Journal of Computing and Information Technology - CIT 9, 2001, 4, 305-321

JAMOOS®

305

A Domain-Specific Language
for Language Processing

Joseph (Yossi) Gilt and Yuri Tsoglin?

T Department of Computer Science, Technion Israel Institute of Technology, Haifa, Israel
 IBM Research Laboratory, Science Industrial Park (MATAM), Haifa, Israel

JAMOOS is a cohesive suite for quick definition of attribute
grammars and generation of compilers, interpreters and
other language processing tools. As a programming lan-
guage, JAMOOS brings a new tree computing metaphor
which unifies the notions of object creation, procedure
call and reduction of rules in an attribute context-free
grammar. JAMOOS has arich object oriented-type system,
with features such as genericity, lists, union and unit
types. This type system serves also as a language for
specifying context-free grammars.

Keywords: compilation, programming paradigms, object
oriented languages, immutability, unified language

1. Introduction

Much research and practical work has revolved
around the theme of correspondence between
BNF grammars and object-oriented (OO) type
hierarchies (seee.g., [50, 51,5, 14,21] as well as
Koskimies’s survey [28]). This correspondence,
which was even captured in a reusable format as
the INTERPRETER design pattern [12], stands
upon three underlying principles:

1. Nonterminal symbols of a grammar, hence-
forth called symbols, are classes. A gram-
mar production defining a symbol in a gram-
mar is also thought of as a class definition
that represents the type of all input speci-
mens that may be reduced by this produc-
tion.

2. Sequence is record structure. Production of
the form A — B C is understood as a defi-
nition of a class A, comprising two compo-
nents of types B and C. This is because each
occurrence of symbol A in the input has both
aBandaCinit.

3. Alternation is inheritance. Production of the
form X — Y | Z defines an abstract class X
with the two classes Y and Z inheriting from
it. The intuition is that every input instance
of the symbol X is either a Y or a Z.

Actual implementation of these principles must
place some constraints on the grammar. For ex-
ample, it is imperative that each symbol is de-
fined by one production only, and productions
which give rise to multiple inheritance should
not be allowed. In the Mjglner BETA lan-
guage processing system [26], one of the most
prominent language processing systems using
these principles, grammar productions are re-
stricted [34] to be one of exactly three kinds: al-
ternation, composition, or list. The inheritance
structure in this system is also limited since,
e.g., all the alternatives in an alternation must
either be all compositions, or all lists. Similar
restrictions are imposed by YOOCC [5].

This research also dwells on the correspondence
between OO types and BNF grammars. Our
motivation and main objective was to carry out
a unification of the concepts of language pro-
cessing and OO programming to the fullest pos-

*JaMOOS (Arabic) — Water Buffalo inhabiting the Hula swamp in northern Israel.

I contact author
* Work done while author was with the Technion

306

JAMOOS — A Domain-Specific Language for Language Processing

sible extent. The result took the form of the
JAMOOS! programming language with its in-
herent dual nature. On the one hand, JAMOOS
is a a general purpose OO programming lan-
guage, whose unique features are the subject of
this paper. On the other hand, it is a cohesive
suite for quick definition of attribute grammars
and generation of compilers, interpreters and
other language processing tools. (This other
aspect of JAMOOS is not discussed here in de-
tail.) Thus, programs written in JAMOOS can
be read both as a formal language specification,
and as an OO program.

The pursuit of duality mutually benefited both
the linguistic and the grammatical aspects of
JAMOOS. As a grammar processor, JAMOOS
makes a contribution by presenting a modern,
practical and integrated tool with facilities for
modular specification of grammars. From the
linguistic point of view, JAMOOS steps forward
in the visionary path outlined by Ole L. Madsen
in the case he made for a unified programming
language [32].

This paper describes two aspects of JAMOOS
which make this dual interpretation possible:
(i) a rich OO type system, which can be used
also to specify context-free grammars, and (ii) a
new tree computing metaphor, which unifies
parsing with procedural- and OO- program-
ming.

JAaMOo0Ss is auseful tool for a quick definition of
domain-specific languages. Further, JAMOOS
itself is an example of a domain-specific pro-
gramming language, demonstrating an interest-
ing language design principle: “identify the
main kind of computation in the specific do-
main and unify this with familiar programming
constructs”. In language processing, the main
computational task is in creating and processing
syntax trees. As we shall shortly see, the tree
computing metaphor unifies this with notions
such as the tree of routine calling.

Some of the examples in this paper describe
JAMOOS in its own syntax. Other examples
are drawn from the JAMOOS specification of
PASCAL [49]. JAMOOS was also used in pro-
totyping prog2TgX, the program used in pretty
printing the code excerpts in this paper.

Outline

The following Sec. 2 describes the tree compu-
tation metaphor and the process of creating and
discarding objects. This section also explains
how the computation is guided by definitions,
each specifying a production rule, class, and
procedure. Definitions are comprised of fields,
which can each be thought of as a computational
step, a data member, or an argument or internal
variable in procedural programming. Fields are
described in Sec. 3. Definitions are only part
of the complete JAMOOS type system, which is
the subject of sections 4 and 5. Sec. 6 explains
how internal definitions make it possible to as-
sociate methods (in the OO sense) with produc-
tions. Sec. 7 describes abstract definitions and
inheritance. A brief report on some of the other
lingual features of JAMOOS is in Sec. 8. (More
information is available in the JAMOOS defini-
tion document [48] or on the web?.) Related
work is the subject of Sec. 9. The paper ends
with Sec. 10 which gives the conclusions and
outlines some directions for future research.

2. Principles of Tree Computing

The tree computation metaphor brings together
non-mutating procedural programming and the
OO programming paradigms. (Non-mutating
procedural programming is procedural program-
ming in which variables are immutable; it is
similar to non-high level functional program-
ming.)

In this metaphor, computation is all about the
construction of immutable objects, aggregating
them into trees, and then discarding these trees.
As soon as the construction of an object b is
terminated, it is passed as an argument to the
constructor of its containing object a. If a dis-
cards the reference to b, then b along with all
other objects contained in it, is destroyed. If
object a keeps a reference to b, then b becomes
a part of a, and will only be destroyed when a
is.

Objects can also be thought of as procedure acti-
vation records (sometimes called stack frames),

! Unlike many other made-up names beginning with J, JAMOOS has absolutely no relationship with the JAVA [2] programming

1an§uage.

http://www.cs.technion.ac.il/Labs/ssdl/thesis/finished/2001/tyuri

or http://www.cs.technion.ac.il/~tyuri/thesis

JAMOOS — A Domain-Specific Language for Language Processing

307

while the aggregation relationship between them
defines the program call tree. With this unifi-
cation, a call to a routine is the same as the
construction of the activation record of that rou-
tine. JAMOOS in fact restricts the computation
in a routine to sequentially filling the slots in
its activation record. Object immutability in
procedural perspective means that once a rou-
tine is terminated, its activation record cannot
be changed. However, unlike ordinary proce-
dural programming, the activation record is not
necessarily discarded when the routine finishes.
Thus, tree computation generalizes the familiar
call stack regime in that it is possible to access
subtrees of activation records and discard them.

JAMOOS programs comprise definitions, which
give types to the nodes in the aggregation hi-
erarchy. Each definition can be thought of as
being simultaneously a routine or a function in
procedural programming or an OO class defi-
nition. (An activation record captures the run
time realization of the execution of a routine,
in exactly the same way that an object captures
the run time realization of a class.) An evalua-
tion of a definition can be thought of as either a
constructor call, or as an invocation of a routine.

There is yet a third unifying aspect to defini-
tions, which can be thought of as a specification
of a production rule in BNF. An evaluation is
then a commitment to this rule at a certain point
in the input during the parsing process.

Example 2.1.
A—B_C;

The above simple JAMOOS definition can be
read as a parsing rule, where symbol A com-
prises B and C in sequence. It can also be
thought of as a definition of a routine A, whose
execution has two steps: execution of routine B
and then routine C. Routines A and B can be
also thought of as constructors of objects of
classes A and B (respectively). Execution of
routine B can be thought of as constructing the
activation record b of class B. Once the creation
of bis finished, it is passed as an argument to the
constructor of its containing object of class A.
The _: prefix of C in the definition means that

the C object is not stored in an A object. In other
words, the object C is created in the process of
the construction of A. However, once this con-
struction is terminated, object C is discarded.
We say that C is perishable.

In the grammar-world, the object hierarchy is
then both the concrete- and abstract- syntax
trees, where only non-perishable objects take
partin the abstract syntax, and a definition gives
also a type to a node of the abstract syntax tree.

3. Fields

A definition is made as a series of fields. This
section presents various kinds of fields through
a series of examples.

Example 3.1.°

PascalProgram — program Name
decls:Declarations Body ;

In the OO perspective this is a definition of a
class PascalProgram, consisting of four fields.
The first field (the keyword program) is degen-
erate — it is of the familiar unit type (used in
languages such as ML [42]), the type with ex-
actly one value. The unit type is called OK in
JAMOO0S for reasons which will become clear in
the following section. The other three fields are
objects of types Name, Declarations and Body,
respectively.

In the grammatical perspective, Examp. 3.1 is
a grammar rule for the symbol PascalProgram.*
Fields Name, Declarations and Body are sym-
bols which must be defined elsewhere. Field
program is a foken, specifically, a keyword of
the specified programming language, PASCAL
in this case. Such tokens are pretty-printed in
bold. Values of type OK need not be stored, and
indeed, keywords are not stored in the abstract
syntax tree. The distinction between different
keywords is part of the parsing process only.

In the procedural perspective, the above defi-
nition is of procedure PascalProgram which is
implemented as calls to three other procedures:
Name, Declarations and then Body.

3 We apply pretty printing of JAMOOS code throughout. The actual type written version is
PascalProgram -> program Name decls:Declarations Body ;
4 Following Meyer’s specification of EIFFEL symbols must be capitalized, and keyword tokens need not be quoted, as long as

they begin with a lower case letter.

308

JAMOOS — A Domain-Specific Language for Language Processing

Field Life Time Has Routine Grammatical
Kind Begin End Initializer? Equivalent Meaning
Arguments || Component | constructor with object No IN-OUT argument | abstract syntax
invocation
Perishable | inconstructor | constructor No IN argument concrete syntax
invocation return
Features Attribute initialization with object Yes OUT argument semantic feature
by constructor
Temporary | initialization constructor Yes Local variable none
by constructor | return

Table 1. The kinds of fields in JAMOOS .

decls is an identifier which names the field Dec-
larations. The definition does not name the fields
of type Name and Body. These fields can still be
referenced using JAMOOS automatically gener-
ated names. This automatic mechanism makes
it possible to refer in a definition to a field of
type ¢ simply as ¢, provided that there are no
other fields in the definition whose type is t.
We use this convention throughout this paper.

Example 3.2.

CondStatement — if Expression then
then_part:Statement else else_part:Statement ;

In this example, the first field if has no names
at all, and it cannot be referenced. The second
field of type Expression can be referred to as Ex-
pression or as 1 because it is the first field which
is not of type OK. Both these names are automat-
ically generated by the JAMOOS naming mech-
anism. The fourth field can be referred to as
then_part, Statement#1 (the first Statement) or 2.
The sixth field also has three names: else_part,
Statement#2 and 3.

In general, a field specification has four parts to
it.

1. Optional perishability prefix. All fields pre-
fixed by an underscore (_: as in Examp. 2.1)
are discarded at the end of the evaluation of
the definition.

2. Optional name. Anonymous fields receive
their names using JAMOOS ’s name deduc-
tion mechanism. Note that a field might have
both perishability prefix and a name.

3. Type. This is often the name of another def-
inition, but could be any one of JAMOOS
primitive or compound types.

4. Optional initializer. Uninitialized fields are
arguments to the constructor. Initialized
fields can be thought of as computational
steps.

As shown in Table 1, there are four kinds of
fields, distinguished by their time of initializa-
tion and lifetime (both determined by the per-
ishability prefix and the existence of initializer).

In examples 3.1 and 3.2 all fields are compo-
nents, i.e., fields whose lifetime is the same as
that of the containing object. In contrast, C in
Examp. 2.1 is a perishable, i.e., a field which
ceases to exist at the end of the constructor. All
constructor calls of a certain class must pass as
argument initial values to all components and
perishables. Perishables and components are
known collectively as arguments.

Attributes are fields whose value is computed at
construction time from the components, perish-
ables and other previously computed attributes.
Attributes, which are just like attributes of ar-
tribute grammars, end their life with that of their
containing object. The syntax of a full attribute
definition is

Example 3.3.
AttributeDefinition—name:Id ":" Type ":=" Initializer ;

As long as the object exists, its attributes (just
like its components) can be queried from out-
side. Temporaries are simply immutable local
variables of the constructor; their life span is
from initialization until the end of the construc-
tor. Temporaries are defined by prefixing an
attribute definition with _:.

Collectively, attributes and temporaries are cal-
led features. Features are commonly computed
from arguments. In most cases features are de-
fined after the arguments. However, this order

JAMOOS — A Domain-Specific Language for Language Processing

309

is not mandatory, and attributes may be arbitrar-
ily mixed with arguments. In the grammatical
perspective mid-rule actions [1], are a prime ex-
ample of mixing attributes and arguments.

In mixing arguments and attributes with ar-
guments, an interesting phenomenon occurs:
some of the attributes must be evaluated be-
fore the arguments. A caller of a constructor
cannot simply compute the arguments and then
pass these along. Instead, in this case JAMOOS
uses a call by name mechanism, in which the
caller of a definition does not transfer values,
but rather thunks to compute these.

Table 1 gives also the procedural perspective in-
terpretation of the various kinds of fields. Input
arguments are perishable fields—they must be
passed as arguments and cease to exist when
the evaluation terminates. Output arguments
are attributes which are the exact converse: they
are initialized during evaluation and can be ex-
amined from outside as long as the activation
record exists. Input-output arguments are only
approximated by components. They are passed
to the definition from outside and retain their
value as long as the activation record exists.
The value of a component cannot be changed
during evaluation. Finally, temporaries are just
like local variables.

A field with the reserved name return makes it
possible to think of the definition not only as a
procedure but also as a function which returns
this field’s value. This unification is realized by
having the return field the default value of a def-
inition, i.e., the field to use when some object
typed by this definition is addressed without any
specific field selector.

Example 3.4.

Addition — Term "+" Term
return:INTEGER := [[return $Term#1
+ $Term#2; 1] ;

A few comments are needed to understand the
above example. The [[...]] construct switches
from JAMOOS to C++; in $Term#1 and $Term#2
the parser switches back to JAMOOS code. IN-
TEGER is a JAMOOS primitive type, which is
initialized by a C+4+ expression.

Since access to the Term components does not
include a field selector, the return field of these

is chosen. Similarly, in any definition which
has a field of type Addition, its return field can
be accessed in the same manner.

A return field may not have a perishability pre-
fix. In most cases, this field is initialized, but it
may also be a component. The JAMOOS com-
piler is smart enough to use the context to re-
solve the inherent ambiguity of accessing the
whole object vs. accessing the default return
field.

From the grammar perspective, an object is a
node in a syntax tree, where the arguments to the
constructor are supplied once the parser com-
mits to a certain rule.’ Components are the
descendants of the object in the abstract syntax
tree. Perishables are elements of the concrete
syntax, which are discarded in the creation of an
abstract syntax tree. Attributes are the semantic
properties of a node, which are computed from
the syntactical elements. Temporaries serve just
as local variables of the reduce procedure, and
from the grammar point of view play no role at
all.

The following JAMOOS code excerpt demon-
strates some of the variety of field definitions.
(For the purpose of illustration this example de-
fines a simple PASCAL variant in which a pro-
gram consists of variable declarations and body,
with no procedures, functions, type definitions,
etc., and where each variable must be declared
separately.)

Example 3.5.

PascalProgram — program _:Name _:vdecl:VarDecls
Body
vars:VarList .= ...
— Here is some computation of VarList field
statements:StatementList := Body.statements:

Body — begin statements:StatementList end;

VarDecls — var VarDeclList;

— VarDeclLists is defined elsewhere as a list of VarDecl

VarDecl — Type VarName - A single variable declaration
is_simple:BOOLEAN:=[[return
Type.is_simple: — is_simple;]]

> Although JAMOOS is implemented using bottom-up engine, it can also work with top-down parsers.

310

JAMOOS — A Domain-Specific Language for Language Processing

Note that JAMOOS uses ADA [43] style com-
ments. BOOLEAN is another JAMOOS primitive
type corresponding to C++ bool.

Inresponse to the above definition, the JAMOOS
compiler will generate the following C++ equiv-
alent class definition of PascalProgram.

Example 3.6.

class PascalProgram {
public:
const Body& body;
const VarList& vars;
const StatementList& statements;

PascalProgram (const Name& argl,
const VarDecls& vdecl, const
Body& arg3)

body = arg3;

// The computation of vars
vars = ...;

statements = body.statements;

}
}i

Note that all fields are public. To emphasize im-
mutability, all data members and all constructor
arguments are defined as const.

4. The Ok and Error Types

Keywords such as program, if and begin are of
type OK . Consider for example the following
definition of the syntax of i £ statementin C++-:

Example 4.1.

If — if "(" Condition ")" Statement else Statement ;

Fields if and else are keyword tokens of type
OK . Fields "(" and ")" are literal string tokens,
whose type is also OK . Although technically
components of the respective containing class,
keyword and string literal fields do not take part
in the abstract syntax and can be ignored for
almost all practical purposes. This is because
values of type OK require no storage and do not
answer any queries.

Another important use of OK is to type impera-
tive code fragments, which are written in C++:

Example 4.2.

Assignment — Variable ":=" Expression
print_exp: OK :=[[cout << $Expression.print(); 1]

In the example class Assignment has an attribute
print_exp of type OK . The C+4+ code segment

cout << $Expression.print();

is invoked during the execution of the construc-
tor of Assignment, as part of the initialization
of this field. Since field names (computational
steps in the procedural perespective), the above
could have been written as:

Example 4.3.

Assignment — Variable ":=" Expression
[[cout << $Expression.print(); 1]

which would amount to a definition of an anony-
mous field of type OK in class Assignment. In
general, we see that it is not necessary to denote
the type of attributes whose type is OK .

Much in the same way that keywords and fixed
strings can show as separators, terminators and
other concrete syntax aids in the definition of
the argument list, any expression of type OK ,
and in particular code fragments, may appear
anywhere in the arguments list of a call to a
method or a constructor. If this should hap-
pen, these code fragments are executed in order
during the constructor call.

What happens if an error is detected during the
execution of a code fragment, taking care, say,
of a semantical action? Such errors should not
lead to a halt of the parsing process, in the
same way as a failure to open a file in procedu-
ral programming should not abort the program.
JAMOOS error types are used for an orderly
handling of such failures. Nevertheless, if a
failure is not captured by a matching error type,
a runtime error will halt the program.

The type OK? in JAMOOS is an error type used
for imperative code which might terminate in
an error. Fields of type OK? are similar to
named assertions (e.g., check statements in
E1rrEL [37]). Alternatively, a code whose type

JAMOOS — A Domain-Specific Language for Language Processing 311

1s OK? is similar to a procedure which might
return abnormally with an exception.

More generally, any type has an error type vari-
ant. Error types may either store valid values or
be erroneous (be in a state of error). Syntacti-
cally, an error type is defined by a ? character
to the right of the type definition. For example,
the following class definition:

Example 4.4.

PascalProgram — program _:Name
Declarations Body? ;

means (in the grammatical perspective) that a
recoverable parsing error might occur in pro-
cessing the symbol Body. It is usually impossi-
ble to create a well-structured tree of type Body
if a parsing error has occurred. However, a cru-
cial characteristic of error types is that values
which are in a state of error can be composed
with other values to make compound values. In
the example, the PascalProgram might exist and
be processed even though the program body is
erroneous.

The following example shows how error-prone
classes are defined:

Example 4.5.

Procedure? — procedure name:ld
FormalArgumentsList ;" Declarations Body ;

Error types can be thought of as a choice be-
tween some non-error type and a bottom or none
type, i.e., the type with no legal values. From
the language design perspective we have thus
unified the notions of parsing errors and excep-
tions. This unification is not complete, since

JAMOOS objects (activation records) might ex-
ist on the stack even after execution of the cor-
responding routine have terminated. There are
therefore, JAMOOS mechanisms to test not only
if a value is in error, but also whether it has any
error components [48].

Errors can be raised from JAMOOS code or from
within embedded C++ code. Raising an error
during execution will pop out objects from the
execution stack until an object of an error type
is encountered. This is possible since all code
execution is always in the context of a nested
constructor call.

5. The Jamoos Type System

A class definition is a named type. Other
JAMOOS types are constructed from named and
primitive types. The six primitive types of
JAMOOS are enumerated in Table 2, along with
their C++ equivalents.

Grammatically, primitive types are nothing but
tokens. There are predefined regular expres-
sions to match the other five primitive types
against the parsed input.

As a modern compiler-compiler JAMOOS sup-
ports regular expressions of terminals and sym-
bols in the right-hand side of rules. Conversely,
as a programming language, JAMOOS supports
four kinds of type generators for compound
types: sequence, list, optional and choice. These
generators may be nested in a type definition.
Thus, the right hand side of a JAMOOS defini-
tion can be any regular expression of terminals
and symbols.

Type C++ Equivalent Default Regular Expression | Note

OK void none Default for keyword / fixed string tokens
STRING std::string® | ("[MT) Default for regular expression tokens
INTEGER int <(\+\-D[0-9]+>

REAL double <(\+\-D[0-9]+\.[0-9T>

BOOLEAN bool (truelfalse)

CHARACTER | char o)

“defined in the <string> module of C++ standard library

Table 2. Tokens and primitive types.

312

JAMOOS — A Domain-Specific Language for Language Processing

A sequence gives rise to a simple record struc-
ture. A list is a variable-sized collection of ob-
jects of the same type. In the following exam-
ple, class VariablesDeclarations has a component-
named vars which is a list of records, each sto-
ring a variable type and name.

Example 5.1.

VariablesDeclarations — var vars:
{ (name:Id ":" type:Type ;") ... }+

A list is defined using curly brackets and el-
lipsis (...). The above definition is to say that
VariablesDeclarations begins with the var key-
word, followed by a list of pairs (denoted by
parentheses) of Id and Type. The + symbol de-
notes that the list must have at least one element;
this requirement is enforced at runtime, either
during parsing or during a constructor call. A
list definition might also include a start token,
separators and an ending token:

Example 5.2.

FormalArgumentsList —
{"("/ FormalArgument ;" ... ")" }

In this example, the start token is the open
parentheses character, the separator token is a
semicolon ";", and the ending token is the close
parentheses character. Note that a slash is used
to separate the start token from the recurring list
item. This syntax for specifying lists makes it
clear that the start and the end token must be
included in the input only in the case the list is
not empty.

An optional type is a type whose value can be
either an object of given type, or empty (de-
noted by a value of type OK). Square brackets
are used to define optional types as in:

Example 5.3.

Conditional — if condition:Expression
then Statement [else Statement]

A choice type corresponds to alternations in reg-
ular expressions. The syntax borrows from ML
datatype definitions:

Example 5.4.

For — for Variable ":=" Expression
direction:(up OF to | down OF downto)
Expression do Statement

It is not possible to name the constituents of
choice, optional, and list type generators. Any
constituent can however be designated perish-
able. A type can only be named if it is a def-
inition. JAMOOS uses structural equivalence,
ignoring all perishable constituents, two differ-
ent fields whose structure is the same are of the
same unnamed type.

6. Internal Definitions and Methods

Fields can be thought of as data members.
Methods in JAMOOS are just a special case
of internal definitions. An internal definition,
1.e., a definition made inside another definition,
defines an internal class (a concept related to
JAVA inner classes). The construction of an in-
stance of an internal class is always carried out
in the context of a containing object instantiated
from the containing class.

Because the constructor of an internal class can
access any field of the containing class, it can
only be invoked through an instance of the con-
taining class. The containing class is the only
class which may have fields of the type of the
internal class.

Some of these restrictions are similar to those
placed on methods in traditional OO paradigm.
A method can only be invoked in connection
with an object of the class in which the method
is defined. In fact, a constructor call of an in-
ternal class can be thought of as a method invo-
cation. If the internal class has a default field,
then that field can serve as the method return
value, and the arguments are used as the meth-
ods arguments.

Here is an internal definition which can be used
as method.

Example 6.1.

Procedure — procedure name:ld params:ParamList
Body

PossibleCall — ExpressionList
return:BOOLEAN := ...
— Checking whether elements of
— params is compatible to ExpressionList

JAMOOS — A Domain-Specific Language for Language Processing

313

Class Procedure represents procedures in PAS-
CAL, and PossibleCall, when used as method,
checks if a given list of expressions can be used
to pass parameters to the procedure. A possible
use of PossibleCall is:

Example 6.2.

ProcedureCall — name:ld params:ExpressionList
legal:BOOLEAN := SEARCH(Procedures,
name.str).PossibleCall(params)

The SEARCH command here finds the proce-
dure by its name in Procedures, which, as its
name indicates, is a dictionary of procedures
(see [48] for details).

In Example 6.1, the default field of the internal
definition was used as the return value of the
method. Here is an example of internal defini-
tion with two attributes.

Example 6.3.

VarDecl — VarName ":" Type

Compeatibility — Type
can_assign:BOOLEAN :=[[...]]
can_be_assigned:BOOLEAN :=[...]]
— code to check whether the given type is
— assignable to the variable and vice versa

Given an object of type VarDecl, it is possible to
call the constructor of the internal class Compat-
ibility with a Type parameter. The returned object
has two fields, each of which can be inspected.
This is how the above definition can be used (as-
suming Variable has a field decl of type VarDecl
referencing to the variable’s declaration):

Example 6.4.

Assignment — Variable ":=" Expression
is_legal:BOOLEAN := Variable.decl.Compatibility
(Expression.type).can_assign;

Internal classes can be used to type other fields
in the containing definition, and hence can be
thought of as a private type definition. Also,
internal classes can be arbitrarily nested.

In general, an internal definition may access
the components and attributes of the containing
definition. Perishable and temporary fields of a
definition cannot be accessed from an internal
definition. The reason is that the constructor of
an internal definition can, and usually will, be
invoked after the containing object was entirely
constructed.

The similarity of internal classes and methods
is just a special case of duality between classes
and routines. The main difference is that the
constructor of internal classes can access fields
of the containing object. Similarly, the differ-
ence between routines and methods is that a
method is a routine which is always executed in
the context of a receiving object.

7. Abstract Definitions and Inheritance

So far, all definitions were concrete, which
means that, as classes, they could be instan-
tiated and as routines, they could be invoked.
In contrast, abstract definitions make abstract
classes and outline a pattern of execution for
concrete routines which inherit from an abstract
definition. From the grammar perspective, an
abstract definition is an alternation rule as in the
following example.

Example 7.1.

Loop — ConditionallLoop | ControlVariableLoop
FEATURES

body: Statement;
END;

An abstract definition does not enumerate ar-
guments for its constructor. Instead, the ab-
stract definition of Loop lists two definitions
ConditionalLoop and ControlVariableLoop which
inherit from it. The definitions for Condition-
alLoop and ControlVariableLoop, which could be
either abstract or concrete, must be provided
elsewhere. JAMOOS uses a single inheritance
model. Therefore, ControlVariableLoop and Con-
ditionalLoop cannot show up in the definition
header of any other abstract definition.

The only kind of fields allowed in an abstract
definition are features: attributes and tempo-
raries. All features of abstract definitions must
be declared within a FEATURES...END block.

314

JAMOOS — A Domain-Specific Language for Language Processing

An abstract definition does not have a construc-
tor and hence is not allowed to have arguments.

Field body of type Statement, which is the only
field of Loop, is called an abstract attribute since
it contains no initializer. Abstract attributes,
which are similar to abstract methods in the OO
paradigm, are only allowed in abstract classes.

A subclass, which may be concrete or abstract,
inherits the attributes of its abstract superclass.
An abstract class may provide an initializer to
any of its features, and override any inherited
initializer. A concrete subclass must provide an
initializer for every abstract attribute for which
an initializer was not provided by any of its su-
perclasses. A concrete definition may not be
inherited.

An abstract attribute can be turned into an ar-
gument by a concrete subclass, whereby dele-
gating the responsibility of initialization to the
caller of the constructor. To denote that an in-
herited field is turned into argument, it is pre-
ceded by an at-sign character (@). The follow-
ing example continues Example 7.1.

Example 7.2.

Loop — ConditionalLoop | ControlVariableLoop
FEATURES

body: Statement;
END;
ConditionalLoop — WhileLoop | RepeatlLoop
FEATURES

cond: Expression;
END;
ControlVariableLoop —

for Variable ":=" from:Expression

to to:Expression do body;

WhileLoop — while cond do body;

RepeatLoop — repeat _:stmnts:{ Statement";" ... }
until cond
body := ... — Code converting the list of statements

— into a single (block) statement

In this example, fields cond in ConditionalLoop
and body in Loop are abstract features. While
cond is defined by both subclasses as arguments,
body in RepeatLoop is an attribute computed
from the list of Statements stmnts. Note that
stmnts itself is defined as perishable, because as
soon as body is computed, there is no need to
store stmnts any more.

As internal definitions can be used as methods, a
mechanism is necessary to override them. For-
tunately, the above mechanism for overriding
fields works exactly in the same way for inter-
nal definitions. Any subclass may override any
number of the field initializers of an internal
definition. Since the internal definition fields’
initializers can collectively be thought of as the
method body, such overriding redefines only
parts of the method body, and can be viewed
as its overriding. Thus, internal definitions are
more general than ordinary methods in that it is
possible to selectively override sections of their
body.

In Example 7.3 we illustrate overriding of inter-
nal methods.

Example 7.3.

ConditionalLoop — WhileLoop | RepeatLoop
FEATURES
cond: Expression;
Optimize —
pre_computation: { MachineStat ...} := { }
— empty pre_computation by default
body: { MachineStat ... } =1 ...]]
— C++ code optimizing the body
— This code may add statements to pre_computation

END;
WhileLoop — while cond do body;

RepeatLoop — repeat _:stmnts:{ Statement";" ... }
until cond
body := ... — Code converting the list of statements
— into a single (block) statement
Optimize.pre_computation :=[[... 1]
— The actual invocation of the algorithm is done here

END;

In the example, Optimize is an internal definition
of ConditionalLoop used in an optimizing com-
piler to generate optimized code. A RepeatLoop
overrides only the initializer of pre_.computation
in this internal definition. Both subclasses of
ConditionalLoop will override this internal defi-
nition, but only partially.

In an abstract definition header, each subclass
name can be surrounded by any number of to-
kens, which are used as aid to parsing. The
following abstract definition specifies the syn-
tax of compound types in JAMOOS:

JAMOOS — A Domain-Specific Language for Language Processing

315

Example 7.4.

CompoundType —
"(" Sequence ")" | Optional | List | Choice;

The parentheses around Sequence play only
syntactic role.

Determining the order of initialization of inher-
ited fields of a definition (and an internal defi-
nition) is tricky, since the inherited and the in-
heriting definitions may enumerate these fields
in different order. JAMOOS tries to consolidate
constraints of initialization due to the fact that
an initializer of one field may use another. If
these constraints cannot be consolidated, then
an error is reported. The detailed algorithm is
described in [48].

8. Other Language Features

Some unique elements of JAMOOS , lying out-
side the scope of this paper, are briefly described
below. An interested reader is referred to [48]
for a more detailed description of these.

1. Genericity and Modular language specifica-

tion. JAMOOS extends the correspondence
between type systems and grammar defini-
tion in two more ways. First, modular struc-
turing of software is equated with modular
grammar specification, which supports ad-
vanced concepts in parsing such as reusable
grammars and language embedding. This
feature made it possible to use JAMOOS
to generate a compiler for itself, since the
JAMOOS language can be thought of as an
embedding of C++ code in pure JAMOOS
code and vice versa to any depth.
Secondly, genericity, as a typing mecha-
nism, found its equivalent in the world of
the specification of formal languages as a
powerful means for defining generic gram-
mars, i.e., grammars which expect param-
eters. Modular parameterized grammars
make it possible, for example, to define the
syntax of arithmetical expressions indepen-
dently of the definition of literals in the lan-
guage.

2. Environmental acquisition. Environmen-
tal acquisition is a newly proposed lingual
mechanism [15] by which objects can “in-
herit” properties from their containers. In-
ner classes in JAVA [2] can be thought as a

special and restricted case of environmen-
tal acquisition. In JAMOOS , environmen-
tal acquisition is used to allow objects to
use dictionaries, which can be thought of as
symbol tables, and more generally, “inher-
ited attributes” in the parsing realm, or as
L1spP’s A-lists in the programming world.

3. Seamless integration with host language. As
in other OO programming languages, classes
in JAMOOS are the main building blocks
out of which software is made. Accord-
ingly, JAMOOS is all about type declara-
tions, with limited support for imperative
commands and expressions. Indeed, expres-
sions and commands are supported using
embedded C++4 code, which in its turn may
contain embedded JAMOOS code. Escapes
from JAMOOS to C++ and vice versa are
smooth by clear-cut division of responsibili-
ties. JAMOOS code provides all the type dec-
larations and nothing other than that, while
the evaluation of expressions as well as con-
trol structure are done in C++.

4. Automatic field name deduction. A unique
feature of JAMOOS is a sophisticated mech-
anism for automatically assigning names to
fields. With this mechanism, programmers
are not obliged to name fields in class dec-
larations as in the awkward, but typical fol-
lowing C++ code:

class Date {
public:
Day aDay;
Month aMonth;
Year aYear;

}i

9. Related Work

As a language processor, JAMOOS uses an ex-
tended BNF for productions and integrates lex-
ical and grammatical definitions. In this sense,
it is more powerful than the famous and very
popular LEX [30] and YAcC [22] tools pair,
although learning how to use it may take an
extra conceptual burden. JAMOOS is also dif-
ferent from many of the successors of LEX and
Yacc [17, 11, 19, 18, 50, 44], many of which
use better than vanilla BNF, and stronger inte-
gration of tokenization and parsing, since it is

316

JAMOOS — A Domain-Specific Language for Language Processing

an essentially declarative language for the very
specific task of language design, similar to the
FNC [23] system with its full blown functional
language OLGA.

JAMOOS has strong self-descriptive properties
and a primary case of language design in
JAMOOS was its bootstrapping. The reflective
software architecture used in the construction of
JAMOOS is reported in [31]. Arguably, the ex-
pressive power of a language can be measured
at the ease of reflectively writing its own lan-
guage processor. Much of the power of Lisp
is due to the simplicity of writing a LISP pro-
cessor in L1sp. PROLOG, and to a lesser extent
SMALLTALK, exhibit similar characteristics.

The small and cohesive computing metaphor
of JAMOOS might be compared with languages
such SMALLTALK [16], L1sp [45] and PrROLOG
[9]. However, unlike this trio, cohesiveness in
JAMOOS does not compromise strong typing.

The unification of class and procedure, and the
tree computing metaphor in JAMOOS are rem-
iniscent of the BETA [33] programming lan-
guage. What is called a “pattern” in BETA can
be viewed both as a class and as a procedure
definition. BETA, however, is a general pur-
pose programming language, objects in it are
mutable, and procedures may have conditional
and iterative constructs. This limits the degree
of similarity between objects and procedures
since objects have no iteration and it is not clear
what the semantics would be for an assignment
to a component of a procedure. JAMOOS, on
the other hand, is designed for grammar-based
architectures [27], which makes it possible to
take a more pure and unifying, even austere,
approach, in restricting the computation to con-
struction of immutable fields and allowing only
sequential or recursive computation. With these
restrictions, JAMOOS can offer a stronger uni-
fication of the class and procedure concepts.

Internal definitions in JAMOOS are quite simi-
lar to their BETA counterparts. Inner classes
in JAVA are similar to those of JAMOOS in
that the inner object can refer to fields of the
containing object. JAMOOS internal definitions
are different from nested classes in C++. In
C++, the only implication of defining a class
within another class is inserting the scope of its

class name into the name space of the containing
class. Other than that, nested class definitions
in C++ have no effect on the behaviour of the
contained class: it is not connected to any ob-
ject, is visible from outside the containing class,
and has no more access to the containing class’
members than defined by the latter’s protection
labels.

The JAMOOS restriction to sequential compu-
tation lead to a step-wise refinement semantics,
i.e., the ability of an inheriting definition to se-
lectively replace any number of named steps of
computation in the overridden definition. In
contrast, most programming languages use re-
placement semantics, in which the overriding
method completely subsumes the overridden
method. It is usually possible for the overriding
method to use a refinement semantics by calling
their overridden counterpart, but not mandated.
(In old versions of EIFFEL [37], it was even im-
possible to call an overridden method.) From a
modeling perspective, refinement, which adds
to the semantics, is almost always preferable to
overriding. In response to this preference var-
ious lingual mechanisms have been proposed,
including “before” and “after” daemons in lan-
guages such as FLAVORS and generic methods
in languages such as CLOS [3]. Notable are
SIMULA [39] and BETA for their inner con-
struct, which specifies that no method can be
overridden. JAMOOS offers a greater flexibil-
ity of selective overriding. The price, however,
is in restricting the computation to sequence of
named steps.

Paakki’s seminal survey [40] gives a broader
perspective on the unification of programming
language paradigm and processing attribute
grammars. The concept unification of JAMOOS
captures the following “equations” offered by
Paakki:

1. \ Production = Block |
and since there is one-to-one correspondence
between productions and non terminal boxes,

also | Nonterminal = Block |.
The equality holds since a production may
have local entities (the internal definitions),
whose visibility and accessability are con-
trolled by normal scope rules.

© Note that the complete algorithm for consolidating the constraints on order of computation placed by the overriding and the
overridden method offers some, but not unlimited flexibility of changing this order.

JAMOOS — A Domain-Specific Language for Language Processing

317

2. |Nonterminal = Procedure]|.
The equality here holds in that every non-
terminal can be thought of as a procedure
receiving arguments, and even returning a
value.

3. | Noterminal = Class |
and
| Production = Class|.
Just like the Mjglner/Orm [35] system, a
nonterminal in JAMOOS in a grammar cor-
responds to a class. An important difference
is that JAMOOS definition encompasses both
the abstract and the concrete aspects of a
grammar. In contrast, in Mjglner, the user
must provide a mapping between these two
grammars.

A related work applying the programming lan-
guage metaphor to the task of grammar specifi-
cation is that of Koster [29]. His CDL language
builds upon the close relationship between LL
grammars and procedural recursive program-
ming. The underlying concept is that a produc-
tion is unified with the (potentially recursive)
procedure which conducts its parsing. With
this unifying view one may prescribe, within
a production, loops and even gotos for its cor-
responding procedure. Other extensions to the
concepts of a BNF production include param-
eter passing and value return, macros and the
addition of logical predicates. The JAMOOS
approach puts limitations on the kinds of oper-
ations permitted in procedural computation, al-
lowing only sequential computation. Loops and
conditionals are captured by the type-system
constructs: lists and choice types.

Comparing JAMOOS to the LISA system [36],
we find that LISA, much in the spirit of Mjglner/
Orm environment, is a full blown interactive
environment for language definition, developed
using OO techniques [52]—but not structuring
grammar around an OO class hierarchy.

An interesting related work which combines
0O with language processing is that of Jan
Bosch [6, 7, 8] who uses an extension of the tra-
ditional object model, an OO architecture and
design principles for a framework around which
a compiler is constructed. This approach is sim-
ilar to that of LISA which uses the equation

| Attribute Grammar = Class|

at the specification level. However, Bosch’s
slant on marriage of the OO paradigm and com-
piler construction does not concentrate on new
principles of language design.

A syntax specification in JAMOOS includes
both the concrete and the abstract syntax, where
elements of the concrete syntax, which do not
serve in the abstract syntax, are represented as
perishable objects, i.e., objects which are dis-
carded after their construction is completed. In
contrast, Kadhim and Waite’s MAPTOOL [24]
allows the user to partially specify each syntax
as long as their sum has complete information.
JAMOOs is limited, however, in that the abstract
syntax is obtained from the concrete one way of
elimination. Thus, the class hierarchy of the ab-
stract syntax is a subset of that of the concrete
syntax. Computed fields in JAMOOS , which
are really attributes of attribute grammars, allow
adding more fields to the production of an ab-
stract syntax. Still, itis not possible in JAMOOS
to restructure the abstract grammar — a limita-
tion which proved to be sometimes annoying in
actual language definition.

Reflecting on the choice of host language, we
note that JAMOOS is translated into C++ [46]
(just as YACC translates to C [25]) — with a
direct correspondence between the fields of a
JAMOOS definition and C++4 data types. Most
of JAMOOS primitive types have their C++
counterparts. The more elaborate types make
an extensive use of the STL library [38]. The
Mjglner system translates grammars to BETA,
However, a rule in Mjglner cannot be as general
as a BETA pattern, since it is restricted to three
different kinds as described above.

Our choice can also be compared with that of the
more modern LISA, which chose JAvA as the
host programming language for the portability
of the graphical user interface. Such constraints
were not a factor in the design of JAMOOS, which
is a command line tool. Other than type-safety
of containers as offered by the template mech-
anism, performance considerations were also a
factor in our choice of C++-.

Another aspect in which LISA and JAMOOS
differ from each other is that LISA favors incre-
mental and interactive language development.
A LISA user can interactively add new pro-
ductions and attribute computation rules. In

318

JAMOOS — A Domain-Specific Language for Language Processing

JAMOOS, the specified language cannot be ex-
tended without recompilation of the specifica-
tion file.

It is also interesting to compare the handling
of non-syntactical aspects of a language, i.e.,
attributes as in attribute-grammars in JAMOOS
with the Doors [20] system of Mjglner. Doors
are similar to attributes, but use reference se-
mantics, instead of the usual copy-semantics of
attributes. Thus a door system is more suitable
for multi-pass compilation systems.

In contrast, JAMOOS is in principle a single-
pass system. The reason is that computation
follows that of a program call tree; the next con-
ceptual step of multiple-passes along a program
call tree is more daring, and is left to further
research. The single-pass restriction is ame-
liorated by two special features: internal defi-
nitions, which allow to revisit a node, and by a
built-in environmental acquisition [15], used for
managing symbol tables. A node a can there-
fore refer to the objects represented by nodes
in the abstract syntax subtree whose root is «,
and even invoke methods (internal definitions)
of these objects.

10. Conclusions and Further Research

Elegance and ease of use were prime concerns
in the design of JAMOOS . From the compiler-
compiler perspective, we have endeavored to
abstract JAMOOS away from many details of
parsing, lexical analysis, and intricacies of sym-
bol table management. A software engineer us-
ing JAMOOS to create a language-processing
tool should be able to concentrate on the lan-
guage design, rather than on the architecture of
the language processor.

This paper concentrated on the description of
JAMOOS as a new programming language, of-
fering an unusual merge in its tree computation
metaphor of several concepts and paradigms:
grammar specification, OO programming, and
procedural programming. Ideally, the reader
will find this perspective as esthetically pleas-
ing as we did.

From the language definition perspective we
leave a few problems open. Below we briefly
describe some of them and give some possible
directions for dealing with them.

Multi-dispatch and the Traversal Engines

Language processors often traverse the parse
tree executing a recurring operation on each
node. Consider for example the task computing
the number of appearances of the i £ keyword in
a program. In most languages, the programmer
is required to define many “engine methods”
throughout the entire class hierarchy, whose
role is not any useful computation but rather
the chore of propagating the traversal along the
tree. Implementation of only one method in
one class will actually do the counting. Such
engine method must be added and entire class
hierarchy should be changed any time a new
such traversal is needed.

Although there are design pattern solutions (see
the VISITOR pattern [13] and the ensuing lit-
erature), it might be interesting and useful to
integrate traversals into the language. In our vi-
sion, the traversal engines would be augmented
by a hierarchy of visitors and and a hierarchy
of receivers. The actual operation at each visit
is determined in a multi-dispatch fashion, de-
pending on the visitor and on the receiver.

Producing Output and Compiling

Currently, JAMOOS is well suited for consum-
ing input, but has no built-in mechanism for
producing output. JAMOOS would be extended
by adding support for output grammars. The
traversal engine mentioned above might be use-
ful in this task. An ambitious objective would
be a tree grammars language for describing a
family of trees into another such family, similar
to RIGAL [4] and PCCTS/ANTLR [41].
Such a mechanism would also address a limita-
tion of JAMOOS in which the abstract syntax can
only be obtained from the concrete one, only by
the elimination of some components, with the
same basic class structure.

Statements and Expressions in JAM0OOS

Currently, JAMOOS relies on C++ , its host
language, for writing statements and expres-
sions. As a result, JAMOOS must be translated
into this host language. Native expressions and
statements in JAMOOS will make it possible to
translate it into other languages, such as JAVA.

JAMOOS — A Domain-Specific Language for Language Processing 319

Acknowledgments

We are grateful to Gorel Hedin for inspiring
comments on an earlier version of this paper.
Meticulous reading and thoughtful comments
of the anonymous reviewers and of the guest
editors were indispensable!

References

[1] A. V. AHO, R. SETHI, AND J. D. ULLMAN, Compil-
ers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

S

K. ARNOLD AND J. GOSLING, The Java Program-
ming Language. The Java Series. Addison-Wesley,
1996.

[3] G. ATTARDI, C. BONINI, M. R. BOSCOTRECASE,
T. FLAGELLA, AND M. GASPARI, Metalevel pro-
gramming in CLOS. In S. Cook, editor, ECOOP
’89, pages 243-256, Nottingham, July 1989. Cam-
bridge University Press.

=

M. AUGUSTON, RIGAL — programming language
for compiler writing. In Baltic Computer Science
Selected Papers, number 502 in Lecture Notes in
Computer Science, pages 529—564. Springer Verlag,
1991.

[5] J. AvOTINS, C. MINGINS, AND H. SCHMIDT, Yes!
an object-oriented compiler compiler YOOCC. In
Proceedings of TOOLS 94, 1994.

[6] J. BOSCH, Layered Object Model investigating
paradigm extensibility. PhD thesis, Department of
Computer ScienceLund University, Oct. 1995.

[7] J. BOSCH, Parser delegation — an object-oriented

approach to parsing. In Proceedings of the 16™
International Conference on Technology of Object-
Oriented Languages and Systems [47], pages 55-67.

[8] J.BOSCH, Delegating compiler objects — an object-
-oriented approach to crafting compilers. In Cointe

[9] W. E. CLOCKSIN AND C. C. MELLISH, Programming

in Prolog. Springer Verlag, Berlin, 3™ edition,
1987.

[10] P. COINTE, editor, 6th International Conference
on Compiler Construction, CC’96, number 1060
in Lecture Notes in Computer Science, Linkdping,
Sweden, Apr. 1996. Springer Verlag.

[11] M. EULENSTEIN, POCO compiler generator user
manual. Technical Report A2/85, Universitit des
Saarlandes, 1985.

[12] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLIS-
SIDES, Design patterns: Abstraction and reuse of
object-oriented design. In O. M. Nierstrasz, edi-

tor, Proceedings of the 7" European Conference
on Object-Oriented Programming, number 707 in
Lecture Notes in Computer Science, pages 406—
431, Kaiserslautern, Germany, July 26-30 1993.
ECOQOP’93, Springer Verlag.

[13] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLIS-
SIDES, Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Comput-
ing. Addison-Wesley, 1995.

[14] J. GIL AND D. H. Lorenz, SOOP — A synthe-
sizer of an object-oriented parser. In Proceedings

of the 16™ International Conference on Technology
of Object-Oriented Languages and Systems [47],
pages 81-96.

[15] J. GIL AND D. H. LORENZ, Environmental Acqui-
sition — A new inheritance-like abstraction mech-
anism. In Proceedings of the 11" Annual Con-
ference on Object-Oriented Programming Systems,
Languages, and Applications, San Jose, Califor-
nia, Oct. 6-10 1996. OOPSLA’96, Acm SIGPLAN
Notices 31(10) Oct. 1996.

[16] A. GOLDBERG AND D. ROBSON, Smalltalk-80: The
Language. Addison-Wesley, 1989.

[17] G.GOOS AND J. HARTMANIS, editors, GAG: A Prac-
tical Compiler Generator, number 141 in Lecture
Notes in Computer Science. Springer Verlag, 1981.

[18] R. W. GRAY, V. P. HEURING, S. P. LEvVI, A. M.
SLOANE, AND W. M. WAITE, Eli: A complete,
flexible compiler construction system. Communi-
cations of the ACM 35,35(2):121-131, Feb. 1992.

[19] J. GROSCH AND H. EMMELMANN, A tool box for
compiler construction. In G. Goos and J. Hartma-
nis, editors, Compiler Compilers 3rd International
Workshop, CC’90, number 477 in Lecture Notes in
Computer Science, pages 106—116. Springer Verlag,
1990.

[20] G. HEDIN, Using door attribute grammars for incre-
mental name analysis. In Object-Oriented Environ-
ments, The MJOLNER Approach [26], chapter 33,
pages 497-510.

[21] E. JARNVALL, K. KOSKIMIES, AND M. NITTYMAKI,
Object-oriented language engineering with TaLE.
Object-Oriented Systems, 2:77-98, 1995.

[22] S. C. JOHNSON, Yacc — yet another compiler com-
piler. Technical Report Computing Systems Tech-
nical Report 32, AT&T Bell Laboratories, Murray
Hill, N.J., 1975.

[23] M. JOURDAN, D. PARIGOT, C. JULIE, O. DURIN, AND
C. L. BELLEC, Design, implementation and eval-
uation of the FNC-2 attribute grammar system.
In Proceeding of the Conference on Programming
Languages Design and Implementation, pages 209—
222, White Plains, NY, June 1990. Published as
ACM SIGPLAN Notices, 25(6).

320

JAMOOS — A Domain-Specific Language for Language Processing

[24] M. B. KADHIM AND W. M. WAITE, Maptool—
supporting modular syntax development. In Cointe
[10].

[25] B. W. KERNIGHAN AND D. M. RITCHIE, The C Pro-
gramming Language. Software Series. Prentice-

Hall, 2" edition, 1988.

[26] J. L. KNUDSEN, M. LOFGREN, O. L. MADSEN, AND
MAGNUSSON, Object-Oriented Environments, The
MJDLNER Approach. The Object-Oriented Series.
Prentice-Hall, 1993.

[27] J. L. KNUDSEN, E. SANDVAD, AND S. MINOOR,
Grammar-based architectures—introduction. In
Object-Oriented Environments, The MJOLNER Ap-
proach [26], pages 259-273.

[28] K. KOSKIMIES, Object orientation in attribute gram-
mars. In H. Alblas and B. Melichar, editors,
Attribute grammars, Applications and Systems, Pro-
ceedings of the International Summer School SAGA,
volume 545 of LNCS, pages 297-329, Prague,
Czechoslovakia, June 1991. Springer Verlag.

[29] C. A. H. KOSTER, Using the CDL compiler-
compiler. In F. L. Bauer and J. Eickel, edi-
tors, Compiler Construction—an advanced Course,
number 21 in Lecture Notes in Computer Science,
pages 366-395. Springer-Verlag, 1974.

[30] M. E. LESK, Lex — a lexical analyzer generator.
Technical Report Computing Systems Technical
Report 39, AT&T Bell Laboratories, Murray Hill,
N.J., 1975.

[31] D.H.LORENZ, Tiling design patterns — a case study
using the interpreter pattern. In Proceedings of the

12" Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications,
Atlanta, Georgia, Oct. 5-9 1997. OOPSLA’97, Acm
SIGPLAN Notices 32(10) Oct. 1997.

[32] O. L. MADSEN, Towards a unified programming
language. In E. Bertino, editor, Proceedings of
the 14" European Conference on Object-Oriented
Programming, number 1850 in Lecture Notes in
Computer Science, Sophia Antipolis and Cannes,
France, June 12-16 2000. ECOOP 2000, Springer
Verlag.

[33] O.L. MADSEN, B. M@LLER-PEDERSEN, AND K. NY-
GAARD, Object-Oriented Programming in the Beta
Programming Language. Addison-Wesley, 1993.

[34] O. L. MADSEN AND C. N@RGAARD, An object-
oriented metaprogramming system. In Object-
Oriented Environments, The MJ@OLNER Approach
[26], chapter 19, pages 283-296.

[35] B. MAGNUSSON, The mjglner orm system. In
Object-Oriented Environments, The MJOLNER Ap-
proach |26], chapter 1, pages 11-23.

[36] M. MERNIK, M. LENIC, E. AVDICAUSEVIC, AND

V. ZUMER, Compiler/interpreter generator sys-

tem LISA. In Proceedings of the 33" Hawaii
International Conference on System Sciences, Jan.
2000.

[37] B. MEYER, EIFFEL: The Language.
Oriented Series. Prentice-Hall, 1992.

Object-

[38] D. R. MUSSER AND A. SAINI, STL Tutorial and Ref-
erence Guide. C++ Programming with the Standart
Template Library. Addison-Wesley, 1996.

[39] K. NYGAARD AND O.-J. DAHL, Simula 1967. In
R. L. Wexelblat, editor, History of Programming
Languages. ACM, 1981.

[40] J. PAAKKI, Attribute grammar paradigms—a high-
level methodology in language implementation.
ACM Computing Surveys, 27(2):196-255, June
1995.

[41] T. PARR AND J. LILLY, ANTLR 2.10 Reference Man-
ual, 1997. http: / /www.antlr.org/doc/index.html.

[42] L. C. PAULSON, ML for the Working Programmer.
Cambridge University Press, Cambridge, 1991.

[43] I. C. PYLE, The ADA Programming Language.
Prentice-Hall, 2" edition, 1985.

[44] M. SASSA, H. ISHIZUKA, AND 1. NAKATA, Rie, a
compiler generator based on a one pass-type at-

tribute grammar. Software — Practice and Experi-
ence, 25(3):229-250, Mar. 1995.

[45] G. STEELE, Common Lisp the language. Digital,
1990.

[46] B.STROUSTRUP, The C++ Programming Language.
Addison-Wesley, 3" edition, 1997.

[47] TOOLS 95 Europe Conference, Proceedings of

the 16™ International Conference on Technology
of Object-Oriented Languages and Systems, Ver-
sailles, France, Mar. 6-10 1995. Prentice-Hall.

[48] Y. TSOGLIN, The JAMOOS programming lan-
guage. Master’s thesis, Technion—Israel Institute
of Technology, Technion City, Haifa 32000, Israel,
Dec. 2000.

[49] N. Wirth. The programming language Pascal. Acta
Informatica, 1:35-63, 1971.

[50] P-C. WU AND E-J. WANG, An object-oriented
specification for compiler. ACM SIGPLAN Notices,
27(1):85-94, Jan. 1992.

[51] P-C. Wu and F-J. Wang. Applying classifica-
tion and inheritance into compiling. ACM OOPS
Messengers, Oct 1993.

[52] V. ZUMER, N. KORBAR, AND M. MERNIK, Auto-
matic implementation of programming languages
using object-oriented approach. Journal of Sys-
tem Architecture, 43(1-5):203-210, 1997. ISSN
1318-7621.

JAMOOS — A Domain-Specific Language for Language Processing

321

Received: July, 2001
Revised: October, 2001
Accepted: November, 2001

Contact address:

Joseph (Yossi) Gil

Department of Computer Science
Technion Israel Institute of Technology
Haifa 32000, Israel

e-mail: yogi@cs.technion.ac.il

Yuri Tsoglin

IBM Research Laboratory

Science Industrial Park (MATAM)
Haifa 31905, Israel

e-mail: tyuri@cs.technion.ac.il

The academic titles of JOSEPH (YOSSI) GIL were conferred by the He-
brew University of Jerusalem: B.Sc. in Physics, Mathematics and Com-
puter Science (1984, suma cum laude), M.Sc. in Computer Science
(1986, suma cum laude), and Ph.D, (1990), under the supervision of
Prof. Avi Wigderson. Dr. Gil teaches at the faculty of the department
of computer science at the Technion—Israel Institute of Technology.
He was a member of the program committee of conferences such as
TOOLS, ECOOP and OOPSLA, and he chaired TOOLS USA’98. His
research interests include object oriented programming languages and
compiler construction.

YURI TSOGLIN is a member of the research staff at the IBM Haifa Re-
search Lab where he is currently engaged in research on compilation.
Yuri obtained his B.Sc. (1995) and M.Sc. (2001) degrees from the De-
partment of Computer Science at the Technion. His dissertation was
about the design, definition and implementation of the Jamoos pro-
gramming language. His research interests include compilation theory,
programming languages, object oriented programming.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

