
Journal of Computing and Information Technology - CIT 11, 2003, 2, 135–141 135

A Method for Improving Efficiency
of Static Program Graph Scheduling

Aleksander Kvas and Milan Ojsteršek
Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

Obtaining maximum performance from parallel dis-
tributed memory machines depends on partitioning
parallel programs into modules and scheduling those
modules for the shortest possible execution time. The
scheduling problem is known to be NP-hard and heuristic
algorithms have been proposed to obtain optimal and sub
optimal solutions. The partitioning algorithm partitions
an application into tasks with appropriate grain size and
represents them in the form of a directed acyclic graph.
The nodes of the resulting graph are then scheduled onto
the processors of a parallel computer system. We can
see that almost all coarse grained program graph nodes
don’t need all of their input operands at the beginning of
their execution. Thereafter, they can be scheduled a bit
earlier. This type of program graph nodes triggering is
called partial strict triggering. The missing operands will
be requested later, during the execution. Coarse grained
program graph nodes send their output operand to all
successors, as soon as they produce them. Successors of
coarse grained program graph nodes will be scheduled
earlier too, because they will receive their input operands
sooner. An evaluation of improved CPM, VL and DSH
scheduling algorithms is done in this paper. We have
improved them with partial strict triggering of coarse
grained program graph nodes.

Keywords: static scheduling, parallel computers, pro-
gram graphs, partial strict triggering.

1. Introduction

Optimal execution of parallel programs which
are executed on a parallel computer system de-
pends on partitioning programs into modules
and scheduling those modules for the short-
est possible execution time. In this paper, we
present three efficient algorithms for schedul-
ing modules to the processing units of a parallel
computer system. An algorithm for the parti-
tioning programs into modules is discussed in
�Ojsteršek 1994�. We will make only a brief
description of it in Section 2.

The general problem of multiprocessor schedul-
ing can be stated as scheduling a set of partially
ordered computational tasks onto a multipro-
cessor system so that a set of performance cri-
teria is optimised. The difficulty of the problem
depends heavily on the topology of the pro-
gram graph representing the precedence rela-
tions among the tasks, the topology of the mul-
tiprocessor system, the number of parallel pro-
cessors, the uniformity of the node processing
time and the performance the criteria chosen.
In general, the multiprocessor scheduling prob-
lem is computationally intractable even under
simplified assumptions. Because of this com-
putational complexity issue, many heuristic al-
gorithms have been proposed to obtain optimal
and suboptimal solutions to various scheduling
problems �Palis et al. 1996, Gerasoulis & Yang
1992, Darbha & Agrawal 1998, Park & Chloe
2002�.

The scheduling of programs onto parallel com-
puter system can be achieved using three ap-
proaches: static, dynamic and hybrid. The dis-
tinction indicates the time at which the schedul-
ing decisions are made. With static scheduling,
information regarding the program graph rep-
resenting the program must be estimated prior
to execution. In static scheduling, each node
of a program graph has a static assignment to a
particular processor, and each time that a task
is submitted for execution, it is assigned to that
processor. In dynamic scheduling, the parallel
processor system must attempt to schedule tasks
on the fly. Thus, the scheduling decisions are
made while the program is running. The disad-
vantage of dynamic scheduling is the overhead
incurred to determine the schedule while the

136 A Method for Improving Efficiency of Static Program Graph Scheduling

program is running. Hybrid scheduling tech-
nique are a mix of static and dynamic methods,
where some preprocessing is done statically to
guide the dynamic scheduler and�or reduce the
amount of undeterminism.

We have improved three well known static sche-
duling algorithms �CPM, VL and DSH� with
partial strict triggering of program graph nodes.
We compare our improved algorithms with orig-
inal CPM static scheduling algorithm.

This paper is organised as follows. First we give
a brief description of our partitioning algorithm.
In Section 3 we present partial strict triggering
of program graph nodes. Next, a brief descrip-
tion of improved scheduling algorithms is given
in Section 4. In Section 5 we present a model
of a macro dataflow computer which supports
partial strict triggering of program graph nodes.
Performance evaluation of improved scheduling
algorithms with execution of program graph on
the macro dataflow computer simulator is done
in Section 6. And, finally, Section 7 presents
concluding remarks, as well as directions for
future research work.

2. Description of the Partitioning Algorithm

We have used similar grain size determina-
tion algorithm as Sarkar’s "internalisation" al-
gorithm �Sarkar 1989�, which clusters nodes
together to minimise the schedule length on an
unbounded number of processors. The algo-
rithm initially places each task in a separate
cluster and considers the arcs in descending or-
der according to the amount of data transferred
over each arc. Given arc Aij connecting nodes
Ni and Nj, the algorithm merges the clusters
containing these nodes to ’internalise’ any com-
munications between nodes in these respective
clusters. This merging step is accepted if it
does not increase an estimate of the parallel
execution time of the program graph on an in-
finite number of processors, where nodes in the
same cluster are constrained to be executed on
the same processor. The partitioning process
in ’internalisation’ algorithm is stopped when a
cluster’s execution time is equal or greater than
one percent of ideal parallel execution time. A
cluster must also satisfy a convexity constraint,
which ensures that a cluster can run to comple-
tion once all its inputs are available. Our opin-

ion is that the size of clusters �execution time� is
computer architecture-dependent, so our parti-
tioning algorithm stops further aggregation into
bigger clusters when the size of a cluster is equal
or greater than maximal granularity of cluster
which depends on the organisation of the macro
dataflow computer architecture.

3. Partial Strict Triggering of Program Graph
Nodes

Now, let us consider a group of program nodes
that are connected with the precedence relation.
If the sum of communication delays for transfer-
ring operands between the nodes is greater than
the sum of their execution times, it is possible to
achieve fastest execution time by joining them
in a larger program grain. Of course, there are
other techniques for grain size determination,
but it is interesting that joining small grains into
larger one enables the processing element to
start with execution of a new grain without all
input operands. An example is shown in Fig-
ure 1. We aggregate fine grain program graph
nodes �1, 2, 3� into a coarse grained program
graph node. The new node N can start with the
execution on a free processing unit immediately

3

1

2

T=10

T=3

T=20

3

1 2

4

1 2

3 4

Cr=0

Cs=0

Cr=10

Cs=20

T=33N

Fig. 1. Example of partial strict triggered node.

A Method for Improving Efficiency of Static Program Graph Scheduling 137

after operand number 1 is available, although
operand number 2 is not present. This operand
must be available at least 10 time units after the
beginning of the node N execution to avoid the
node execution delay. The operand number 4 is
sent to the successor nodes 20 time units before
the end of the execution of node N, so the trig-
gering of successors which use this operand is
faster.

We have introduced two new attributes for each
communication arc. CS represents operand’s
relative sending time. It defines the time from
the moment when the operand is sent to the end
of a node execution. CR represents operand’s
relative receiving time. It defines the time from
the beginning of a program graph node exe-
cution to the moment when this operand must
be present to avoid delaying the node’s execu-
tion. Operands which have CR equal to zero are
called strict operands and must be present be-
fore the execution of their program graph nodes.
Operands which have CR greater than zero are
called nonstrict operands. These operands must
be present between the beginning of a program
graph node execution and CR.

The following notation is used throughout this
paper:

G : graph G�N� E�,
N�G� : set of nodes in G,
E�G� : set of arcs in G,
n : number of nodes in in G,
ni : i-th node in G; i � 1��n,
T�ni� : execution time of node ni,
Ns�ni� : set of successors of the node ni,
nsi : number of successors of the node ni,
O�G� : set of output nodes of graph G,
CP�nj� : the length of exit path for node nj,
I�nij� : set of input operands of nj that

originates from ni,

C�ni� nj� nii� noj�: communication delay time
between nodes ni and nj, ni is the source and
nj is the destination, nii is the number of partic-
ular input operand of node nj, noj is the number
of particular output operand of node ni,

CS�ni� nj� nii� noj�: relative sending time of ope-
rand between nodes ni and nj, ni is the source
and nj is the destination, nii is the number of
particular input operand of node nj, noj is the
number of particular output operand of node ni,

CR�ni� nj� nii� noj� : relative receiving time of
operand between nodes ni and nj, ni is the source
and nj is the destination, nii is the number of
particular input operand of node nj, noj is the
number of particular output operand of node ni.

4. Description of Scheduling Algorithms
with Partial Strict Triggering of
Program Graph Nodes

CPM scheduling algorithm �Kohler 1975, Ojs-
teršek 1994, Shirazi et al. 1990� assigns the pro-
gram graph nodes to the processing elements on
the basis of the priority list scheduling method.
A priority weight for each node is the length
of the longest path from program graph node
to the terminal node. The original CPM algo-
rithm computes the priority weight �the length
of exit path� of each node without using com-
munication delay time for transferring operands
between nodes. We have defined new priority
weight which is computed by using execution
time of a node and communication delay times
CS and CR of its input and output operands. The
length of exit path for node ni �CP�ni�� is com-
puted in the following way:

�ni � O�G� : CP�ni� � T�ni�
�ni �� O�G� � �nj � Ns�ni� � �nj � CP�nj� :
CP�ni� � MAXj�1�nsi�CP�nj�

�C�ni� nj� nii� noj�� CR�ni� nj� nii� noj�
�CS�ni� nj� nii� noj��T�ni�� �4.1�

In an improved CPM algorithm we also make
sure that all nonstrict operands are present in
time from the beginning of a program graph
node execution to the moment when these ope-
rands must be present to avoid delaying the
node’s execution. If we can’t assure this con-
dition for nonstrict operand, we assign its CR
to zero. Time complexity of the original CPM
algorithm is O�n2�, where n is the number of
program graph nodes. Time complexity of im-
proved CPM algorithm is also O�n2�.

Vertically Layered �VL� scheduling algorithm
�Hurson et al. 1990, Kvas et al. 1994, Ojsteršek
1994� is based on two philosophies:

1. assigning concurrently executable nodes
to separate processing units and

138 A Method for Improving Efficiency of Static Program Graph Scheduling

2. assigning nodes connected serially to the
same processing element.

Main idea of this algorithm is the distribution of
program graph nodes into vertical layers, where
nodes constituting a single layer can be allo-
cated to a processing element. Actual alloca-
tion is done in two phases: the separation and
optimisation phases. In the separation phase
critical path �CP� is identified and nodes on CP
are assigned to one vertical layer. Rearrang-
ing is done in an iterative manner as follows:
nodes on the longest directed path emanating
from an arc in a node that is already assigned
are assigned to the next available vertical layer.

The separation phase does not take into ac-
count communication delays among processing
elements �PEs�. The optimisation phase rear-
ranges nodes by considering inter-PE commu-
nication delays. For example, if two subsets
of nodes are arranged in two distinct vertical
layers, and there is the transitory relationship
between them, there will be inter-PE commu-
nication costs associated with the execution of
two vertical layers. In order to improve over-
all execution time, we can consider combin-
ing the subsets of nodes into a single vertical
layer. This eliminates the communication time
between two layers and the overall execution
time is now the sum of execution times of sub-
sets. However, if the new execution time results
in a larger delay, two subsets are assigned to
different PEs.

We improved VL algorithm optimisation phase
that rearranges nodes by considering communi-
cation delay times CS and CR. Original equa-
tions �Hurson et al. 1990� that are used to
compare communication and execution time
between nodes contain simple communication
time delays. Now, if we use partial strict trigger-
ing, we can change the communication delays
in the following way:

Cu�ni� nj� � MAXnii � I�nij��C�ni� nj� nii� noj�
�CS�ni� nj� nii� noj��CR�ni� nj� nii� noj��

�4.2�

Then we use Cu in equations instead of C.
We also assure that all nonstrict operands are
present in time from the beginning of a pro-
gram graph node execution to the moment when

these operands must be present to avoid delay-
ing the node’s execution. If we can’t assure
this condition for nonstrict operand, we assign
its CR to zero. Time complexity of original
VL algorithm is O�n4�, where n is the number
of program graph nodes. Time complexity of
improved VL algorithm is also O�n4�.

Duplication scheduling heuristic algorithm
�Benko et al. 1995, Kruaratrachue & Lewis
1988, Ojsteršek 1994� maximises parallelism
and minimises communication delays by inser-
tion of ready program graph nodes into idle time
slots of Gantt chart and by duplication of criti-
cal program graph nodes. We have focused our
research efforts to three main extensions of the
original heuristic:

� We have converted program graphs that
have nonstrict operands into program
graphs that have all strict operands. A
new type of program graph is called a
strictly triggered program graph. Each
program graph node of original program
graph is transformed into several nodes of
the strictly triggered program graph. We
call them a group of strict nodes. All nodes
of a group have to be executed on the
same PE. PE pre-empts the execution of
a group if in the execution phase a non-
strict operand is not present. While this
operand is not present, PE executes other
groups. When a nonstrict operand arrives,
PE continues with the execution of the pre-
empted group.

� We proposed a new processing units al-
location scheme, which greatly improves
the efficiency of scheduling. An origi-
nal DSH algorithm uses the length of the
longest path from the node to the exit
node and number of immediate succes-
sors as a priority weight for processor allo-
cation. We introduced predecessor selec-
tion scheme �PSS� and successor selection
scheme �SSS�. Both selection schemes are
trying to decrease the amount of com-
munication overhead between nodes by
scheduling similar tasks on the same pro-
cessing unit. The term similar is used to
refer to the tasks that are expected to com-
municate with each other, either directly
or indirectly. PSS considers two tasks as

A Method for Improving Efficiency of Static Program Graph Scheduling 139

similar if one of the tasks is a direct or an
indirect predecessor of the other one. SSS
considers two tasks as similar if they have
at least one successor task in common, i.e.
they both send at least one message to the
same destination.

� We have also extended DSH algorithm to
take into account a finite number of com-
munication channels between processing
units. In this way, the accuracy of the re-
sults obtained from simulation of coarse
grained program graph execution on the
model of parallel computer has been im-
proved.

Time complexity of the original DSH algorithm
is O�n4�, where n is the number of program
graph nodes. Time complexity of improved
DSH algorithm is O�n6�.

5. The Model of Macro Dataflow Computer

We have introduced our model of a macro data-
flow computer �Figure 2� which supports par-
tial strict triggering of coarse grained program
graph nodes. Our model of a macro dataflow
computer �MMDC� is a loosely coupled mul-
tiprocessor with processing elements �PE� and
an interconnection network.

Every PE �Figure 3� contains an input queue, a
local multiport memory, a memory processor, a
scheduling processor and a node execution pro-
cessor. Program graphs are loaded on the model
of a macro dataflow computer at the beginning
of their execution. Inputs of nodes �tokens�
are matched together in the memory processor.
When all required inputs of a particular node are
present, the memory processor forms the exe-
cutable node �activity� and sends a node number

INTERCONNECTION NETWORK

PE PE PE1 2 n. . .

Fig. 2. The Model of a Macro Dataflow Computer.

input queue

memory processor

memory
local multiport

scheduling
processor

node execution
processor

tokens to
other PEs

tokens from
other PEs

Fig. 3. A Structure of a Processing Element of the
MMDC.

to the scheduling processor. The scheduling
processor selects the executable nodes on the
basis of a Gantt chart which has been produced
by the static scheduling algorithm. It sends ac-
tivities to the node execution processor. The
node execution processor executes activities. If
a nonstrict operand of executed activity has not
arrived in time when it is required, the node
execution processor preempts execution of this
activity and executes another activity. When the
nonstrict operand of preempted activity arrives
in the memory processor, the memory proces-
sor sends the address where the activity has been
preempted into the queue of preempted activi-
ties, which are in multiport memory. When the
node execution processor finishes with the exe-
cution of temporary executed activity, it contin-
ues with the execution of the preempted activity.
The node execution processor also sends results
of computed activities to the memory processor
if the successor node is in the same PE. Other-
wise, the results are sent to other PEs.

In our simulation we assume that the model of
a macro dataflow computer has the following
features:

� All PEs have equal performances.

� A PE executes nodes and communicates
with other units simultaneously.

� All PEs are connected with the communi-
cation network which has a finite number
of communication channels.

140 A Method for Improving Efficiency of Static Program Graph Scheduling

� A memory space, needed for matching
tokens in sets of tokens, forming activi-
ties, scheduling and executing activities of
program graphs that are executed on the
MMDC, must be less than the capacity of
available memory space in the model of
the MMDC.

6. Performance Evaluation of Improved
Scheduling

We have evaluated improved scheduling algo-
rithms with a simulation of a program graph
execution on the MMDC. Program graph con-
sisted of 200 nodes and 374 operands �306
strict operands and 68 nonstrict operands�. Its
level of granularity �average execution time
of nodes�average communication delay time
of operands� has been 0.092. We have used
program graph and Gantt charts produced by
original CPM algorithm and improved algo-
rithms as simulation inputs. A comparison
of ratios between total execution times of pro-
gram graph with usage of original CPM algo-
rithm and improved scheduling algorithms is
depicted in Figure 4. As shown in Figure 4,
all improved scheduling algorithms outperform
original CPM algorithm. Improvements have
been from 30% to 60%. From Figure 4 we can
see that the improved DSH algorithm gave the
best improvement, but it has the highest com-

putational complexity �O�n6��. VL algorithm
obtained better results than improved CPM al-
gorithm, but it has higher computational com-
plexity than the CPM algorithm.

We have observed that improvements of our al-
gorithms are higher if level of granularity is
lower than one. If level of granularity is greater
than one, then improvements are only few per-
cents. In that case we use improved CPM al-
gorithm, because it has the lowest computation
complexity.

7. Conclusion

This paper presented performance evaluation
of three different static scheduling algorithms
improved with partial strict triggering of pro-
gram graph nodes. The new model of a macro
dataflow computer, which supports partial strict
triggering of program graph nodes, is also pre-
sented. Simulation results of program graph
execution on the MMDC with usage of Gantt
charts produced by improved scheduling al-
gorithms showed promising improvement over
original CPM algorithm.

In our future research we will incorporate sche-
duling algorithms into our integrated program-
ming environment for static partitioning and
scheduling of time critical tasks which are exe-
cuted on the macro dataflow realtime computer.

Fig. 4. Comparison of improved scheduling algorithms with original CPM algorithm. The total execution time of
program graph produced with usage of: �1� original CPM scheduling algorithm is represented by Tcpmo�PG�, �2�

improved CPM scheduling algorithm is represented by Tcpmi�PG�, �3� improved VL scheduling algorithm is
represented by Tvl�PG�, �4� improved DSH scheduling algorithm is represented by Tdsh�PG�.

A Method for Improving Efficiency of Static Program Graph Scheduling 141

References

�1� B. BENKO, M. OJSTERŠEK, V. ŽUMER, Improvement
of Duplication Scheduling Heuristic Algorithm with
Nonstrict Triggering of Program Graph Nodes. Pro-
ceedings of First Aizu International Symposium on
Parallel Algorithms/Architecture Synthesis, Aizu–
Wakamatsu, Fukushima, Japan, IEEE Computer
Society Press, �1995�, pp. 227–233.

�2� S. DARBHA AND D. P. AGRAWAL, Optimal Schedu-
ling Algorithm for Distributed–Memory Machines.
IEEE Trans. on Parallel and Distributed Systems,
January, vol. 9, No. 1, �1996�, pp. 87–95.

�3� A. GERASOULIS AND T. YANG, A Comparison
of Clustering Heuristics for Scheduling Directed
Acyclic Graphs on Multiprocessors. J. Parallel and
Distributed Computing, vol. 16, �1992�, pp. 276–
291.

�4� A. R. HURSON, B. LEE, B. SHIRAZI, M. WANG, A
Program Allocation Scheme for Data Flow Com-
puters. Proc. of the 1990 Intern. Conf. on Parallel
Processing, University Park, Peen, Pennsylvania
State Univ., vol. 1, �1990�, pp. 415–423.

�5� W. H. KOHLER, A Preliminary Evaluation of the
Critical Path Method for Scheduling Tasks on Mul-
tiprocessor Systems. IEEE Trans. on Computers,
December, �1975�, pp. 1235–1238.

�6� B. KRUARATRACHUE, T. LEWIS, Grain Size Deter-
mination for Parallel Processing. IEEE Software,
January, �1988�, pp. 23–33.

�7� A. KVAS, M. OJSTERŠEK, V. ŽUMER, Evaluation
of Static Program Allocation Schemes for Macro
Data–flow Computer. Proceedings of the 20th EU-
ROMICRO Conference, Liverpool, England, IEEE
Computer Society Press, �1994�, pp. 573–580.

�8� M. OJSTERŠEK, V. ŽUMER, Improving a Time Crit-
ical Task Execution Time Using an IPRESPS. Mi-
croprocessing and Microprogramming,Amsterdam,
34, 1–5, �1992�, pp. 197–200.

�9� M. OJSTERŠEK, Partitioning and Scheduling Pro-
gram Graphs onto Parallel Computer System. PhD
thessis. University of Maribor, Faculty of Technical
Sciences Maribor, June 1994 �in slovene�.

�10� M. A. PALIS, J. C. LIOU, D. S. L. WEI, Task Cluster-
ing and Scheduling for Distributed Memory Parallel
Architectures. IEEE Trans. on Parallel and Dis-
tributed Systems, January, vol. 7, No. 1, �1996�, pp.
46–55.

�11� C.–I. PARK AND T.–Y. CHOE, An Optimal Schedul-
ing Algorithm Based on Task Duplication. IEEE
Trans. on Computers, April, vol. 51, No. 4, �2002�,
pp. 444–448.

�12� V. SARKAR, Partitioning and Scheduling Parallel
Programs for Execution on MultiProcessors, MIT
Press, 1989.

�13� B. SHIRAZI, M. WANG, G. PATHAK, Analysis and
Evaluation of Heuristic Methods for Static Task
Scheduling. Journal of Parallel and Distributed
Computing, October, No. 10, �1990�, pp. 222–232.

Received: March, 2003
Revised: May, 2003

Accepted: June, 2003

Contact address:

Aleksander Kvas
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova 17

SI–2000 Maribor
Slovenia

e-mail: aleksander�kvas�uni�mb�si

Milan Ojsteršek
Faculty of Electrical Engineering and Computer Science

University of Maribor
Smetanova 17

SI–2000 Maribor
Slovenia

e-mail: ojstersek�uni�mb�si

ALEKSANDER KVAS is a teaching asistant at the Faculty of Electrical En-
gineering and Computer Science in Maribor, Slovenia. He received his
M.Sc. degree in computer and information science from the University
of Maribor in 2001. His research interests include parallel computer
systems and computer architecture.

MILAN OJSTERŠEK is an Assistant professor at the Faculty of Electrical
Engineering and Computer Science in Maribor, Slovenia. He received
his M.Sc. and Ph.D. degrees in computer and information science from
the University of Maribor in 1991 and 1994, respectively. His research
interests include computer architecture, parallel and distributed com-
puting and software development in the area of distributed and web
applications. He is also head of the Center for Heterogenous Process-
ing. The main goal of his work and work of the Center for Heterogenous
Processing is to bring state–of–the–art research and new technologies
to industry and students of the Faculty of Electrical Engineering and
Computer Science.

