Journal of Computing and Information Technology - CIT 10, 2002, 1, 55-66 55

The Design and Implementation of
SPARK, a Toolkit for Implementing
Domain-Specific Languages

John Aycock

Department of Computer Science, University of Calgary, Alberta, Canada

SPARK is a toolkit for implementing domain-specific
languages in Python. It is somewhat unusual in that its
intended audience includes users who do not necessarily
have a background in compilation; this choice impacts
both the design and implementation of SPARK. We
introduce SPARK in this paper and discuss major issues
that have arisen in its design and ongoing development.

Keywords: compiler tools, domain-specific languages,
software design

1. Introduction

SPARK, the Scanning, Parsing, And Rewriting
Toolkit, is a toolkit which assists in the im-
plementation of domain-specific languages in
Python. First unveiled in 1998, SPARK is now
on its sixth release. In that time, SPARK has
been used by ourselves and others to implement
a number of domain-specific languages; a se-
lection of these projects are listed below.

e Compiling Guide [23], a web programming
language

e Bytecode decompilation
e GUI building

Token AST

e Linux! kernel configuration system [26]

e Interfacing with IRAF (astronomical soft-
ware) [33]

e Fortran interface description [9]

Early on, we decided to target SPARK to a spe-
cific group of users, a somewhat unusual choice
in that it included users without a background
in compilation. In the remainder of this paper
we introduce SPARK, then discuss our design
choices in more detail and how they have influ-
enced SPARK’s implementation.

2. SPARK?

We begin with a simple model of a compiler
having only four phases, as shown in Figure 1:

1. Scanning, or lexical analysis, breaks the in-
put stream into a list of tokens and their at-
tributes (if any).

2. Parsing, or syntax analysis, resulting in the
construction of an abstract syntax tree (AST).
In this section, we use a typical expression
grammar as our running example:

Annotated

List

Scanning Parsing

) AST
Semantic ‘
Evaluation

Analysis

Fig. 1. Compiler model. Note the absence of feedback edges.

! Linux is a trademark of Linus Torvalds.

A very early version of the work in this section appeared in [2].

56 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

expr ::= expr + term
expr ::= term

term ::= term * factor
term ::= factor

factor ::= number

3. Semantic analysis, performed by traversing
the AST one or more times.

4. Evaluation, which may directly interpret the
program, or output code in C or assembly
which would implement the input program.
Evaluation may be implemented by another
traversal of the AST, or by matching patterns
in the AST.

Each phase performs a well-defined task, and
passes a data structure on to the next phase;
Grune et al. [15] refer to this as a “broad com-
piler.” Note that information only flows one
way, and that each phase runs to completion be-
fore the next one starts. This is in contrast to oft-
used techniques based on a symbiosis between
scanning and parsing, where several phases may
be working concurrently, and a later phase may
send some feedback to modify the operation of
an earlier phase.

Certainly not all domain-specific language com-
pilers will fit this model, but it is extremely
clean and elegant for those that do. The main
function of the compiler, for instance, distills
into three lines of Python code which reflect the
compiler’s structure:

f = open(filename)
evaluate (semantic(parse(scan(f))))
f.close()

How are these phases implemented using
SPARK? A common theme throughout SPARK
is that the user should have to do as little work
as possible. For each phase, SPARK supplies a

Phase Class

Lexical analysis ~ GenericScanner
Syntax analysis GenericParser

Syntax analysis GenericASTBuilder
Semantic analysis GenericASTTraversal
Evaluation GenericASTTraversal
Evaluation GenericASTMatcher

Table 1. SPARK classes, by functionality. Some classes
are potentially useful for more than one phase.

class which performs most of the work; these are
summarized in Table 1. The user’s job is simply
to create subclasses which customize SPARK’s
base classes.

2.1. Lexical Analysis

A user creates a scanner by creating a subclass
of GenericScanner, SPARK’s generic scanner
class. In this subclass, the user specifies the
regular expressions that the scanner should look
for, and actions (consisting of arbitrary Python
code) to be performed based on the type of to-
ken found.

Below is a simple scanner to tokenize expres-
sions for our running example. The parameter
to the action routines is a string containing the
part of the input that was matched by the regular
expression.

class SimpleScanner (GenericScanner) :
def init__(self):

GenericScanner.__init__(self)

def tokenize(self, input):
self.rv = []
GenericScanner.tokenize(self, input)
return self.rv

def t_whitespace(self, s):
]’." \S+ b

def t_op(self, s):
r’ \+ | \x
self.rv.append(Token (type=s))

def t_number(self, s):
]’." \d+ b
t = Token(type=’number’, attr=s)
self.rv.append(t)

A few words about the syntax and semantics
of Python are in order. This code defines the
class SimpleScanner, a subclass of Generic-
Scanner. All methods have an explicit self pa-
rameter; __init__ is the class’ constructor, and
it is responsible for invoking its superclass’s
constructor if necessary. Methods may option-
ally begin with a documentation string which
is ignored by Python’s interpreter but, unlike
a regular comment, is retained and accessible
at run-time. For example, the documentation
string for the t_number method is r’\d+’, where
the prefix “r” denotes a “raw” string in which
backslash characters are not treated as escape
sequences. A method which is empty (save for
an optional documentation string) has no effect
when executed.

The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages 57

Object instantiation uses the same syntax as
function calls; in the above code, Token objects
are being created. Both object instantiation and
function invocation can make use of “keyword
arguments,” which permit actual and formal pa-
rameters to be associated by name rather than
by their position in the argument list. Above,
type=s passes s to the type parameter. Finally,
[] denotes the empty list.

Returning to the scanner itself, each method
whose name begins with “t_” is an action; the
regular expression for the action is placed in
the method’s documentation string. (The rea-
son for this unusual design, using reflection, is
explained in Section 3.2.1.)

When the tokenized method is called, a list of
Token instances is returned, one for each oper-
ator and number found. The code for the Token
class is omitted; it is a simple container class
with a type and an optional attribute. White
space is skipped by SimpleScanner, since its
action code does nothing. Any unrecognized
characters in the input are matched by a default
pattern, declared in the action GenericScan-
ner.t default. This default method can of
course be overridden in a subclass.

Scanners made with GenericScanner are exten-
sible, meaning that new tokens may be recog-
nized simply by subclassing. To extend Sim-
pleScanner to recognize floating-point number
tokens is easy:

class FloatScanner(SimpleScanner):
def init__(self):

SimpleScanner.__init__(self)

def t_float(self, s):
r’ \d+ \. \d+ ’
t = Token(type=’float’, attr=s)
self.rv.append(t)

How are these classes used? Typically, all that
is needed is to read in the input program, and
pass it to an instance of the scanner:

def scan(f):
input = f.read()
scanner = FloatScanner ()
return scanner.tokenize(input)

Here, the entire input is read at once with the
read method. Once the scanner is done, its
result is sent to the parser for syntax analysis.

2.2. Syntax Analysis

The outward appearance of GenericParser, our
generic parser class, is similar to that of Gener-
icScanner.

A user starts by creating a subclass of Gener-
icParser, containing special methods which are
named with the prefix “p_”. These special meth-
ods encode grammar rules in their documenta-
tion strings; when a grammar rule is recognized
by GenericParser, the rule’s associated “action”
code in the method is executed.

The expression parser subclass is shown below.
Here, the actions are building the AST for the
input program from the bottom up. AST is also
a simple container class; each instance of AST
corresponds to a node in the tree, with a node
type and possibly child nodes. The grammar’s
start symbol is passed to the constructor. In the
code, ExprParser’s constructor assigns a de-
fault value to its start symbol argument so that
it may be changed later by a subclass.

class ExprParser(GenericParser):
def __init__(self, start=’expr’):
GenericParser.__init__(self, start)

def p_expr_1(self, args):
’ expr ::= expr + term ’
return AST(type=args[1], left=args[0],
right=args[2])

def p_expr_2(self, args):
’ expr ::= term ’
return args[0]

def p_term_1(self, args):
> term ::= term * factor ’
return AST(type=args[1], left=args[0],
right=args[2])

def p_term_2(self, args):
> term ::= factor ’
return args[0]

def p_factor_1(self, args):
> factor ::= number ’
return AST(type=args[0])

def p_factor_2(self, args):
> factor ::= float ’
return AST(type=args[0])

The “args” passed in to the actions are based on
a similaridea used by Yacc [18,22]. Each termi-
nal or nonterminal symbol on a rule’s right-hand
side has an attribute associated with it. For to-
ken symbols like +, this attribute is the token
itself. All other symbols’ attributes come from
the return values of actions which, in the above
code, means that they are subtrees of the AST.

58 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

The index into args corresponds to the position
of the symbol in the rule’s right-hand side. In
the running example, the call to p_expr_1 has
len(args) == 3: args[0] is expr’s attribute,
the left subtree of + in the AST; args[1] is
+’s attribute, the token +; args[2] is term’s at-
tribute, the right subtree of + in the AST.

The routine to use this subclass is straightfor-
ward:

def parse(tokens):
parser = ExprParser()
return parser.parse(tokens)

Although omitted for brevity, ExprParser can
be subclassed to add grammar rules and ac-
tions, the same way that SimpleScanner was
subclassed.

GenericParser allows a user to specify ambigu-
ous grammars. For practical purposes, this
means that GenericParser must be able to choose
between multiple derivations of an input. Cur-
rently, SPARK relies upon the user to make this
choice at parse time by invoking an ambiguity-
resolution method when necessary. More elab-
orate mechanisms are known, such as disam-
biguating rules [1] and filters [19].

Writing actions to build ASTs for large lan-
guages can be tedious. An alternative is to
use the GenericASTBuilder class instead of
GenericParser, which automatically constructs
the tree:

class AnotherExprParser(GenericASTBuilder):
def __init__(self, AST, start=’expr’):
GenericASTBuilder.__init__(self, AST,
start)

def p_expr_1(self, args):

’ expr ::= expr + term ’
def p_expr_2(self, args):
’ expr ::= term ’

def p_term_1(self, args):

’ term ::= term * factor °’
def p_term_2(self, args):
’ term ::= factor °’

def p_factor_1(self, args):
> factor ::= number °’

def p_factor_2(self, args):
> factor ::= float ’

(There is a more abbreviated way to express
this code which we omit.) The constructor is
passed the AST class, so GenericASTBuilder
knows how to instantiate AST nodes.

By default, GenericASTBuilder constructs a
concrete syntax tree which faithfully reflects
the structure of the grammar. Depending on the
node type being built, one of two methods in-
side GenericASTBuilder is invoked to construct
the node: terminal or nonterminal. The user
may override these with methods which shape a
more compact AST rather than a concrete syn-
tax tree.

After syntax analysis is complete, the parser has
produced an AST, and verified that the input
program adheres to the grammar rules. Next,
the input’s meaning must be checked by the se-
mantic analyzer.

2.3. Semantic Analysis

Semantic analysis is performed by traversing
the AST. Rather than spread code to traverse
an AST all over the compiler, we have a single
base class, GenericASTTraversal, which knows
how to walk the tree. Subclasses of Generic-
ASTTraversal supply methods which get called
depending on what type of node is encountered.

To determine which method to invoke, Generi-
cASTTraversal will first look for a method with
the same name as the node type (augmented
by the prefix “n_"), then will fall back on an
optional default method if no more specific
method is found. This design is a combination
of the Reflection [7] and Default Visitor [25]
design patterns.

Of course, GenericASTTraversal can supply
many different traversal algorithms. We have
found three useful: preorder, postorder, and a
pre/postorder combination. (The latter allows
methods to be called both on entry to, and exit
from, a node.)

For example, say that we want to forbid the mix-
ing of floating-point and integer numbers in our
expressions, raising an exception if such mixing
occurs:

class TypeCheck(GenericASTTraversal):
def __init__(self, ast):
GenericASTTraversal.__init__(self, ast)
self.postorder()

def n_number(self, node):
node.exprType = ’number’

def n_float(self, node):
node.exprType = ’float’

def default(self, node):

The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages 59

number

@)

number

3)

number

)

Fig. 2. Pattern covering of AST for2 + 3 * 5.

this handles + and * nodes
leftType = node.left.exprType
rightType = node.right.exprType
if leftType !'= rightType:

raise ’Type error.’
node.exprType = leftType

After this phase, we have an annotated AST for
an input program that is lexically, syntactically,
and semantically correct — but that does noth-
ing. The final phase, evaluation, remedies this.

2.4. Evaluation

As already mentioned, the evaluation phase can
traverse the AST and implement the input pro-
gram, either directly through interpretation, or
indirectly by generating code for a given target
language.

Our expressions, for instance, can be easily
interpreted using GenericASTTraversal. For
the sake of variety, we use SPARK’s Generi-
cASTMatcher class below. With GenericAS-
TMatcher, patterns to look for in the AST are
specified in a linearized tree notation, which
looks remarkably like grammar rules. Gener-
icASTMatcher determines a way to cover the
AST with these patterns, then executes actions
associated with the chosen patterns.

class Interpreter(GenericASTMatcher):
def __init__(self, ast):
GenericASTMatcher.__init__(self,
self .match()
print ast.value

’y?, ast)

def p_number(self, node):

> V ::= number °’

node.value = int(node.attr)
def p_float(self, node):

>V ::= float ’

node.value = float(node.attr)

def p_add(self, node):
PV o=+ (V V)
node.value = node.left.value
+ node.right.value
def p_multiply(self, node):
PV o= x (VV) 2
node.value = node.left.value
* node.right.value

The AST covering is shown in Figure 2. In the
above code, int and float are built-in functions
which convert strings to integers and floating-
point numbers, respectively.

The patterns specified may be arbitrarily com-
plex, so long as all the nodes specified in the
pattern are adjacent in the AST. To match both
+ and * nodes, for instance, this method could
be added:

def p_addmul(self, node):
PV o=+ (Vx (VV))2
node.value = node.left.value + \
node.right.left.value * \
node.right.right.value

3. Experience with the Design and
Implementation of SPARK

Much of the design and implementation of SPA-
RK derives from the need to satisfy a specific
target audience of users. We begin by explain-
ing what this audience is, then discuss the reper-
cussions of this choice in more detail.

60 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

3.1. Remember Your Audience

The advice “remember your audience” is dis-
pensed unabashedly to speakers, writers, and
web page designers. It is equally applicable
to software designers. In the case of SPARK,
we made two base assumptions about SPARK’s
users.

First, we assume that our users are program-
mers, who do not necessarily possess a back-
ground in compiler construction. Unlike most
compiler toolkits, we deliberately hide details
that are traditionally foisted onto users. The
best example of this is the fact that SPARK’s
parser has no restrictions on the input grammar;
a user need not understand parsing theory in
order to use it. We have also adopted the com-
pilation model discussed in Section 2 to target
this class of users, because this provides a sin-
gle template with which users can structure their
compilers. (Expert users may of course abuse
SPARK’s classes in whatever manner they see
fit.)

Second, SPARK users are thought to be occa-
sional users. Very few people — ourselves in-
cluded — design and implement domain-specific
languages on a daily basis. SPARK is thus de-
signed not just for ease of use, but for ease
of occasional use. In particular, we have at-
tempted to reduce the cognitive load associ-
ated with using SPARK by providing minimal
interfaces to SPARK’s classes, requiring very
little of user-supplied token and AST classes,
and in some cases by deliberately omitting fea-
tures that could be otherwise implemented by
users. Other restrictions have been avoided for
the same reasons: there is no “compiler build”
phase for users to worry about, making each of
SPARK’s classes software components which
may be inserted freely into an implementation.

SPARK could be seen as a “lightweight” tool,
compared to other compiler construction toolk-
its such as Eli [13], Gentle [29], and Cock-
tail [14]. SPARK supports a simple compilation
model, is highly coupled to its host language,
and does not require installation and use of a
large suite of tools.

Obviously, some of these design guidelines ben-
efit both groups of users, such as SPARK’s close
relationship with its host language, Python.

3.2. Co-evolution and Integration

SPARK has been integrated very tightly into
Python. This reduces the (re)learning curve
for users already familiar with Python, which is
consistent with our design goals. At the same
time, it makes SPARK’s design vulnerable to
the ever-increasing pace of Python’s evolution,
a problem which will eventually impact user
code. Python-specific integration also limits
the portability of SPARK to languages which
do not possess the same features. In particular,
the ability to easily associate string attributes
with methods such that they may be reflectively
examined is important to both the implementa-
tion and “feel” of SPARK. We are looking at C#
as another possible target because of its attribute
support [24].

Unfortunately, there were few other alterna-
tives to tight integration. Having SPARK spec-
ifications in a separate file, or embedded in
Python programs surrounded by special delim-
iters, would have violated our design constraints
by necessitating a compiler-build or preprocess-
ing phase, and decreasing the ease of occasional
use. However, it would have permitted SPARK
to be better isolated from changes in the host
language.

There are other tradeoffs too. Welook at these in
terms of two key areas where SPARK is tightly
coupled with Python: documentation strings
and regular expressions.

3.2.1. Documentation Strings

Python allows documentation strings, or “doc-
strings,” to be attached to methods in a straight-
forward fashion: a string as the first line of a
method. This can be thought of as associat-
ing code for the method with meta-information
about the method, a comment intended for a
human reader. SPARK also uses docstrings
for meta-information, but this information is in-
tended for SPARK’s use: regular expressions
that describe tokens, grammar rules, and tree
patterns. This choice was made because, typ-
ically, Python users are already familiar with
docstrings, but also for pragmatic reasons. Doc-
strings, unlike other types of comments in Py-
thon code, are retained and are accessible at
run-time. This aspect of docstrings is critical as

The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages 61

SPARK’s classes rely upon it to extract needed
information at run-time and to associate this in-
formation with a particular method.

When SPARK was first conceived, there were
few (if any) Python packages using docstrings
in this manner. Since that time, a number have
arisen, resulting in the potential for semantic
conflicts between packages; it is even rumored
that some users write documentation in doc-
strings.

Recent releases of Python have included sup-
port for function attributes, which are meant
to alleviate these collisions by allowing arbi-
trary attributes to be attached to methods. From
SPARK’s perspective, there are several draw-
backs: existing user code would need to be
changed; assignments to function attributes are
statements that must be executed, unlike the
declarative nature of docstrings; a new source
of typographically-induced bugs is introduced
(because attribute names can be mistyped); func-
tion attributes are considerably less integrated
and elegant.

Whether function attributes will become the
dominant way of handling meta-information in
Python remains to be seen. Here, the fate of
SPARK is out of our hands as a result of the
tight integration with Python.

3.2.2. Regular Expresssions

In contrast, we had hoped for certain fates to be
out of our hands in the area of regular expres-
sions. Rationalizing that Python users would
understand regular expressions, being an im-
portant feature of Python,> we decided that it
would be best to have users specify tokens using
Python regular expression notation as opposed
to some other formalism. Implementation of
SPARK’s scanner then becomes trivial, a mat-
ter of concatenating the user’s regular expres-
sions together as alternatives of a single, large
regular expression; throughout this section, we
call this the “single” regular expression, and the
ones specified by the user “component” regular
expressions. As a side effect of this imple-
mentation, we automatically benefit from any

speedups and other enhancements, such as Uni-
code support, made to Python’s regular expres-
sion code.

There were some concessions to be made. Py-
thon’s regular expression engine, and hence
SPARK’s scanner class, is restricted to using
strings as input; the entire input file must be read
into a string prior to being tokenized. This is not
a terrible burden for many domain-specific lan-
guage applications, but severely limits SPARK’s
usefulness for, say, processing large XML files.

Another issue lay with the semantics of Python
regular expressions. Python follows other script-
ing languages like Perl and Tcl in supplying
“first-then-longest” semantics for regular ex-
pressions.* This means that the first match for
a regular expression will be taken, not neces-
sarily the longest match, contrary to what users
might expect from a scanner. As SPARK users
do not even see the single regular expression
that SPARK constructs on their behalf, first-
then-longest semantics are especially troubling
because the user will not know which of their
component regular expressions appeared first.
At first glance, one might think that SPARK
could use the static position of the user’s reg-
ular expressions in their source code to order
the single regular expression. One would be
wrong. Internally, Python compiles methods,
and stores method names into a hashed data
structure; all information about method order-
ing is lost. SPARK offers three workarounds
to this problem: a user’s component regular ex-
pression is never broken apart, so a user may
combine and order conflicting alternatives in
one component regular expression; component
regular expressions in a subclass are placed be-
fore those of a superclass in SPARK’s single
regular expression; users may define a default
method whose component regular expression is
placed after all those in the default method’s
class.

We have found that SPARK has not gained as
much from speedups to Python’s regular ex-
pression engine as anticipated. The first-then-
longest semantics are implemented by a linear
search through the alternatives. As SPARK’s
single regular expression is atypical in that it
tends to be very long with many alternatives,

3 Regular expressions are prominent in Python code, but they are not as tightly integrated into the language as they are in Perl.

4 Versions 8.1 and later of Tcl have different semantics.

62 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

we suffer a corresponding performance penalty.
In one case, a handwritten scanner interpreted
by the Python interpreter was 3.1 times faster
than the corresponding SPARK scanner, even
though Python’s regular expression engine is
implemented in C!

3.3. The Price of Generality and
Code Reuse

Other performance problems have haunted SPA-
RK, also due to design decisions. As men-
tioned, there are no restrictions on the input
grammar to SPARK’s parser. Any context-
free grammar, even an ambiguous one, may
be supplied by the user. To parse with these
grammars, we use Earley’s general parsing al-
gorithm [10, 11].

Using general parsing algorithms is a somewhat
unusual choice in that they tend to have more
overhead than more specialized algorithms like
the LALR(1) algorithm used in Yacc [18, 22].
Such a choice is not completely unprecedented,
however; generalized LR parsing, another gen-
eral parsing algorithm, is used in the ASF+SDF
toolkit [31]. SPARK incorporates Earley’s algo-
rithm rather than generalized LR parsing, pri-
marily because no precomputation is required
for Earley’s algorithm.> Earley’s algorithm suf-
fers from two major problems, from SPARK’s
perspective: the performance problem and the
delayed action problem.

Addressing the performance problem is a mat-
ter of ongoing research. We have made Ear-
ley’s algorithm run in time comparable to that
of much more specialized algorithms, by gen-
erating code to parse a specific grammar and
creating a directly-executable Earley parser [4].
This is not suitable for inclusion in SPARK,
unfortunately, due to the large amounts of pre-
computation required. More promisingly, we
have devised a new type of automaton tailored
for fast Earley parsing, the states of which can
be unobtrusively constructed as needed [3, 5].
We are currently incorporating this automaton
into SPARK. Preliminary results show that use
of our new automaton in SPARK can result in a
40% speed increase.

The delayed action problem refers to the fact
that general parsing algorithms, in general, must
read and verify their entire input first [16].
As a consequence of this, the user’s seman-
tic actions associated with grammar rules may
not be executed until after the input is recog-
nized. Even simple semantic actions, such as
inserting names into symbol tables, must be
deferred. While we have looked at ways to
remedy this problem [3], SPARK tries to mini-
mize the impact of the delayed action problem
through facilities for automatically construct-
ing parse trees, something semantic actions are
commonly used for.

Besides automatically constructing parse trees,
the generality of Earley’s algorithm lends it-
self to use for tree-pattern matching, by which
SPARK users can implement the evaluation
phase of a compiler. This is known as Gra-
ham/Glanville code generation [12], and use of
Earley’s parsing algorithm in a Graham/Glan-
ville code generator is known to correct prob-
lems with the technique [8]. The interpreter
from Section 2.4, for example, would corre-
spond to the grammar:

V=) VV (+
Vii=) VV (%
Vii=))VV (*xV (+
V ::= number

V ::= float

The AST in Figure 2 would be linearized to))
number number (* number (+, with paren-
theses inserted to delineate the AST’s structure.
Conflicting matches show up as ambiguities
during parsing, and are handled using Gene-
ricParser’s ambiguity resolution mechanism.

There is a great dependency in SPARK on the
implementation of Earley’s algorithm in Gene-
ricParser, as it is re-used for various purposes.
Figure 3 shows the class structure of the user-
visible classes of SPARK, along with their key
methods. Our experience is that this serves to
amplify the performance problem, and this is
why we have devoted much effort towards solv-
ing that problem.

5 Although implementations of generalized LR parsing which compute information on the fly are possible [17], they are more

complicated than the implementation of Earley’s algorithm.

The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages 63

GenericScanner GenericParser GenericScanner
error() error() preorder()
tokenize() parse() postorder()

resolve() prune()

GenericASTBuilder

terminal()
nonterminal()

GenericASTMatcher

match()

Fig. 3. SPARK’s class structure.

3.4. Serendipity, Schrédinger, and Speed

Our criterion that user-supplied tokens should
have a minimal interface led us to an accidental
discovery. SPARK’s parser assumes that to-
kens are objects and, while parsing, compares
them to the names of terminal symbols using
Python’s == operator. This in turn causes the
token’s user-supplied __cmp__ method to be in-
voked to perform the comparison. In this way
SPARK never needs to know how or where the
token’s type is stored — the user need only to
supply the one “comparison method” in their
token class.

An odd question arose: what if the user’s com-
parison method lied? When asked by the parser,
whatif a token claimed to not only have its token
type, but other token types as well? The result
is what we call a Schrodinger token, which has
some very useful applications, as well as pro-
viding a means of avoiding the delayed action
problem. A more complete discussion® appears
in [6]; we summarize the ideas here.

For simplicity, consider processing a file which
contains key/value pairs. The problem is that
the type of tokens may be context-sensitive, be-
cause the name of a key may appear as a value:

foo 123
bar 456
baz foo

Ideally, we would like users to be able to write
a grammar which accurately reflects the struc-
ture of this small domain-specific language, as

shown in Figure 4. In this grammar, foo, bar,
baz, and value are all distinct token types, and
therein lies the problem. Recall that SPARK’s
scanner is finished operation by the time the
parser starts; the scanner does not have access
to context information from the parser to deter-
mine when foo is a key and when it is a value.

pairs ::= pairs pair
pairs ::= pair

pair = foo value
pair = bar value
pair = baz value

Fig. 4. An ideal grammar for key/value pairs.

By making a one-line change to their __cmp__
method, the problem is easily solved. The to-
ken — foo in this case — can claim to be
both token types, effectively giving the token
a superposition of types. Earley’s parsing al-
gorithm essentially simulates nondeterminism,
and can handle a token that appears to have
more than one type; the conflict is automati-
cally resolved once enough context information
has been seen. The user does not need to make
any modifications to the grammar whatsoever,
unlike other techniques to solve the problem of
context-dependent tokens.

Analogy can be established between these to-
kens with a superposition of types and Schro-
dinger’s Cat, which was in a superposition of
“alive” and “dead” states [28]. The general
parser acts as the observer which resolves the
actual type of the “Schrodinger token.”

6 Including a full discussion of other approaches, such as scannerless parsing [27, 32].

64 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

Unfortunately, the performance problem rears
its ugly head again. We can make SPARK’s
parser run 30% faster by knowing an exact type
for tokens, rather than having to query each
token’s __cmp__ method repeatedly. In recent
releases of SPARK we have done this, but the
utility of Schrodinger’s tokens is so great that
we have taken pains to ensure that they are still
supported in SPARK.

3.5. Run-time Limitations

While we gained a great deal of portability
across platforms and ease of implementation
working in Python, there were also some things
we lost by working in an interpreted scripting
language. All of these tended to play out at
SPARK’s run-time. It was, for example, ex-
tremely difficult to gauge the effect of a po-
tential optimization to SPARK until such time
as it was actually implemented. A number of
times, the overhead required for Python to exe-
cute the “optimized” code negated any speedup
that would have been obtained.

The design decision to eschew a compiler build
phase and make SPARK reflectively gather in-
formation from user classes at run-time has been
effective from the user standpoint, but has also
severely limited what we can do in terms of
precomputation. Computation done by SPARK
can only be done at run-time, when speed is al-
ready critical; we must search for effective yet
computationally lightweight improvements.

4. Future Directions

Some future work on SPARK is mundane but
necessary, such as writing more user documen-
tation. It would also be interesting to evaluate
ease-of-use from an experimental, rather than
an anecdotal, perspective. Other future direc-
tions, once important, have been abandoned.
Initially, we envisioned that SPARK’s parsing
engine could be replaced with another, using a
more efficient parsing algorithm [2]; however,
the general parsing algorithm has proven itself
so simple to use that its replacement is no longer
being considered.

Improvements to the pattern matcher are likely.
Currently, “sparse” patterns cannot be specified

without giving patterns to match the entire AST.
Removing this limitation would permit use of
pattern matching for selective tree rewriting and
possibly for some tree-based optimizations.

The scanner should also see replacement. Re-
lying on Python’s regular expression engine has
unfortunately proven to be a disaster from the
performance point of view. Finally, a facility for
performing static verification of SPARK speci-
fications would be useful to trap some common
user errors.

One obvious direction, which we are not con-
sidering at this time, is the use of attribute gram-
mars [20]. While this would alleviate the need
for the user to order AST traversals for seman-
tic checking, it would also impose an additional
barrier to use by SPARK’s intended audience.
We hold the somewhat controversial view that
the key to wider acceptance is less formalism,
not more.

5. Conclusion

SPARK has been used to implement a num-
ber of domain-specific languages in Python.
Targeting the toolkit to occasional users and
programmers without a compiler construction
background has had profound effects in both
the design and implementation of SPARK.

Like most designs, a series of tradeoffs is in-
volved. Tight integration with Python lowers
the learning curve, but leaves SPARK at the
mercy of ongoing Python development; re-use
of regular expression and parsing engines im-
pacts performance; avoiding a compiler build
phase pushes all computation work to run-time.
Nevertheless, we are pleased with the result and
plan to bring SPARK’s ideas to a wider audi-
ence.

Acknowledgments

Shannon Jaeger and the anonymous referees
made many helpful comments on this paper.
This work has been supported in part by a grant
from the National Sciences and Engineering Re-
search Council of Canada.

The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages 65

References

[1] A.V.AHO, S. C. JOHNSON, AND J. D. ULLMAN, De-
terministic parsing of ambiguous grammars. Com-
munications of the ACM, 18(2):441-452, August
1975.

[2] J. AYcock, Compiling little languages in Python.
In Proceedings of the 7th International Python
Conference, pages 69-77, 1998.

[3] J. AYCOCK, Practical Earley Parsing and the
SPARK Toolkit. PhD thesis, University of Victoria,
2001.

[4] J. AYCOCK AND N. HORSPOOL, Directly-executable
Earley parsing. In Proceedings of the 10th Interna-
tional Conference on Compiler Construction, pages
229-243,2001.

[5] J. Aycock AND R. N. HORSPOOL, Practical Earley
parsing. Submitted for publication.

[6] J. AyCOCK AND R. N. HORSPOOL, Schrodinger’s

token. Software — Practice and Experience,
31(8):803-814,2001.

[7] F. BUSCHMANN, R. MEUNIER, H. ROHNERT, P. SOM-
MERLAD, AND M. STAL, Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, 1996.

[8] T. W. CHRISTOPHER, P. J. HATCHER, AND R. C.
KUKUK, Using dynamic programming to gener-
ate optimized code in a Graham-Glanville style
code generator. In Proceedings of the SIGPLAN
‘84 Symposium on Compiler Construction, pages
25-36, 1984.

[9] P. E. DUBOIS, Pyfort Reference Manual. Lawrence
Livermore National Laboratory, sixth edition, 2000.

[10] J. EARLEY, An Efficient Context-Free Parsing Al-
gorithm. PhD thesis, Carnegie-Mellon University,
August 1968.

[11] J. EARLEY, An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94-102,
February 1970.

[12] R. S. GLANVILLE AND S. L. GRAHAM, A new
method for compiler code generation. In 5th An-
nual ACM Symposium on Principles of Program-
ming Languages, pages 231-240, 1978.

[13] R. W. GRAY, V. P. HEURING, S. P. LEVI, A. M.
SLOANE, AND W. M. WAITE, Eli: A complete,
flexible compiler construction system. Communi-
cations of the ACM, 35(2):121-131, February 1992.

[14] J. GROSCH AND H. EMMELMANN, A tool box for
compiler construction. Technical Report 20, GMD,
January 1990.

[15] D. GRUNE, H. E. BAL, C. J. H. JACcOBS, AND K. G.
LANGENDOEN, Modern Compiler Design. Wiley,
2000.

[16] D. GRUNE AND C. J. H. JACOBS, Parsing Tech-
niques: A Practical Guide. Ellis Horwood, 1990.

[17] J. HEERING, P. KLINT, AND J. REKERS, Incremental
generation of parsers. In Proceedings of the SIG-
PLAN 89 Conference on Programming Language
Design and Implementation, pages 179—-191, 1989.

[18] S. C. JOHNSON, YACC — yet another compiler.
UNIX Programmer’s Manual, 7th Edition, 2B,
1978.

[19] P. KLINT AND E. VISSER, Using filters for the disam-
biguation of context-free grammars. In Proceedings
of the ASMICS Workshop on Parsing Theory, pages
1-20, 1994.

[20] D. E. KNUTH, Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127-145,1968.
Errata in [21].

[21] D. E. KNUTH, Semantics of context-free lan-
guages: Correction. Mathematical Systems Theory,
5(1):95-96, 1971.

[22] J. R. LEVINE, T. MASON, AND D. BROWN, Lex &
Yacc. O’Reilly & Associates, second edition, 1992.

[23] M. R. LEVY, Web programming in Guide. Software
— Practice and Experience, 28(11):1581-1603,
1998.

[24] Microsoft Corporation, C# Language Specification,
version 0.28, 2001.

[25] M. E. NORDBERG III, Variations on the visitor pat-
tern. In Collected Papers from the PLoP ’96 and
EuroPLoP *96 Conferences. Washington University,
1997. Technical Report WUCS-97-07.

[26] E. S. RAYMOND, The CML2 language: Python im-
plementation of a constraint-based interactive con-
figurator. In Proceedings of the 9th International
Python Conference, pages 135-142,2001.

[27] D. J. SALOMON AND G. V. CORMACK, Scannerless
NSLR(1) parsing of programming languages. In
Proceedings of the SIGPLAN '89 Conference on
Programming Language Design and Implementa-
tion, pages 170-178, 1989.

[28] E. SCHRODINGER, Die gegenwirtige situation in
der quantenmechanik. Die Naturwissenschaften,
23:807-812,823-828,844-849, 1935. Translation
in Trimmer [30].

[29] F. W. SCHROER, The GENTLE Compiler Construc-
tion System. R. Oldenbourg Verlag, 1997.

[30] J. D. TRIMMER, The present situation in quan-
tum mechanics: a translation of Schrddinger’s
“cat paradox” paper. Proceedings of the American
Philosophical Society, 124(5):323-338, 1980.

[31] A. VAN DEURSEN, Introducing ASF+SDF using the
A-calculus as example. In Executable Language
Definitions. PhD thesis, University of Amsterdam,
1994.

[32] E. VISSER, Scannerless generalized-LR parsing.
Technical Report P9707, University of Amsterdam
Programming Research Group, 1997.

66 The Design and Implementation of SPARK, a Toolkit for Implementing Domain-Specific Languages

[33] R. L. WHITE AND P. GREENFIELD, Using Python to
modernize astronomical software. In Proceedings
of the Sth International Python Conference, pages
103-109, 2000.

Received: July, 2001
Revised: October, 2001
Accepted: November, 2001

Contact address:

John Aycock

Department of Computer Science
University of Calgary

2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4
e-mail: aycock@cpsc.ucalgary.ca

JOHN AYCOCK received a B.Sc. (1993) from the University of Calgary,
and a M.Sc. (1998) and Ph.D. (2001) from the University of Victoria,
all in computer science. He has recently returned to Calgary to become
Assistant Professor at the University of Calgary. His research inter-
ests are in compilers, compiler tools, system software, and operating
systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

