Journal of Computing and Information Technology - CIT 9, 2001, 3, 239-246

239

A System on Visualization
of Program Executive Path
and Extraction of Path Sets

Cai Zhimin, Rong Guoping, Zhou Peng and Pan Jingui

State Key Laboratory for Novel Software Technology, Computer Science and Technology Dept., Nanjing University, China

This article goes into the analysis of program executive
path at length, performs a system of program executive
path visualization, compares several aspects of different
path coverage criteria and discusses the implementation
of two specific, yet important, path combinations. In the
end, it discusses briefly about the significance based on
this system and further study.

Keywords: program executive path, route-covering com-
bination, divergence-covering combination, directional
graph, independent statement block, program semantics

1. Introduction

Program executive path is an important aspect
of describing the syntax and semantics of a pro-
gram. It not only reflects a program’s static
semantics, its whole status space and problem
solving space determined by the set of program
executive paths, but also reflects a program’s dy-
namic semantics, its transforming flow of status
space through the executing flow. Obviously,
program executive path also has an essential
role in the proof of program validation and pro-
gram equivalence. At the same time, it is the
basis of software testing, especially white box
testing.

Therefore, analysis of program executive path
is of special importance. Unfortunately, analyz-
ing all the paths in a program is often impossi-
ble, since programs with loops may contain an
infinite number of paths. Therefore, main en-
ergy should be spent on how to extract the best,
if possible, subset of program paths, of which

the features will be studied, as the substitute of
whole path set. So that, how to select a con-
siderate subset from whole path set, or in other
words, how to decide a considerate path selec-
tion criteria, to achieve a high coverage and
low cost, becomes a key point of the question.

Much work has been done in this field, and a
number of criteria have been proposed during
the years [5-8], including statement coverage,
branch coverage, loop coverage and so on. And,
they were compared in [3]. Also, Sipser pointed
out that most of exhausting search belongs to NP
problem in [12]. Specially, Chu raised several
visual model of program executive path [10].

This paper is trying to introduce a system based
on program directional graph (called directional
graph or graph in the following, if no conflicts).
In this system, program executive path can be
visualized in a clear way, and so path subsets,
featuring different properties and fulfilling dif-
ferent demands, can be generated easily. The
advantage of this system includes: its clear vi-
sualization of program executive path, robust-
ness of its algorithm and high independency of
platform. Anyway, the implementing system is
working on k&r C language.

This paper also puts forwards a useful path se-
lection criterion, and to make clear the advan-
tage of our criterion, several criteria are com-
pared briefly in Section 3. The conclusion and
further research can be found in Section 5.

240

A System on Visualization of Program Executive Path

2. Construction of Directional Graph

Obviously, construction of directional graph is
the basis of the system. Thus, we will go into it
a little further. A directional graph is the visu-
alization of a program. So, it must remain con-
sistent in syntax and semantics of a program, or
in clearer word, render original program’s syn-
tax and semantics without any distortion. For
this system, the consistency can be described as
following. If constructing process is seen as a

mapping:
f : program — directional graph

f must be reversible, that is, we can construct an
equivalent program from the directional graph,
although program literal may be a little differ-
ent due to the implementing method. This is
the fundamental rule of constructing directional
graph and the premises of the algorithm’s va-
lidity. Secondly, the graph itself should be in-
tuitively easy to be understood, able to reveal
the program meanings hidden in program text.
This will promote the algorithm efficiency.

First, let’s investigate a little energy in the obser-
vation of relations between neighboring state-
ments. Wong divided a program into the se-
quence of basic blocks in [1]; Weyuker imported
the term of disjoint block in [4]. Similarly, we
first introduce the term of Independent State-
ment Block, ISB for short, and then try to ex-
plain how to construct a directional graph from
a program, based on ISBs.

Independent statement block means that:

1. a statement or declaration or condition is a
minor independent block; and

2. if the executing order of two minor indepen-
dent blocks is of strict consequence, these

2\
-0 & e 9 o
N\ N T

N ——7

two minor independent blocks can be com-
bined into one minor independent block,
where strict consequence means thatin a pro-
gram executive path, for neighboring minor
independent blocks A and B, the status of A
appearing before B and that of B appearing
before A cannot be found at the same time;
and,

3. if none of such minor independent blocks
can be combined, each of them is called an
independent statement block.

According to the above, we can easily divide a
program into the sequence of ISBs. Let’s go
a little further into the executing order among
ISBs. We may find that there are altogether four
types of executing order, respectively sequen-
tial, selective, iterative and transferring order,
corresponding to sequential structure, selective
structure (including if structure and case struc-
ture), iterative structure (including while, do
while and for structure) and transferring struc-
ture (including goto, break and continue struc-
ture).

The above structures’ representation in direc-
tional graph is shown separately in Figure 1.

Now, let’s move to the description of directional
graph. To simplify the discussion, we here as-
sume that a program is either a main program or
a single module and has only one entry and one
exit point. The directional graph of a program
Pis G(P) = (N, E, ny, ny), where N is a finite
set of nodes, E C N X N, is the set of direc-
tional edges, ny; € N is called the start node,
and ny € N is called the end node. Each node
in the graph, except the start node and the end
node, represents an ISB in P; for distinct nodes
mandn € N, (m, n) € E called an edge, is legal
if there is a possible executing transfer from the
ISB represented by m, to the ISB represented by
n, also we call node m a predecessor of n, and n

VRN
400 o-s—0—0 @

3 S~~~

2
O—@ O—-g O—-0=>@ 5

N 7

Fig. 1. The representation of different structures in a directional graph; respectively is sequential structure if
structure, while structure, do while structure, for structure and case structure. Transferring structure is neglected here
since its representation is similar to sequentlal structure. In the figure, e represents a statement, ¢, a condition, ©, a
iterator, and arrow point represents control flow.

A System on Visualization of Program Executive Path

241

is a successor of m. If node has no successors,
itis called a dead node. Dead nodes often mean
an abnormal or bad program. We assume that
there is no (n,n) € E. Specially, there exist
edges (ny, i) and (o, ny), where node i and o
called entry node and exit node, separately.

The graph defines the paths in a program. In
G(P), a subpath is a sequence of nodes p =
(n1,na, n3, ..., np) suchthatforalli, 1 <i < p,
(nj,nir1) € E. A program executive path or a
path is a subpath whose first node is start node
and last node is end node. A circle or a loop
is a subpath whose first node is same as last
node, representing to an iterative or transferring
structure in the program.

As mentioned above, graph must represent the
original program consistently and efficiently.
So, in the implementing system, we assume:
compound conditions not decomposed, decla-

step4

stepS

rations and statements not distinguished, func-
tion call seen as normal statement or expres-
sion, function definitions analyzed respectively
in a file if it contains more than one function
definitions, and included head files not parsed.
Also, some blank nodes may be included dur-
ing construction; yet, they have no impact on
the control flow of a program. Two properties
of a directional graph are stated below:

1. eachnode, except the dead node, in the graph
normally has 1 or 2 successor nodes, each
node has at least one predecessor node, but
no maximal value; and

2. iterative and transferring structures cause the
loops in the graph, which often mean back-
tracking in the search. Therefore the solving
of loops is of great importance in the algo-
rithm.

generate it into a sub graph, goto step4; ELSE IF itis a
compound structure, enter inner layer, goto stepl;

IF current layer ends, check whether there is outer
layer to it; IF true, goto outer layer, goto step2; ELSE
goto step5;

add END node, END.

Fig. 2. The constructing algorithm of directional graph.

step0 initialize including adding a START node;
stepl split the program of current layer through
statement /declaration/condition;
step2 identify the type of current statement;
step3 IF it can be combined in a single node, combine
it, goto step4; ELSE IF it is a simple statement,
1 int total, valid nim, max;
2 inti, sum, average;
3 int value[100];
4 total=0; valid=0; i=1; sum=0; min=MIN; max=MAX;
5 while (value[i]<>—999 and total < 100){
6 total™™;
7 if ((value[i]>=min)&&(valueli])){
8 total™t;
9 sum=sum-+value[i];

I
10 else continue;
1 it

}

12 if(total>0)

13 average=sum/total;

14 else average = —999;
Mapping: 1-4:A, 5:B, 6:C, 7:D, 8-9:E, 10:F, 11:G, 12:
H, 13:1, 14:J.

Fig. 3. An example to demonstrate the algorithm.

n

START —» A —»By—9»C—P»Dy—P» E —» G —» M Hy—»I

v v

J —» END

T n

» F

M b 4

Fig. 4. The directional graph derived from the above program fragment, in which M is a blank node.

242

A System on Visualization of Program Executive Path

Before we move to discussing the details of
the algorithm, one thing must be pointed out.
One must confess that goro statement is not al-
ways a trouble causer in software, especially
for programming of embedded systems. Some-
times, it is an efficient tool in programming. So,
we deal with simple and easily understood goto
statements, otherwise, we will give a warning
message that it is difficult to construct such a
directional graph.

Now, it is time to focus on the algorithm itself.
The basic idea is: seeking from the beginning
of a program, judge the relations of neighboring
statements. If they can be combined, combine
them, otherwise, create a new node and set its
links to other nodes, constructing correspond-
ing subgraph. Seek and add nodes repeatedly,
until it reaches the end of the program. Because
programs are normally nested, graph generation
is not done step by step along the program, but
partitioned, needing backtracking. Or, in other
words, because the syntax of a program is re-
cursive, the algorithm is recursive. In Figure 2
the algorithm is shown in detail.

The example given in Figure 3 demonstrates the
algorithm, which is also frequently used in the
following discussion. This program fragment is
originally used to compute the average value of
an array of numbers. The corresponding map-
ping between nodes and statements is shown in
the figure. The graph derived from Figure 3 is
shown in Figure 4.

3. Discussion of Three Selection Criteria

3.1. Comparison of Three Criteria

Definition: Independent Path is a path that
contains at least one uncovered ISB, compared
to the paths that have existed or have been de-
rived. Independent path criterion requires that
each path extracted is an independent path dur-
ing extracting procedure. In nature, it is equi-
valent to statement coverage criteria. It needs
that every statement of a program be executed
at once in the test. It is well accepted that one
may not feel confident about the program’s be-
havior if there are some statements that are still
not executed any time. After all, one should not
be so glad because it is clear that even if all the
statements are executed in the test, a program is

very likely to contain errors. So, this criterion
is regarded as the weakest one. It is mostly used
for comparison purpose, and so is in this paper.
In fact, the path set derived from this criterion
can only reveal some literal errors and simple
logical errors in a program; it does not reflect
real transforming flow of program status space,
especially the transforming procedure of pro-
gram dynamic semantics, due to iterative and
transferring structures. So, the defect of the in-
dependent path criterion (called criterion 1 in
the following, if no conflicts) is apparently dis-
tinct. For the example in section 2, a possible
path setis {(A, B, H,I), (A, B, H,J), (A, B, C,
D,F, M, B, H,1I), (A,B,C,D,FM,B,H,J),
(A,B,C,D,E,G,M,B,H, 1), (A,B,C,D,E,
G, M, B, H, J)}, whose path number is 6.

Loop coverage criterion is such a criterion that
the path set must cover all the possible loops
combinations at least once. In formal words,
if a program has n loops, a path set P satisfies
loop coverage criterion, if paths with 7 loops are
executed at least once, where 1 < ¢ < n. This
criterion subsumes branch coverage criterion,
which requires that each branch be covered in
the set (if there is no loops/iterating or trans-
ferring structure, they are identical). Under this
criterion, path p (A, B, C, D, E, G, M, B, C,
D, FE, M, B, H, I) needs to be tested, while path
q(A,B,C,D,EM,B,C,D,E, G,M,B, H,
I) can be excluded if path p has been tested.
Consider path p and ¢, they both have loops m
(D, F, M) and n (D, E, G, M); the difference
is the executing order of two loops. Such that,
this criterion (called criterion 2 in the following,
if no conflicts) regards that they reflect similar
program dynamic semantics, it is unnecessary
to test them repeatedly (Strictly, the transform-
ing of program status space is wholly different
through different paths). Criterion 2 can cover
all the statements and all branches, and also
cover all iterative and transferring structures. It
reflects more effectively the influence on pro-
gram semantics, due to the variation of different
number of executing loops. A significant num-
ber of errors will be revealed by such a test.
Of course, the path number increases rapidly,
compared with criterion 1. And backtracking is
inevitable in extracting paths. For the example
in section 2, a possible path number is 8.

Strong loop coverage criterion, based on loop
coverage criterion, it also requires that all the

A System on Visualization of Program Executive Path

243

possible loop permutations should be addition-
ally executed at least once. Under this crite-
rion (called criterion 3 in the following, if no
conflict), path p and path ¢q are different. It ar-
gues that although loop m and loop n appear in
both paths, the executing order is not the same;
the transforming of program status space along
each path is not same. They should be regarded
as paths with different program semantics, and
thus should both be tested. Criterion 3 takes into
account the executing order of different loop,
and considers of its influencing on program dy-
namic semantics, then reflects more details of a
program’s semantics transforming along differ-
ent paths. After all, one obvious disadvantage
is that the path number increases prominently,
compared with criterion 2, even causing com-
bination exploding (In fact, it partly indicates a
real state that analyzing all paths in a program
belongs to NP problems). And, backtracking
is an important part of the extracting algorithm.
For the example in section 2, a possible path
number is 10.

One thing must be mentioned in above discus-
sion, a single loop is assumed to execute once
or none, which seems weak to reflect the real
state of program executing. After all, on one
hand, such a test concerning the executing times
of a loop can be found in Woodard’s LCSAJ
test in [9], which is beyond this paper, also we
know that the variation in executing a single
loop with different times is only the value of
variables, which probably has less influence on
program test; on the other hand, one should bal-
ance between coverage and cost, since too many
infeasible paths will be extracted if too much
attention is paid to counting the executing times
[2]. So, we are only interested in whether a loop
is executed or not and in the order in which
certain loops are executed, while the executing
times is not taken into account.

Now, let’s estimate path numbers and comput-
ing complexity of three criteria. Since most of
the time is spent on visiting nodes, only such
time is concerned in the algorithm. Supposed
that there are n nodes in a program P's direc-
tional graph, and the time of visiting each node
is constant. Because at most n nodes are visited
in a single path, time of visiting a single path is
assumed O(n).

Under criterion 1, McCabe pointed out that the
path number equals to the cyclomatic complex-
ity of a program in [7], which is, of course,
less than n, assumed O(n). So the whole
time consumption is O(n*n). Under criterion
2, path number has nothing to do with n, but
with number of loops. Assumed there are ¢
loops in program P, the number of paths that
have ¢ loops is C!, that have + — 1 loops is
Ci_l, ..., that have one loop is C}, that have
no loop is CY. Altogether, path number is
Cl+C V.. 4+ Cl+ Y =2 The whole
time consumption is O(n*2"). Since ¢ is usually
less than 20, and is also far less than #n, such a
scale is compatible. Similarly, under criterion
3, path number is P: + PI=1 + ... + P! + P,
Obviously if 7 1s moderately large, it is beyond
a computer’s ability.

In the end, summary of the comparison is shown
in Table 1.

3.2. Selection of Our Implementing System

The users of this system are designers of embed-
ded systems, who hold a high view of program
correctness, thus expecting to make the most of
different test paths from different angles. So, we
introduce strong loop coverage criterion, whose
merits can be clearly seen from the compari-
son. Another reason is that, several estimable
path sets can be extracted, based on strong loop

Criterion | Yatement | Branch. | k20 | Somenes | number | Chssmackine | Cordpiexity
Cri. 1 able disable disable | bad Small | None Low

Cri. 2 able able able good Large | Alittle High

Cri. 3 able able able better Larger | Much being NP

Table 1. Comparison of different path selection criteria.

244

A System on Visualization of Program Executive Path

coverage path set. With regard to combina-
tion exploding, the following should be done:
for programs whose cyclomatic complexity is
too high, for example, more than 20, a warning
message will be given that it is possible to cause
combination exploding; else if there are still too
many potential paths, the user may specify a
maximal path number or other limits to reduce
the path number.

4. Implementation of the System

For comparison purpose, we implemented two
path sets, based on two selection criteria. One
set is Route Covering Combination, short for
RCC, which is a path set, based on strong loop
coverage criterion; the other one is Divergence
Covering Combination, short for DCC, which
is the smallest path set that covers all branches
in a program. In fact, it is based on branch cov-
erage criterion. In the system, we obtain paths
of RCC first, and then select certain paths from
RCC to build DRC.

4.1. Extraction of RCC

Brief of the algorithm is: from start node,
search through the graph, using DFS (Depth
First Search), storing unvisited links of nodes
to node stack, until reaching end node (thus a
path is obtained) or a dead node, pop an unvis-
ited node from node stack, and go on searching
until node stack is empty, which means RCC is
complete, or path number reaches certain max-
imal number, which means the program has to
end abnormally.

Data structures related to algorithm is explained
below:

Node: containing program text corresponding
to a node. Each node has two links. If it has
two successors, the left link points to the suc-
cessor of true branch, the right one to that of
false branch. Else, if it has only one successor,
the left link works, by default. Otherwise, both
links are set null.

Stack: Path stack stores current searching
path. Node stack stores unvisited nodes dur-
ing the search. Temp stack stores temporary
subpath.

Path list stores extracted paths and finally writes
them to a file. Loop list controls loops, recog-
nizing, recording and comparing loops in cur-
rent searching path, also in charge of finding
and delete duplicated circles.

Backtracking of seeking is necessary due to
the requirement of searching different branches,
avoiding duplicated loops and returning from
dead nodes.

A complete extracting algorithm is shown be-
low:

Initialize the surroundings of seeking; include ad|ding a

nul node to node stack; initialize the graph;
WHILE node stack not empty do
WHILE current node is not END do
IF right link is not empty, push it to node stack;
temp node := left link;
IF temp node is null //back tracking
repeatedly pop nodes from node stack and
modify path stack and clheck path until there
are no same circles in path stack; store the last
popped node to temp node;
current node=temp node;
IF current node is END, BREAK;
ELSE
Push temp node to path stack;
Like above, do popping, modifying and
clhecking and storing;
current node=temp node;
IF current node is END, BREAK;
ENDIF
ENDWHILE // find a single path;
IF node stack is empty, BREAK;
Like above, do popping, modifying and c|hecking
and storing;
print the path from path stack; path number plus 1;
/*start another route seeking;*/
IF path number larger than MAX, BREAK;
ENDWHILE // find all posl|sible routes

4.2. Extraction of DCC

There is some practical difficulty in implement-
ing DCC strictly. It is not so easy to find such
a minimal set that has least paths, because such
a set is possibly multiple, and in case of com-
bination exploding, it is impossible to find a
minimal set because RCC is not even obtained
correctly. Also, in practical test, minimal path
number usually does not mean the best test ef-
fect. In fact, users expect from DCC to get a
good test quality with relatively small path set.
Then, in the system, we just try to find first
satisfying path set as DCC.

Thus, the algorithm of DCC is described as fol-
lowing: we first count the number of the condi-
tions in the program, supposed is n, and add a
coverage array to each path to record covering
results of different branches. Also, we initialize
a balance array to record covering status in cur-
rent DCC. Of course, the size of coverage array
and balance array is both 2*n, since a condition

A System on Visualization of Program Executive Path

245

has a true branch and a false branch, altogether.
Initially the value of item in both arrays is O.
At certain time, if certain branch of a condi-
tion is covered, the corresponding item will be
set 1. In the beginning, the coverage array of
each path in RCC is assigned according to its
coverage of all the branches. Pick a path from
RCC one by one, compare it to balance array
by "eXclusive OR" operation to get its current
covering quality, which is represented as cover-
ing degree, number of array items, whose XOR
result is 1) and redundant degree, number of
array items, whose XOR result is 0), select the
path that has the highest covering degree and the
lowest redundant degree and add to DCC, then
modify the balance array according to current
status of DCC. Repeat these operations until all
the items of balance array are 1, thus DCC is
generated.

The details of the algorithm are as following.

initialize the seeking; END
WHILE not END
WHILE path list not empty
get a path from path list; compare with Balance
Array to calculate the current value of this path;
ENDWHILE
rest the path list;
Best Path := null;
WHILE path list not empty
get a path from path list;
IF this path is better than Best Path, replace it;
ENDWHILE
ad|d this Best Path to teh Set and modify the Balance
Array;
clheck whether Balance Array is FULL,
if so, END := true;
reset the value of eaclh path;
ENDWHILE

:= false;

5. Conclusion and Further Research

5.1. Conclusion Drew from the Experiment

We implemented our system with C*+ Builder
3.0 on PC P100/40M and tested 80 programs,
trying to find the relations among path number,
nest number, and cyclomatic complexity.

Asregards RCC, 12 cases exceed the upper limit
(10000 paths), 8 cases have paths more than
1000, 38 cases have paths more than 10, the
others have less than 10. But as regards DCC,
all the cases have paths less than 10. We sup-
pose that RCC may have a good test quality in
most cases, and that DCC can be used to test
branches and loops in a program in quick time.

The relations among path number, nest num-
ber and cyclomatic complexity is not so simple.

For programs that do not contain loops, path
number increases with nest number and cyclo-
matic complexity. But for programs that contain
loops, the relationship is not an increasing func-
tion. Path number is more related to the nature
of loops. This will be the subject of our further
research.

5.2. Further Research

As is known from the above study, RCC is based
on loop coverage, with an aim to study the trans-
forming procedure of program dynamic seman-
tics through checking whether a certain loop
is executed or not and through relative execut-
ing order of loops in an executive path. DCC
is based on branch coverage, with an aim to
study the transforming procedure of program
dynamic semantic through checking whether a
certain branch is executed or not and relative ex-
ecuting order of branches in an executive path.

This system can help us do some research on
special-aimed path extracting techniques. Now
we are considering the techniques including fol-
lowing aspects: path set in which specified
statements or branches are covered, and path
set in which definitions or references of speci-
fied variables are covered. In addition, we are
also focusing on the following areas.

Analyzing the characteristics of program syntax
and semantics embodied in a program executive
path, which is one of our primary research in-
terests.

Studying relations between program complex-
ity and path number, to find the delicate deter-
minism of a program’s complexity on the path
set.

And, auseful research is to get practicing data of
relations between path number and latent bugs
number of programs. PG-Relief system, de-
veloped in cooperation with Fujitsu Company,
can find latent bugs in a program. Based on
these data, we hope to find statistical relations
between them through testing large numbers of
programs, thus using it as a useful guide in pro-
gramming.

Also, we try to test programs from different an-
gles, in different test environments, from which
we can study the validation and maturity of pro-
gram test, hence we will have a deeper under-
standing of program correctness.

246

A System on Visualization of Program Executive Path

References

[1]

S

W. ERIC WONG, JOSEPH R. HORGAN, SAUL LON-
DON, AND ADITYA P. MATHUR, “Effect of Test Mi-
nimization on Fault Detection Effectiveness” , Proc.
17" International Conf. On Software Engineering,
April 23-30, 1995, Seattle, Washington, USA

D. HEDLEY AND M. A. HENNELL, “The Cause and
Effects of Infeasible Paths in Computer Programs”,

Proc. 8" International Conf. On Software Eng., Aug
28-30, 1985, London, UK

Lorl A. CLARKE, ANDY PODGURSKI, DEBRA .
RICHARDSON, AND STEVEN J. ZEIL, “A Formal Eval-
uation of Data Flow Path Selection Criteria”, IEEE
Trans. On Software, Eng., Vol. 15, No. 11, Nov.
1988

ELAINE J. WEYUKER, “Evaluating Software Com-
plexity Measures”, IEEE Trans. On Software Eng.,
Vol. 14, No. 9 Sept. 1988

SANDRA RAPPS, ELAINE J. WEYUKER, “Selecting
Software Test Data Using Data Flow Information”,
IEEE Trans. On Software Eng., Vol. Se—11, No. 4,
April, 1985

PHYLLIS G. TRANKL AND ELAINE J. WEYUKER, “An
Applicable Family of Data Flow Testing Criteria”,
IEEE Trans. On Software Eng, Vol. 14, No. 10, Oct.
1988

THOMAS J. MCCABE, “A Complexity Measure”,
IEEE Trans. On Software Eng., Vol. Se-2, No. 4,
Dec. 1976

S. C. NTAFOS, “On Required Element Testing”,
IEEE Trans. On Software Eng., Vol. Se—10, No. 6,
Nov. 1984

M. R. WOODARD, DAVID HEDLEY, AND MICHAEL
A. HENNELL, “Experience with Path Analysis and
Testing of Programs”, IEEE Trans. On Software
Eng., Vol. Se-6, No. 3, May, 1980

CHU JUNJIE, “Developing higher level views of exe-
cution paths”, Chinese J. Computers, Vol. 21, No.
3, Mar. 1998

ROGER S. PRESSMAN, Software Engineering, A
practitioner’s Approach, Fourth Edition 1997,
McGraw-Hill

MICHAEL SIPSER, Introduction to the Theory of
Computation, 1997, PWS

KENNETH C. LOUDEN, Compiler Construction,
Principles and Practice, 1997, PWS

ZHENG RENIJIE, Computer software test techniques,
1992, Tsinghua University Press

XU JIAFU, Corpus of Xu jiafu, 228-248, 1992,
Nanjing University Press

Received: June, 2001
Accepted: September, 2001

Contact address:

Cai Zhimin

State Key Laboratory for Novel Software Technology
Computer Science and Technology Dept.

Nanjing University, 210093, China

e-mail: czhimin@mes.nju.edu.cn

zhimin_ cai@hotmail.com

Rong Guoping

State Key Laboratory for Novel Software
Technology, Computer Science and Technology Dept.
Nanjing University, 210093, China

e-mail: jacky@mes.nju.edu.cn

Zhou Peng

State Key Laboratory for Novel Software Technology
Computer Science and Technology Dept.

Nanjing University, 210093, China

e-mail: duckbill@dislab.nju.edu.cn

Pan Jingui

State Key Laboratory for Novel Software Technology
Computer Science and Technology Dept.

Nanjing University, 210093, China

Phone: 86-25-3260023

Fax: 86-25-3317685

e-mail: panjg@nju.edu.cn
panjg@nanjing-fnst.com

CAI ZHIMIN born in 1977, obtained his B.Sc. degree from Nanjing Uni-
versity, China, in 1999, and now is a graduate student of the graduate
school, Nanjing University. He is doing research in the field of soft-
ware testing and is also involved in a joint research project of Nanjing
University and Fujitsu Company. He focused on information retrieving
and analyzing before he moved to software engineering two years ago.
His research interest is broad and mainly restricted in software engi-
neering, including software testing and maintenance, software metrics
and software quality.

RONG GUOPING born in 1977, obtained his B.Sc. degree from Nanjing
University, China, in 2000, and now is a graduate student of the graduate
school, Nanjing University. His research interest includes XML based
systems and formal language analysis.

ZHOU PENG born in 1978, obtained his B.Sc. degree from Nanjing Uni-
versity, China, in 1999. After one year’s teaching career, he is now a
graduate student of Nanjing University. His research interest is mainly
focused on parallel and distributed system and system visualization.

PAN JINGUI born in 1952, has been in research staff of Computer Sci-
ence & Technology Dept., of Nanjing University since he graduated
from Nanjing University in 1975. His research interest includes know-
ledge engineering and application and multimedia distance education.
He is author or co-author of several books on software application and
education and has published over 30 papers in journals or conferences
since 1990. In recent years he has focused on middle ware, informa-
tion retrieval and distance learning. He is a member of IASTED, also
the editor of Computer Research and Development and Microcomputer
Systems, China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

