inthe oppositedirection
(g — 1,ap, a3 + 1). Smilarly in the direction
ofy (g —1,a + 1, a3), and in the opposite
directionofy,itis(a; + 1, ay — 1, ag). Accord-
ing to the way the coordinates are introduced,
moving in the direction z, the coordinate values
are (a;,ay — 1,a3 + 1), and to the opposite
direction (a;,a + 1,a3 — 1).

The sum of the coordinate values of every point
is 0, so there are only two independent values,
any of them is removable. In [9] the authors use
only two independent coordinates. The coordi-
nate value z is used only to preserve symmetry.
Two points are neighbours if any of their coor-
dinate value is the same, and the differences of
the other two corresponding coordinate values
are +1.

Definition 2.1.2. By a step we mean moving
from one point to a neighbouring point. A path
isa sequence of points, such that each point (ex-
cept thefirst one) isa neighbour of the previous
one. Thefirst element isthe starting point, and
the last element is the end point. The length of
the path is the number of stepsin the path (it is
less by 1 than the number of pointsin the path).
The distance between two pointsisthe length of
a shortest path between them.

Since we consider only one type of neighbour-
hood relation, the concept of neighbourhood se-
guences coincides with that of the paths. We
introduce only one hexagonal distance, based
on the neighbourhood criterion at each step.
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Fig. 5. Examples for lanes on the hexagonal grid.

Definition 2.1.3. The sequence of objects,
for which a coordinate value remains constant,
formsalane.

A line including hexagons of a lane only is pa-
rallel to one of the coordinate axes.

2.2. Finding the Shortest Path

In [9] a formula was given to calculate the dis-
tance between two points of the hexagonal grid
represented by two independent coordinates.
Now we give an algorithm, which produces the
shortest path between two arbitrary points of the
hexagonal grid. Our procedure is natural, and it
uses our definition of lanes.

Procedure 2.2.1. Let us consider two points
and take the absolute values of the differences
between their corresponding coordinates. If
they haveequal corresponding coordinates, then
we go along the lane, for which this coordinate
valueremainsconstant. If all corresponding co-
ordinate valuesare different, then there are two,
whose absol ute differences are smaller than the
third. (If the third, the greatest, is equal to an-
other, then since the differences have zero sum,
there must be coinciding corresponding coordi-
nate values.) So in thiscase, we go along those
two lanes, where the coordinates, which have
smaller absolute differences, remain constants.
First, we go along thelane where one of the two
smaller valuesis constant, until the other coor-
dinate reaches its destination value. Then we
take thelane where the already fixed coordinate
remains constant until we reach the destination
point.

The procedure 2.2.1 shows an algorithm which
can solve the minimal path problem in case of

hexagonal grid. Using this algorithm we can
easily calculate the length of the shortest path.
The path-length is the largest of the absolute
values of the difference of the corresponding
coordinates. Hence, the length of this shortest
path is the known distance [9]. (Our statement
about the calculation of distance is equivalent
to the main proposition in [9].)

The distance introduced above is close to the
Euclidean distance. If the Euclidean length of
a side of the hexagon is 1, and the hexagonal
distance between two points is k, the Euclidean
distance to the centre of these hexagons is be-

tween 1.5k and v/3k.

3. The Triangular Grid

3.1. Introduction

The grid of triangular areas is equivalent to the
grid of hexagonal nodes. In this section, we use
triangular areas. It is the so-called triangular
grid. We define three types of neighbours on
the triangular grid (as in [6]), shown in Figure

Each triangle (not considering the original one)
has three 1-neighbours, nine 2-neighbours (the
1-neighbours, and six more 2-neighbours), and
twelve 3-neighbours (nine 2-neighbours, and
three more 3-neighbours). In Figure 6, for
hexagonal grid of nodes we use the dark grey
points to represent the 1-neighbours. With these
points the light grey ones are the 2-neigbours,
and with them the white points are the 3-neigh-
bours. (Only the 1-neighbours are directly con-
nected by a side, the 2- and 3-neighbours are at
the positions of diagonals, respectively.)
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Fig. 6. Types of neighbours in the triangular grid of areas and in the hexagonal grid of nodes.

For similar reasons as in the case of the hexago-
nal grid, we use three coordinate values to rep-
resent the triangles, see Figure 7. The triangles
are called points. This coordinatization (proce-
dure 3.2.1) plays a very important role, because
it is the main tool to get concrete results.

z x
-1=1,3/ \0,-1,2 1,-1.1 2.-1,0
-2,-1,3N /-1,-1:2\ /0,-1,1 1,-1,0 +<1,-1
-2,0.3/5\-1.0,2 0,01 1,0,0-7N\2.0,-1
-2,0,2N /-1,0,1 0; 06 1,0,-1\ /2,0,-2
21.2/8-1,11 0,1,0 1.1.,-1/5\2,1,-2
3,128 /271018 /-1.1,0 0,1.-1 1,152
-3,22/5\-2.2.1 -1,2,0/M0,2,-1 1,2,-2
-3,2,1 -2,2,0\ /-1.2.- 0,2,-
¥

Fig. 7. Coordinate values on the triangular grid.

3.2. Basic Definitions

In order to reach the aims formulated in the
introduction, we give the basic definitions and
notation. First, we show how the coordinate
values are assigned to the points of the grid.

Procedure 3.2.1. Choose a point for the ori-
gin, whose coordinatevaluesare (0, 0, 0). Take
the three lines through the centre of the origin
triangle, which are orthogonal to its sides. Fix
these lines as the coordinate axes x, y and z, as
shown in Figure 7. We assign the coordinate
values to the pointsinductively. Let the coordi-
nate values of a triangle A be known. Consider

a triangle B, which has not coordinate values
yet and has a common side with A. This com-
mon side is orthogonal to one of the coordinate
axes. According to the direction of thisaxis, we
increase or decrease the corresponding coordi-
nate value of A by 1 to get the corresponding
coordinate of B. The other two values of A and
B are equal.

Figure 7 shows the result of the previous proce-
dure, which uniquely determines the coordinate
values of the triangles, as we will show later.

Using our coordinate values we can describe
the neighbourhood relation. Let pand g be two
points of the triangular grid. The i-th coordinate
of the point pis indicated by p(i) (i = 1, 2, 3),
and similarly for g. Then the points p and g are
m-neighbours (m = 1, 2, 3), if the following
conditions hold:

Ip(i) —q(i)] < 1,forl <i <3,
Ip(1)—q(1)|+[p(2)—a(2)[+|p(3)—q(3)| < m.

Definition 3.2.2. The points, which have the
same value for a corresponding coordinate,
formalane.

Observe that each lane is orthogonal to one of
the coordinate axes. For the points of a lane a
coordinate value is fixed. The other two values
change by +1, respectively.

The points and their coordinate values are as-
signed by a one-to-one mapping. Using the
concept of lanes we can see it in the following
way. Let us fix two coordinate values. They
define two non-parallel lanes, whose intersec-
tion contains two points. The third coordinate
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Fig. 8. Examples for lanes in the triangular grid.

values of these points should fulfill the require-
ment that the sum of the coordinates is 0 and 1,
respectively.

Therefore we have two types of points accord-
ing to the values of the sum of its coordinates.
If the sum is O, then we call the point even, if
the sum is 1, then the point has odd parity. In
our figures the even and odd triangles are of the
shape A and V, respectively.

We can see that if two points are 1-neighbours,
then their parities are different. If two points
are 1-neighbours, then there are two lanes con-
taining both of them. If two points are 2-
neighbours, but not 1-neighbours, then only one
lane contains both of them. If two points are 3-
neighbours, but not 2-neighbours, then no lane
contains both of them.

Definition 3.2.3. The infinite sequence B =
(b(i))Pe,, withb(i) € {1,2,3} foralli € N, is
called a neighbourhood sequence. If for some
I € N, b(i) = b(i+1) holdsfor everyi € N, then

/NENINLN/ N
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B iscalled periodic, with period |. In this case
we use the short formB = (b(1), ..., b(l)).

For example, let By = (1,1,2) and B, =
(1,3,1,2,2). Then By is periodic with period 3,
while B, is non-periodic. (We use the notation
x to represent the repetition of items.) Now we
show how one can use such sequences to define
distances in the triangular grid.

Definition 3.2.4. Let p and g be two points
and B a neighbourhood sequence. The point se-
quenceTIl(p, g; B) of theformp= po, p1, - - -, Pn
= g, where pi_; and p; are b(i)-neighbours for
1 <i < h,iscalledaB-path fromptoq. The
length of thispathish. The B-distance fromp
to g is defined as the length of the shortest path,
and is denoted by d(p, g; B).

In Figure 9 there are some paths given between
the points p = (—3,2,1) and q = (2, —-1,0)
by the help of the previous B; and B,. As we
can see, there are paths with different lengths
between the points. On the left-hand side of
Figure 9 we show two paths with the neigh-
bourhood sequence By, one of them has length
10 and the other has length 7. The points of the
paths are represented as dashed and dotted fig-
ures. The numbers in the triangles refer to the
steps of the given path. Similarly, in the right-
hand side of the figure, we show other paths,
using By, of lengths 5 (it is the shortest path)
and 10 between the same points.

Remark 3.2.5. The distance of two points
is independent of the chosen neighbourhood
sequence if and only if they are at most 1-
neighbours.

AVAVAVAV

Fig. 9. Paths of different lengths from pto q using B; and B,.
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If the points are the same, then the distance is
0, and we do not need any step. If there is only
one difference in the coordinate values, and it
is 1, then we can step from one point to another
with any kind of neighbouring criterion, there-
fore their distance is 1. It is easy to show that
in any other case the neighbourhood sequences
B1 = (1) and By = (2) define different dis-
tances.

Definition 3.2.6. Let p, g be two points. The
difference w = (w(1), w(2), w(3)) is defined
for the points p and g, in the following way:
w(i) = p(i) —q(i). fw(l) +w(2) +w(3) =0,
then the parity of w is even, otherwiseit is odd.

We can define the distance between points and
lanes, which depends only on these objects and
is independent of the neighbourhood sequences.
The distance of a point and a lane is the min-
imal number of lanes in which we have to go
through to reach the point from the lane. We
can calculate this distance with iteration.

Procedure3.2.7. Thedistancebetweenthelane
A and the point p is zero, if p is on the lane A.
The next parallel lanes of the lane, which con-
tainsthe point p, havedistance 1 fromp. Letthe
distance of the lane B and p be d. Then the next
parallel lane with B, — which has not distance
d — 1 fromthe point p—hasdistance d + 1 from

p.

If the distance of the lane A and the point pisd,
then starting from p we can reach some points
of Ain the d-th step by using the constant neigh-
bourhood sequence (2).

AN
A
A

/\

Fig. 10. An Example for a parallelogram between two
points.

As in Procedure 2.2.1 in the hexagonal case, us-
ing one or two lanes we can get from one triangle
to any other one. In the latter case, the angle of
these lanes can be chosen to be 120°. (In one of
these lanes, the coordinate value which has the
smallest absolute value in the difference w of
the points remains constant and in the other the
coordinate value which has the second largest
absolute value in w is fixed.) Generally, we
obtain a parallelogram, see Figure 10.

3.3. The Shortest Paths

In the triangular grid of areas, we have some
difficulties in changing the coordinate values.
Such difficulties do not occur in cases of the
hexagonal and square grid. In the triangular
grid, when moving from a point to one of its
neighbours, we have to take care about the par-
ity of these points. Namely, we have to change
the coordinates of a point in such a way that the
sum of the coordinate values is 0 or 1.

Now we give an algorithm, which solves the
problem of constructing the shortest path be-
tween two given points. We prove that the al-
gorithm is correct, i.e. that it finds the shortest
path from the first point to the other one.

Algorithm 3.3.1.

Input: two points p, g; a neighbourhood se-
quence B.

Output: one of the shortest paths IT from pto q,
using B.

STEP 1 Let w be the difference of q and p

(w(i) = q(i) — p(i), T = 1,2,3). Letxo = p,
IT=xpandj=0.

STEP2 Ifw(i) =0 (i =1,2,3),thengoto
step 11.
STEP3 Letj=j+1 Lethi(i=123)bea

permutation of (1, 2, 3), such that |w(hy)| >
w(ho)| > [w(hg)|, and sgn(w(hy)) # sgn
(w(hg)).

STEP 4 If b(j) = 1, then if x;_1 is even/odd,
change by 1 the positive/negative one from
w(hy) and w(hy), respectively:

w(hi) = sgn(w(hi))w(h;) — 1|, where i =1 or
2; go to step 8.
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STEP5 Ifb(j)=2,thenletw(h;)=sgn(w(hy))
[w(hy)—1] andw(hy) = sgn(w(hy))[w(hz)—1[;
go to step 8.

STEP 6 If the parity of xj_; is even, and w
has two coordinates with positive values, then
let w(i) = sgn(w(i))w(i) — 1| (i = 1.2,3),
else let w(hy) = sgn(w(hy))/w(hy) — 1| and
w(hz) = sgn(w(hz))|w(hy) — 1].

STEP 7 If the parity of xj_; is odd, and w
has two negative coordinate values, then let
w(i) = sgn(w(i))|w(i)—1| (i =1, 2, 3), else let
w(hy) = sgn(w(hy))|w(hy) — 1f and w(hp) =
sgn(w(hz))[w(hz) — 1].

STEP8 Letx(i)=q(i) —w(i) (i=1,23).

STEP9 Concatenate x; to the path II.

STEP 10 Go to step 2.

STEP 11 The output is IT. The length of the
path isj. End.

Now we give a detailed description of the algo-
rithm.

In Step 1, we initialise the algorithm: p is the
starting point, p = Xq is the first element of the
path IT which contains xg only, w is the differ-
ence between the last point of IT and g. The
length of the path | starts from O.

In Step 2, we check whether we have finished or
not. If yes, we go to Step 11, where the output
values are given, and the algorithm terminates.

In Step 3, we increase the length of the path
j, and order the elements of the difference w.
First, suppose that among these elements, there
is one, with the largest absolute value. In this
case, this element has opposite sign from the
others, or some of the others are equal to zero.
If two elements have the same absolute value,
and the third one has smaller absolute value,
then the two elements with larger absolute val-
ues have opposite signs. Then the third element
must be 0 or +1, because of the restriction of
the sum of the coordinates of w. Hence the per-
mutation satisfies our conditions. If all the three
elements have the same absolute value, then this
value must be 1, and their sum is +£1. Hence
the permutation can be made in every case.

As we mentioned at the end of subsection 3.2.
and showed in figure 10, we can connect points
Xj and g by two lanes and we have a parallelo-
gram. If we can move to a 1- or a 2-neighbour

of x; then we make this step on the lane which
goes through x; and is closer to q.

We use Step 4 if we move to a 1-neighbour. In
this case we can move from xj_; to a point of
different parity. We decrease by 1 one of the
absolute values of the first two elements of the
permutation of w. If x;_1 is even, then the sum
of the elements of w iIs 1, if q is odd, and the
sum of the elements of w is O if g is even. Since
w has a non-zero element, w(hy) or w(hp) must
be positive, as well. So we can change this po-
sitive value. If xj_; is odd, then the sum of the
elements of wis —1 if qis even, and the sum of
the elements of wis 0 if qis odd. Since w has a
non-zero element, w(hy) or w(hy) must be neg-
ative as well. So we can change this negative
value. Thus, at this step we get closer to gin a
coordinate by 1.

Let us consider step 5. If we can move to a 2-
neighbour of x;_1, we have two options. First,
if there is only one non-zero element of w, then
it must be +£1, so we change this element to
0. In the other case, the first two elements of
the permutation have opposite signs, hence we
move from x;_1 to a point of the same parity, by
changing these two values.

In Steps 4 and 5 we step in the lane less distant
from the destination point. We can decrease
the higher absolute values in w, but if we can
move to a 3-neighbour, then we step in the lane
in which we can decrease the higher absolute
values in w, and if possible we step to the next
parallel lane which is closer to the end-point.
So if we move to a 3-neighbour of x;, then if
possible, we step to the point which is in the
intersection of two lanes which are closer to g
than the previous ones. (This point is on the
next lanes as x;.) If it is impossible, we move
to a 2-neighbour of x;. We describe these cases
below.

We use Step 6 or Step 7 if b(j) = 3, so we move
to a 3-neighbour of xj_;. If the parity of xj_;
is even (Step 6), then we may step to an odd
point and change all its coordinates by 1, if w
contains two positive and one negative values.
If X;_1 has odd parity and w contains two nega-
tive and one positive values, then we step to an
even point by changing every coordinate value
by 1. If w does not allow us to do so, we can
step only to a 2-neighbour, like in Step 5.
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|w i wh) [whp)  [whs) [b() [ x |

(=3,4,-2) |0 — - — - (3, —4,2)

(-3,4,-2) |1 y:4 x:—=3 z:-2 2 (2, -3,2)

(-2,3,-2) |2 y:3 X:—=2 z:-2 3 (1, —2,1)

(-1,2,-1) |3 y:2 x:—1 z:-1 1 (1, -1,1)

(-1,1,-1) |4 x:—1 y:1 z:-1 3 (0,0,0)

Table 1. Construction of a shortest path to example 3.3.2.

In Steps 8 and 9 the algorithm calculates the  Proof. Let p = VYo, VY1,...Ym = ( be a B-
coordinates of x;, by using the values of w, and  path, and fori = 0,...,mputv; = (g(1) —
adds x; to the path IT (w is the difference of g y;(1), q(2)—vyi(2), ( ) yi(3))and h; = |yi(1)—
and xj). q(1)]+yi(2 ) q(2 >|+|y|( )—0q(3)]. Similarly,

Step 10 guarantees the repetition of the proce-
dure, starting from Step 2.

The next example shows, how the algorithm
works in practice.

Example 3.3.2. Let p = (3,-4,2) and q =
(0,0, 0) be two points, and B = (2, 3 1 3)a
nei ghbourhood sequence. Table 1 shows how
the values change during the algorithm. The
notations used in Table 1, are introduced in Al-
gorithm3.3.1. Thefirst row of thetable contains
the initial values of the algorithm. Every row
contains values obtained after moving to the
next neighbour. The shortest path is presented
in Figure 11.

Theorem 3.3.3. Algorithm 3.3.1 provides the
shortest path.

34,2 o 4,41

143/%&

1,33/N\2,-3.2/ \3,3,1/\4,-3,0
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3,0,-2

-1,0.2 0.0.1 1.0,0 2,0,-1

0

£1,0,1 5 /0,0,0 \ /1,0,-1% /2,0,-2

Fig. 11. The shortest path in Example 3.3.2.

for the path provided by the algorithm (p =

X0, X1, - . . Xn = Q), letw; = (q(1)—xi(1), q(2)—
xi(2),q(3) — xi(3)) and gi = [xi(1) —q(1)| +
Xi(2) —a(2)] + xi(3) —a3) (i=1,...,n).

We show that g; < h; forall i < min(m, n). We
use induction. For i = 0 we have gy = hg, so
our assumption holds. Suppose that g < h;.
We prove that giy1 < hjy 1. We distinguish
three cases according to the values of b(i).

If b(i) = 1, then g1 = g — 1, and hiyg1 >
h; — 1. Hence, by gi < h;, we have gi11 < hj 1.

Ifb(i) =2,thenhi 1 > h —2,andifg > 2
then gi.1 = @i — 2. Hence, using g; < h;, we
get g1 < hip1. Ifg = 1,thengi;1 = 0, and
gi_|_]_ S hi_|_1 hOIdS

Finally, let b(i) = 3. Then gi+1 = g — 3 yields
Oi+1 < hiy1,ashiyg > h—3. If g1 =0,
then we also have gi11 < hj;;. Otherwise,

Oir1 = g — 2, and we have two possibilities:
the parity of xj is even, and w; contains two neg-
ative values, or the parity of x; is odd, and w;
contains two positive values. If hy > gj, then
gi+1 < hizg, since hiyp > hy — 3. If hy = g,
then the parity of w; is the same, as the parity
of v;. We have the following cases. If v; has the
same number of positive and negative elements
as w;, then y;j 1 can differ from y; in at most
two coordinates, and we still have the inequal-
ity gir1 < hjzq. Otherwise yj 1 differs from
y; in all coordinates, and we have gi;1 < hj;1
again, since the difference of some coordinate
of yi+1 and g must grow. If h; = g; then v;
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cannot contain the same number of positive ele-
ments as the number of negative elements of w;,
and vice versa. It is because the number of the
positive and negative elements in w; is the same
as in the difference between g and p (until one
or more of them become zero). If v; contains an
element ¢, which has opposite sign in w;, then
h; must be greater than the sum, where c is re-
placed by 0. Since we assumed that g; = h;, it
is a contradiction.

We have g; < h; for all i < min(m n), and the
sequence g; strictly monotonously tends to zero.
It implies that n < m. So the algorithm stops
after finite number of steps, and it provides the
shortest path from pto g.

The distance between any two points p and
g, with respect to a neighbourhood sequence
B, depends on the difference and the parity of
the points, and on the neighbourhood sequence
only.

Algorithm 3.3.1 is a greedy algorithm, since at
every step it changes as many coordinate values
as possible to get closer to the end point.

Let us examine the complexity of Algorithm
3.3.1. It is clear that we need only memory to
know what is the point where we are (x;), and
what is the following element of the neighbour-
hood sequence. So if we can write the output
path and we can read the sequence while the al-
gorithm is running, then we need only constant
memory.

What is the time-complexity of our algorithm?

It is easy to show that there is a constant upper
bound for the time that an iteration takes. (In
Steps 3-9 there is ordering of three elements,
evaluation of conditions and changing values.)
So an iteration takes maximum c time. In the
worst case (with neighbourhood sequence (1))
we must make |w(1)| + |w(2)| + |w(3)| steps,
where w is the difference between the start and
end points.

Soour algorithmterminates in linear time. There-
fore we can say that it is efficient.

3.4. Interesting Examples

In this section, we study distance functions with
strange properties. We illustrate that our algo-
rithm works also in the case when the distance
based on a neighbourhood sequence is not sym-
metric and/or does not meet the triangular in-
equality. In the following examples, we use the
same notation as in Example 3.3.2.

Example 34.1. Letr = (1,-2,1) and s =
(0,0,0) be two points, and B = (1,3,2) a
neighbourhood sequence. First, we calculate
d(r, s;B) by using Algorithm 3.3.1. By Table
2 we get d(r, s;B) = 2. Now let us calculate
d(s r;B). Theresultisintable3: d(sr;B) =
3. Asd(r, s;B) # d(s r; B), thisdistance func-
tion is not symmetric.

K i [wh)  [wh) [whg) | b() |x |
(-1,2,-1) |0 — - — - (1, —2,1)
(-1,2,-1) |1 y:2 x:—1 z-1 1 (1, -1,1)
(0,1, -1) 2 x:-1 y:1 z-1 3 (0,0,0)

Table 2. The shortest path from r to sin Example 3.4.1.

| i wh) [whp)  [whs) [b() [ x |

(1,-2,1) 0 — - — - (0,0,0)
(1, -2,1) 1 y:—2 x:1 z1 1 (1,0,0)
(0, —1,0) 2 y:—2 z1 x:0 3 (1, -1,1)

(0,0, —1) 3 y:—1 x:0 z0 2 (1,-2,1)

Table 3. The shortest path from sto r in Example 3.4.1.
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|w i wh) [whp)  [whs) [b() [ x |
(0,1, -1) 0 - — - — (0,0,0)

(0,1, —-1) 1 y:1 z-1 x:0 2 (0,1, —1)
Table 4. Calculating the shortest path from (0,0, 0) to (0, 1, —1) by B = (2,1, 1).

K i Jwh)  [wh) [whg) | b() |x |
0,1,-1) [0 [- — — — T4, -1)
(0,1, —-1) 1 y:1 z-1 x:0 2 (0,2, —2)

Table 5. Calculating the shortest path from (0, 1, —1) to (0, 2, —2) by B = (2, 1, 1).

|w i Jwh)  [whp)  [whg) | b() | x |
0,2,-2) [0 [- — — — 1(0,0,0)

(0,2, —2) 1 y:2 z-2 x:0 2 (0,1, -1)
(0,1, -1) 2 y:1 z-1 x:0 1 (0,2, —1)
(0,0, —1) 3 z-1 x:0 y:0 1 (0,2, —2)

Example3.4.2. Letr = (0,0,0),s= (0,1, —1)
and t = (0,2, —2) be three points, and B =
(2,1, 1) aneighbourhood sequence. The calcu-
lationof d(r, s;B) isin Table4. So d(r, s;B) =
1. In Table 5 we present the determination of
d(s t;B) = 1. The calculation of d(r, t; B) is
presented in Table 6. Aswecansee, d(r, t; B) =
3,and d(r, t; B) > d(r, s;B) + d(s, t; B). Thus
the triangular inequality does not hold.

As we can see in the previous examples, we
can find neighbourhood sequences which do not
generate metric. In [14] we examine metric gen-
erated by neighbourhood sequences in detail.

4., Summary

The case of the hexagonal grid is simple. We
used one natural distance function (which is
used in the hexagonal grid almost every time in
digital geometry), based on the natural neigh-
bouring relation. We used three coordinate val-
ues to describe the grid, as in [8]. An algorithm
was presented to solve the shortest path prob-
lem in this grid using our concept of lanes. With
the help of the presented shortest path we calcu-
lated the distance between two objects, and we

repeated the result of [9] in symmetric form us-
ing three coordinates. The advantage of this grid
over the triangular and rectangular grids is that
the methods used for approximating Euclidean
distance are not that difficult. So the hexagonal
grid is useful and offers an easy way to make
digital geometry look similar to Euclidean.

We analysed three types of neighbourhood re-
lations in the triangular grid. We introduced the
concept of neighbourhood sequences, and with
their help, we were able to define distance func-
tions on the triangular grid. We presented an
algorithm, which constructed the shortest path
from one point to another, and calculated their
distance value with respect to a given neigh-
bourhood sequence. We also examined the
complexity of our algorithm. Examining the
distance functions generated by neighbourhood
sequences, we showed that these distances did
not prove to be a metric for every sequence.
In [14] we presented a sufficient and necessary
condition for neighbourhood sequences to de-
termine metric spaces. Since we have two types
of points on the triangular grid, we had to face
some additional problems that are not present
in the square and the hexagonal grids.
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