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The goal of this paper is to explore the power of
stochastic search methods, in particular genetic algo-
rithms, to solve a challenging problem in experimental
physics. The problem is to find an optimum frequency
to stabilize atoms by high-intensity laser fields. The
standard approach to search for optimal laser parameters
has been by trial and error. This is the first known
application of a genetic algorithm technique to model
atomic stabilization. Genetic algorithms worked well
for this problem as a way to automate the search in a
time efficient manner. A parallel platform is used to
perform the genetic search efficiently. Locating the best
frequency to achieve a suppression of ionization, which
is predicted to occur at high intensities, can help design a
laboratory experiment and tune to that frequency in order
to identify a stabilization effect. The genetic algorithms
did successfully identify this optimum frequency. It
is indeed possible to extend the number of unknown
tunable laser parameters, beyond searching merely over
frequency space. For instance, optimal pulse shape and
pulse duration can also be included. While conducting
such a search in multi-dimensional parameter space,
parallel genetic algorithms can offer an advantage to the
tedious trial and error procedures.

1. Introduction

This paper aims at finding the optimum fre-
quency via genetic algorithms �GA�, for which
an atomic stabilization effect is maximum. It is
possible to search frequency space to locate this
optimum based on the following fitness func-
tion:

f �ω� � �p0Ii�1 � p0Ii� � �p0Ii�2 � p0Ii� � � � �

��p0Ii�1 � p0Ii� � �p0Ii�2 � p0Ii� � � � � �1�

The quantities in this expression, resulting from
numerically solving the time-dependent Schrö-
dinger equation �TDSE� for a laser-atom inter-
action, will briefly be explained at an introduc-
tory level. The focus of this paper, however,
is on how to perform the genetic search given
the above fitness function which is computa-
tionally very intensive. Tuning to the optimum
frequency found by the GA to design a labora-
tory experiment might prove to be useful. Fur-
thermore, this approach can be extended to take
into account several other laser parameters in
addition to its frequency. In multi-dimensional
parameter space, the power of the GA will only
boost compared to the traditional trial and er-
ror search which has been applied to this and
similar type of problems.

Sections II and III briefly introduce the physics
of the problem. In section III, the short-range
potential model is described and some single
frequency results in relation to existing pub-
lished work of Su et al. �4,5� are discussed.
In section IV, several pre-processing numerical
schemes which can be applied to this problem
are presented. This pre-processing step is im-
portant because every fitness function evalua-
tion in the genetic algorithm entails the numer-
ical solution of a partial differential equation
�PDE�. In section V, the GA methodology and
its implementation on a parallel machine are
discussed. The example simulations are pre-
sented in section VI, as well as a comparative
study with simulated annealing. In section VII
the conclusions are summarized.
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2. What is Atomic Stabilization?

The response of atoms and molecules to a well
characterized laser field is intriguing and can
lead to many interesting applications. For ex-
ample, one can aim at constructing a “smart”
pulse that will drive a chemical reaction down
a preferred pathway. Another well known ex-
ample is harmonic generation, in which an in-
cident photon can be converted into its harmon-
ics. The fundamental equation which governs
the dynamics of such a system is the time-
dependent Schrödinger equation. Numerous
computer simulations have been designed in
order to study and understand the phenomena
involved in the dynamics of an atom exposed to
an intense laser field.

In general, to understand the world of atoms
and molecules and how they react to an exter-
nal force, such as a laser field, one needs to
construct the Hamiltonian of the system. The
Hamiltonian includes the coulomb force which
binds the electron to the nucleus, as well as a
special term to describe the external force. The
Hamiltonian is then plugged into a partial dif-
ferential equation. In an intense laser field, the
external term is big and cannot be treated as a
perturbation. Therefore the differential equa-
tion, which in this case is the time-dependent
Schrödinger equation, becomes nonlinear and
interesting nonlinear phenomena can be pre-
dicted which are verified experimentally.

Atomic stabilization �1,2,3,6� is one such phe-
nomenon which has been predicted to occur
when an atom interacts with high intensity laser
fields. The analytical predictions have been fol-
lowed by numerical simulations �4,5� that are
capable of covering regions for which no ana-
lytical solutions exist.

To physically understand the underlying pic-
ture, one can imagine an electron which is ini-
tially bound to the nucleus. Turning the high in-
tensity laser on, the electron �which is described
by the wavefunction, the solution to the partial-
differential-equation�, is then ejected from the
system. This process is known as ionization.

In ionization at low laser intensities, the proba-
bility that an electron is stripped from the core
atom and becomes ionized linearly increases
with intensity. However, the analytical and
numerical predictions suggest counterintuitive

�nonlinear� dynamics in which at high intensi-
ties, the laser works against the ionization pro-
cess and a new “stabilized” atomic configura-
tion emerges �6�. This surprising effect is known
as atomic stabilization. Nowadays, as high-
intensity laser beams are routinely becoming
available, it is possible to test these predictions
in a laboratory experiment.

3. Modeling Atomic Stabilization

The starting point for any model of atomic
stabilization is the time-dependent Schrödinger
equation �TDSE�,

i h̄
�ψ
�t

� Hψ �2�

where ψ is the wavefunction, H is the Hamil-
tonian and h̄ is a universal constant. There is
no loss of generality if the TDSE is solved in
atomic units �h̄ � m � e � 1�.

In a one-dimensional model for the laser-atom
interaction, the Hamiltonian H�x� t� contains a
nonlinear term to describe the linearly polarized
oscillating electric field E�t� along with the ki-
netic energy �second derivative in space� and
the potential energy V�x�:

H�x� t� � �1
2
�2

�x2 � V�x� � xE0 f �t� sin�ω t�

�3�

It has been decided to work with an exponent-
ially-decaying short range potential, namely

V�x� � �V0 exp��x2

x2
0
�. The potential param-

eters were set at V0 � 0�18 and x0 � 7�0225
so that the potential supports only one bound
state, similar to what was done in �7�. In order
to compute the initial condition, which is the
wavefunction ψ at this bound state, any time-
dependent expression is taken out of the TDSE
and the time-independent Schrödinger equation
�TISE� is solved:

�
�1

2
�2

�x2 � V0exp

�
�x2

x2
0

��
ψ � Eψ �4�
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This is an eigenvalue problem. The eigenfunc-
tion corresponding to the only negative eigen-
value �namely, the bound state� constitutes the
initial wavefunction, which is the ground state
of the system before the laser is switched on to
start the ionization process. For the potential
function parameters chosen above, the ground
state energy �the negative eigenvalue� comes
out to be -0.0933 au.

Substituting �3� into �2�, the TDSE with an ex-
ponentially decaying short-range potential be-
comes:

i
�ψ �x� t�

�t
�
h
�1

2
�2

�x2 � xE0 f �t� sin�ω t�

�V0exp

�
� x2

x2
0

��
ψ �x� t� �5�

This equation will be solved for several laser
intensities, i.e. by setting �E0 �

p
Ii�, i �

1� 2� � � � and using the laser frequency ω as a
parameter to be optimized. That is, the goal of
this paper is to come up with the best ω given
a set of intensities Ii, i � 1� 2� � � � for which the
stabilization effect in these intensities is maxi-
mal.

Now it is necessary to choose pulse shape f �t�
and pulse duration, unless it is decided to vary
the shape as a parameter �along with the fre-
quency�. As in �4,5�, the commonly used pro-
cedure is to switch the laser on and off smoothly,
according to f �t� � sin2��π�2� � t�T1� for
0 � t � T1, f �t� � 1 while the laser is
on �T1 � t � T2� and switching off accord-
ing to f �t� � cos2��π�2� � t��T3 � T2�� for
T2 � t � T3. In the numerical simulations re-
ported here, 3-10-3 pulses �3 cycles turn-on, 10
cycles fully on, 3 cycles turn-off� were used.
The time period of each cycle is 2π�ω �ω is the
laser frequency�.

Care should be taken with respect to the bound-
ary conditions. In �4,5� simulations were done
specifically for a fixed very-high-frequency value
which promoted the ground state well into the
continuum. However, in the current studies
which include a large range of frequencies, the
ground state of the grid walls was found to in-
terfere with the calculations below a certain fre-
quency threshold. This caused a false stabiliza-
tion peak to appear below this threshold �pre-
sumably, a numerical artifact�. This prompted

the use of either huge grid sizes or any other
method such as mask functions, absorbing po-
tentials, or a dilation transformation so that the
time-dependent wavefunction will vanish in the
limits as x � �� at each time step in the cal-
culation. Mask functions were chosen, taking a
sin0�2�x� shaped mask function and multiplying
with it the wavefunction at the grid edges. In
addition, the possibility for a false peak should
not be forgotten when working with low fre-
quencies close to the top of the potential well.

Finally, the calculations were done with the fol-
lowing set of numerical parameters in addition
to the ones mentioned above. For the spatial
grid, Nx � 1000 points are taken �or Nx � 1024
when Fourier representation is employed�. For
the mask function region, 100 grid points are
used on each side. Grid spacing is dx � 0�1.
For the time grid, Nt � 16� 000 steps are used
corresponding to a 3-10-3 pulse �total of 16 cy-
cles� in which each cycle contains 1000 time
steps. Time spacing is determined by the laser
frequency, so that dt � T�ndt where T is the
time-period of a cycle obtained from the fre-
quency and ndt � 1000 time steps per cycle.
Unless noted otherwise, atomic units are used
for all these parameters.

Figure 1 shows the end-of-pulse ionization vs.
intensity plots �stabilization curves� for two dif-
ferent laser frequencies �or, wavelengths�. The
curves were obtained by solving the TDSE for
ψ f �x� Td�, where Td is the duration of the pulse.
After the pulse duration is over, ψ f is projected
onto ψi so that p0 � j � ψ f j ψi � j2 is the
probability of the final wavefunction being in
the ground state. 1 � p0 is plotted as a func-
tion of intensity, after solving the TDSE repeat-
edly for different intensities, as a measure of
the ionization rate. Full ionization is achieved
at 1.0. For low intensities, one can see the ex-
pected linear response, which is also predicted
using perturbation theory. For high intensities,
however, a stabilization structure can be seen
whereby the laser interferes with the ionization
process and the ionization is suppressed. Pertur-
bation theory breaks down and fails to explain
the behavior at such high intensities.

In the next few sections, the model which ac-
counts for the stabilization structure will be for-
mulated as an optimization problem. Both a
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Fig. 1. End of pulse ionization 1-p0 as a function of laser intensity, for two different frequencies. The 16-cycle pulse
that was used consists of a 3-cycle smooth �sine-squared ramp� turn-on, a 3-cycle smooth turn-off and 10-cycle

constant laser field inbetween. Ionization suppression at high intensities is evident in both cases. Note that for the left
curve, which corresponds to ω � 0�152 �λ � 3000Å�, the grid walls start interfering in the calculation producing a
slight minimum in the structure around I � 0�001. This frequency is a 1-photon promotion from the ground state to
slightly above the top of the well. The minimum will sharpen as the frequency is lowered. For higher frequencies, no

minimum appears but the curve is shifting to the right, towards the higher intensity region. The right curve
corresponds to a frequency of ω � 0�228 �λ � 2000Å�. In atomic units, I � 1�0 corresponds to

I � 3�5� 1016W�cm2.

genetic algorithm and simulated annealing ap-
proach will be implemented to search for the
best parameters to achieve this nonlinear ef-
fect. Such a simulation will prove to be highly
useful and relevant to the physics behind this
phenomenon and will lead to a new finding re-
garding the role of laser frequencies in atomic
stabilization �8�.

4. Computational Challenge in Fitness
Function Evaluation

Solving the time-dependent Schrödinger equa-
tion �TDSE� using grid methods is central to the
fitness function evaluation. Therefore, choos-
ing the most efficient scheme to integrate the
TDSE is of high importance in the simulation.

In an atomic stabilization problem, as well as
works on ATI �above threshold ionization� and

time-dependentmultiphoton process studies �9�,
theCrank-Nicolson �CN�methodwas usedwith
a computational effort of O�N� �10� since the
LU decomposition to invert the resulting tridi-
agonal matrix only costs N operations. There-
fore, even the second order difference scheme
SOD �11� �an explicit version of the implicit CN
method� will not result in less operations for a
one-dimensional problem. All other methods
which rely on the FFT �12,13,14,15,16�, cost
at least N log�N� operations. Therefore, unless
one of these methods offers either an efficient
representation of the derivative operator with
less grid points N or an efficient propagator to
be used, the CN method should clearly be the
method of choice.

It is instructive to point out that in several cases,
apart from stabilization, some of these methods
are indeed more efficient than the CN method.
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With the harmonic oscillator potential, for ex-
ample, N can be reduced by a factor of 5 due
to an efficient spatial representation �13,16�.
With a gaussian shaped pulse, a Fourier rep-
resentation of this gaussian in time can lead to
a Chebychev expansion of the time evolution
operator �14� which is known to converge ex-
tremely fast in time-independent problems. The
Hamiltonian in stabilization, however, consists
of a short-range potential and a pulse shape f�t�
which is much harder to represent efficiently
with a Fourier expansion without additional
cost. A separation of the fast oscillations from
the smooth pulse �15� is an interesting approach
which can be tried. Nevertheless, it is clearly
not obvious whether “smart” time propagation
schemes such as the �t,t’� or the variable time-
stepping scheme �17� can reduce the amount
of CPU time calculations in stabilization prob-
lems.

Attention is therefore turned to the spatial rep-
resentation, comparing the CN method with the
well known Split Operator Method �SPO� �12�.
Specifically for stabilization problems, SPO has
been widely used �4,5,8�. With the SPO, time
propagation is performed by approximating the
propagator,

e�iH∆t � e�iK∆t�2e�iV∆te�iK∆t�2�O�∆t3� �6�

where H � V � K, H is split into the potential
term V and the kinetic term K which includes all
spatial derivatives. The spatial derivatives will
then be numerically calculated by performing
an FFT on the wavefunction ψ , multiplying the
result by a diagonal matrix, then transforming
back to configuration space by an inverse FFT.
The method makes use of a Fourier representa-
tion whereas in the CN method, the quantity

e�iH∆t � �1�iH∆t�2��1�iH∆t�2��1�O�∆t3�
�7�

in which all spatial derivatives in H are numer-
ically calculated, uses a finite-difference repre-
sentation. As both methods are second order in
time, the question arises as to which representa-
tion costs less CPU time. Since CN costs O�N�
and the FFT costs N log�N�, the hope is that
the Fourier representation will permit a smaller
number of grid points N. However, since the
time-dependent wavefunction ψ is not a nicely

behaving function when driven by a high inten-
sity laser field, it was found that the derivative
operator on a grid needs to be represented with
the same grid parameters Nx, ∆x in both meth-
ods in order to get the same numerical results
in practice. Therefore, the cost in CPU time
is simply based on the number of operations
per time step required in each method. On the
CRAY T3E, in which a built-in enhanced FFT
routine is used, it is at least five times faster in
favor of the CN over SPO.

To ensure that no loss of accuracy is suffered,
the CN method was compared with the SPO
method, both practically yielding the same out-
put. Therefore, CN was chosen as the method
of choice for generating each point in the end-
of-pulse probability vs. intensity curve �stabi-
lization curve, figure 1�.

In the next section, a fitness function to analyze
stabilization curves is formulated. The goal is
to identify, given such a curve, where the stabi-
lization structure is most pronounced.

5. Genetic Algorithms on a Parallel
Platform

The goal is to maximize:

f �ω���N�p0Ii�p0Ii�1�p0Ii�2�� � ��p0Ii�N�2

�p0Ii�1 � p0Ii�2 � � � �� p0Ii�N�2
�8�

given p0Ii �Ii is the intensity and p0 is the pro-
jection to the ground state� and the projections
to the ground state of the neighboring intensi-
ties, namely p0Ii�1, p0Ii�2 , � � � , p0Ii�1, p0Ii�2,
� � � , where N is the number of neighboring in-
tensities. Equation �8� is equivalent to equa-
tion �1�. This quantity is greatest for the most
pronounced minimum in the curve, centered at
I � Ii. It is frequency-dependent and maximiz-
ing this function guarantees to locate the opti-
mal frequencyω forwhich theminimumcaused
by stabilization is most pronounced. Possible
ways to perform the search for optimal frequen-
cies are trial-and-error, enumerative and random
search techniques.

There are several reasons why a genetic algo-
rithm �18,19� was chosen for the implementa-
tion. First, it is impossible to know a priori how
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many minima and maxima are hidden in the fit-
ness function. By trial and error one can sense
that there are optimal frequencies, but there is
a likelihood to miss the best frequency in an
unexpected place, since there might be several
resonant frequencies. Second, it is laborious
and a waste of resources to perform a trial-and-
error search when the evaluation of the fitness
function is costly. An automated search would
be beneficial. Third, an extension to several
other parameters is straightforward.

Since the evaluation of the fitness function is
costly, a variant of genetic algorithms which
can offer a saving in the number of function
evaluations is most desirable, particularly for
the simulation in this paper. Micro genetic al-
gorithms �µGA� �20� is an approach which was
shown to reach a near-optimal region faster than
simple genetic algorithms �SGA� on several test
functions. As the name ’micro’ suggests, µGA
works with a small population size �typically,
5� and aims at finding the optimum as quickly
as possible through a best-so-far string without
improving any average performance. There-
fore, µGA was implemented in addition to the
SGA and simulated annealing for the compara-
tive study done in the next section.

In evaluating the fitness function, it is possible
to perform the calculation for several intensities
all at once. A parallel platform is most suited for
this task, since different intensities can be dis-
tributed among several processors that perform
the same calculation, each processor working
on a different point or set of points in a stabi-
lization curve.

MPI �Message Passing Interface� can be used to
communicate between the different processors
and is currently available on almost all parallel
platforms. Since the calculation for each inten-
sity is done independently and only at the very
end the fitness function is calculated based on
information from all processors, it is desirable
to reduce the amount of communication. In
this problem, it is possible to refrain completely
from any need of communication, assuming that
enough processors are available to handle each
point in the minimum and surrounding inten-
sities. Therefore, each intensity is assigned to
a single processor and a synchronizing barrier
makes sure that all processors are done calculat-
ing their end-of-pulse probabilities before pro-
ceeding onwards. Only then the master proces-

sor �proc. 0� collects the results from a file and
calculates the fitness function.
The various steps in the simulation are as fol-
lows:

1. Generate an initial population of fre-
quencies ω �0�

1 � ω �0�
2 � ω �0�

3 , � � �

2. For eachω �0�
j in the population, solve

the TDSE in parallel on �N�1� pro-
cessors for �N�1� given intensities,
Ii,Ii�1,Ii�2, � � � ,Ii�1, Ii�2, � � � , to ob-
tain end-of-pulse ionization probabil-
ities p0Ii , p0Ii�1, p0Ii�2, � � � , p0Ii�1,
p0Ii�2, � � � and evaluate the fitness func-

tion f �0�j � �N � p0Ii � p0Ii�1 �
p0Ii�2 � � � � � p0Ii�1 � p0Ii�2 � � � �
serially on the master processor.

3. Build next generation ω �1�
j �in gen-

eralω �k�
j for the kth generation� using

genetic operators and evaluate new
fitness function f �1�j .

4. Stop when fbest�so� f ar does not im-
prove substantially after several gen-
erations. Print ω� corresponding to
f �. Done.

5. Go to step 3.

To summarize, in order to maximize the fit-
ness function, p0 is calculated for each intensity.
This operation amounts to solving a single PDE.
For a 16-cycles pulse, this can be achieved in
approximately 150 seconds on an Ultra-Sparc.
Working on the UC Berkeley NOW �Network
of Workstations�, which is a collection of Ultra-
Sparcs hooked together, it is possible to cal-
culate all p0’s at once so that each evaluation
function costs around 150 seconds. For the ge-
netic implementation, a genetic algorithmdriver
written in FORTRAN was used �21,22�. While
a number of processors are used to calculate the
fitness function, the master processor by itself is
used to advance the simulation from one gener-
ation to the next until convergence is achieved.
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6. Experiments: Genetic Algorithms vs.
Simulated Annealing

To begin with, SGA was tested for two cases
to identify the optimal frequency to achieve
maximum stabilization. In the first case, the
goal was to find maximum stabilization around
I � 0�1 au �I � 3�5 � 1015W�cm2�. Sur-
rounding intensities were taken to be at I �
1�5 � 1015W�cm2� I � 2�5 � 1015W�cm2� I �
4�5�1015W�cm2� I � 5�5�1015W�cm2. In the
second case, the optimal frequency for finding
maximum stabilization around I � 0�2 au was
calculated by the GA. The frequency region is
extended between λ � 1500Å to λ � 3500Å,
since above thatwould promote the ground state
to below the top of the potential well and below
that the stabilization effect disappears. How-
ever, one of the virtues of aGA automatic search
is that if such prior knowledge is obscured, it is
still possible to pick a larger region without cov-
ering more space by a tedious trial-and-error
search. An additional calculation confirmed
that taking a frequency region between λ � 0
to λ � 5000Å converges to the same optimum
but takes more CPU time. The results in fig-
ure 3 were obtained after 250 function evalu-
ations of the GA run, when strict convergence
was achieved. This was done with a popula-
tion size of N � 50, stopping the calculation
after 5 generations. GA parameters were set to:
crossover percentage of 0.5 �uniform crossover
is used�, mutation percentage of 0.02, tourna-
ment selection and elitism was used �best in-
dividual replicated into next generation�. The
frequency region between λ � 0 to λ � 3500Å
was divided into 1024 equal segments. In both
plots of figure 3, the reported optimal frequency
was obtained after repeating the computational
experiment for ten times.

Several observations are important before ini-
tiating a comparative study between different
stochastic search strategies. First, with only
50 function evaluations, near optimality was
achieved in all repeated runs. That is, after
10 consecutive runs of the GA for the second
test-case, the average of the best-so-far-fitness
was 0.544 corresponding to the frequency of
λ � 2223�4Å while the lowest and highest val-
ues of the best-so-far-fitness corresponded to the
frequencies λ � 2209�7Å and λ � 2242�9Å, re-
spectively. This difference is of no importance

from the experimentalist point of view. There-
fore, strict optimality is not always necessary
and stopping the calculation after only 50 func-
tion evaluations is satisfactory. Second, each
function evaluation takes several hours on the
parallel platform which was used. A physicist
cannot afford to spend several days perform-
ing repeated runs in the laboratory; instead, the
aim will be to use as few function evaluations
as possible along with a scheme which is reli-
able enough to meet its purpose. However, for
the comparative analysis conducted in this pa-
per, numerous repeated runs with the GA were
performed and 664 distinct function evaluations
were gathered. This enabled to plot the fitness
function �figure 2� and continue the handful of
runs needed for the statistical analysis using a
fourth-order interpolating polynomial, after it
was checked that identical results are achieved
using the parallel platform and the interpolating
function for performing fast function evalua-
tions. It is now possible to check whether µGA
or simulated annealing can offer a reduction in
computational cost compared to the SGA which
is used.
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Fig. 2. A plot of the fitness function, which was not
known a priori, based on 664 function evaluations

gathered in the course of the GA implementation. It is
seen that the function is multi-modal in the desired

frequency range, and can be considered continuous to a
good approximation. Therefore an interpolating

function can be used in further function evaluations
which are necessary for a comparative analysis.

In figure 4, µGA performance is compared with
both SGA and SA �Simulated Annealing� for
the second case shown in figure 3. The number
of function evaluations is taken as a measure of
computational effort and the best-so-far fitness
is the measure of performance. Average per-
formance at each generation is of no interest in
µGAs, therefore the best-so-far criterion is the
one which fits the comparison. Population size
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Fig. 3. End of pulse ionization as a function of laser intensity, for several distinct frequencies. Same parameter values
as in figure 1 apply. In the upper plot, λ � 1912�5Å corresponds to the best frequency the genetic algorithm found so
that a stabilization structure surrounding I � 0�1 can be observed. In the lower plot, λ � 2242�9 Å corresponds to the

best frequency the GA found for a stabilization structure surrounding I � 0�2.

for the µGA was chosen to be 5 along with a
crossover percentage of 0.5. In µGA, no muta-
tion is performed since a random shuffle guards
from fixation. For the SA approach, a pack-
age available at �23� was used which is based
on �24�. The simulated annealing driver was
attached to the stabilization problem of this pa-
per with initial values recommended for the test
function in �24�. Then, the parameters were fur-
ther tuned to best locate the optimal frequency
which was achieved by the GA, starting from

an initial guess of λ � 1500Å. SA param-
eters were set to: initial temperature of 5.0,
with a decline in temperature T according to
T�i � 1� � RT � T�i�, RT � 0�85, where i
is the ith iteration �each iteration containing 5
function evaluations with the current tempera-
ture�. With a simulated annealing, unlike GAs,
one starts from a single initial guess within the
frequency range. Therefore, 50 runs were per-
formed after dividing the region into 50 equally
spaced points so that in the end, all parts of the
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Fig. 4. Performance comparison of SGA �solid line�, SA �dashed-dotted line� and µGA �dotted line� to find the
optimal frequency for the bottom case in figure 3. The average and standard deviation of 50 consecutive runs in each

method was taken, and performance of the 3 methods based on these measures show they are almost equally
successful in finding the optimum. For the particular function to be optimized in this paper �figure 2�, µGA does not

seem to result in a reduction of computational cost.

region will be taken into account.

Examining the average and standard deviation
of the 3 methods �figure 4�, it is seen that they
are all reaching the sameoptimumvalue at about
the same speed and the differences are small.
There is no gain in applying µGA for this par-
ticular function, although it might be beneficial
to implement this scheme along with SGA for
other functions. SA also performs well for this
particular function. SGA is most reliable �least
standard deviation� and can be safely used to
search for the optimal frequency in a systematic
way.

7. Conclusion

Using a parallel platform to solve the time-
dependent Schrödinger equation for several in-
tensities at once, a GA was used to predict the
optimal laser frequency to achieve atomic sta-
bilization. The difficult issues needed to be
addressed in such a simulation are which PDE
solver is most efficient, how to distribute the
workload on several processors and whether a
GA approach can be found which reduces the
number of expensive function evaluations to lo-
cate the optimum.

It should be noted that the paper does not aim
to contribute any new ideas in GA research, nor
has it designed a new GA method for solving
a particular problem. The paper has applied an
existing GA method to an important problem in
experimental physics. For this particular case,
it appears that all three methods are compet-
itive, with no particular method claiming any
advantage.

Using the Berkeley Network of Workstations,
optimal frequencies for two intensity regions
were successfully identified. Futureworkmight
extend the model from one dimension to two
dimensions, or include several laser parameters
apart from the frequency, such as the pulse shape
and duration, which are best to be used in a lab-
oratory experiment. The GA was found to be a
reliable search technique for future atomic sta-
bilization and related models in which the time-
dependent Schrödinger equation is needed to be
solved numerous times.
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