Journal of Computing and Information Technology - CIT 8, 2000, 2, 89-101 89

Beyond Dataflow

Borut Robi¢!, Jurij Silc? and Theo Ungerer

! Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2 Computer Systems Department, Jozef Stefan Institute, Ljubljana, Slovenia
3 Department of Computer Design and Fault Tolerance, University of Karlsruhe, Germany

This paper presents some recent advanced dataflow
architectures. While the dataflow concept offers the
potential of high performance, the performance of an
actual dataflow implementation can be restricted by a
limited number of functional units, limited memory
bandwidth, and the need to associatively match pending
operations with available functional units. Since the
early 1970s, there have been significant developments
in both fundamental research and practical realizations
of dataflow models of computation. In particular, there
has been active research and development in multi-
threaded architectures that evolved from the dataflow
model. Also some other techniques for combining
control-flow and dataflow emerged, such as coarse-grain
dataflow, dataflow with complex machine operations,
RISC dataflow, and micro dataflow. These developments
have also had certain impact on the conception of high-
performance superscalar processors in the “post-RISC”
era.

Keywords: Coarse-grain dataflow, computer architec-
ture, hybrid von Neumann/dataflow, micro dataflow,
RISC dataflow, superscalar microprocessor, survey,
threaded dataflow.

1. Introduction

The most common computing model (i.e., a
description of how a program is to be evalu-
ated) is the von Neumann control-flow comput-
ing model. This model assumes that a program
is a series of addressable instructions, each of
which either specifies an operation along with
memory locations of the operands or it specifies
(un)conditional transfer of control to some other
instruction. A control-flow computing model
essentially specifies the next instruction to be
executed depending on what happened during
the execution of the current instruction. The
next instruction to be executed is pointed to and

triggered by the program counter. This instruc-
tion is executed even if some of its operands are
not available yet (e.g., uninitialized).

The dataflow model represents a radical alter-
native to the von Neumann computing model
since the execution is driven only by the avail-
ability of operands. It has no program counter
and global updatable store, i.e., the two fea-
tures of the von Neumann model that become
bottlenecks in exploiting parallelism. The seri-
alization of the von Neumann computing model
is a serious limitation for exploiting more paral-
lelism in today’s microprocessors — e.g., super-
scalars. In dataflow computing parallelism is
limited only by the actual data dependences be-
tween instructions in the application program.
Since program execution is driven only by the
availability of the operands (at the inputs to the
functional units), dataflow computers have the
potential for exploiting all the parallelism avail-
able in a program. Namely, the firing rule of
the dataflow model, which specifies when an in-
struction can actually be executed, states that an
instruction is enabled as soon as corresponding
operands are present and executed when hard-
ware resources are available. Because there is
no need for a program counter, dataflow ar-
chitectures represent a radical alternative to the
von Neumann architecture. Dataflow comput-
ers use dataflow graphs as their machine lan-
guage. Dataflow graphs, as opposed to conven-
tional machine languages, specify only a par-
tial order for the instruction execution and thus
provide opportunities for parallel and pipelined
execution at the level of individual instructions.

Fine-grain dataflow computers, which are based
on the single-token-per-arc (static) approach,

90

Beyond Dataflow

| | von Neumann | Dataflow | Hybrid |
instruction total based on data partial ordering can be
scheduling sequencing dependences explicitly expressed
hiding cannot hide by split-phase by context switching
long latency memory operation
synchronization || unefficient too general intra- dataflow used only at
support Atlow level | procedure communication | inter-procedural level

Table 1. Von Neumman, dataflow and hybrid approach.

tagged-token (dynamic) approach or explicit to-
ken store approach have circular pipelined orga-
nization, and usually perform quite poorly with
sequential code (Arvind et al., 1991). This
is because an instruction of the same execu-
tion thread can only be issued to the dataflow
pipeline after the completion of its predeces-
sor instruction. In case of an 8-stage dataflow
pipeline, for example, instructions of the same
thread can be issued at the most every eight cy-
cles. If the computation load is low, for instance
for a single sequential thread, the utilization of
the dataflow processor drops to one eighth of its
maximum performance.

Another disadvantage of the fine-grain dataflow
is the overhead associated with token matching.
For example, before a dyadic instruction is is-
sued to the execution stage, two operands (each
packed in the so-called token) must be present.
The first arrived token is stored in the waiting-
matching store and only when the second to-
ken arrives the instruction can be issued (i.e.,
fired). This introduces a bubble in the execu-
tion stage(s) of the dataflow processor pipeline,
1.e., a sequence of idle pipeline stages. Clearly,
this may affect the system’s performance, so
bubbles should not be neglected. For exam-
ple, the pipeline bubbles summed up to 28.75 %
of the total execution time when solving the
Traveling Salesman problem on the Monsoon
dataflow machine (Papadopoulos and Culler,
1990). Since a context switch occurs in such
fine-grain dataflow after each instruction exe-
cution, no use of registers is possible for opti-
mizing the access time to data in order to avoid
pipeline bubbles caused by dyadic instructions,
and for reducing the total number of tokens dur-
ing program execution.

A solution to these problems is to combine
dataflow with control-flow mechanisms. Ac-

tually, the symbiosis between dataflow and von
Neumann architectures was tried to find by a
number of research projects developing von
Neumann /dataflow hybrids.

In this paper, several techniques (as well as ma-
chines based on them) for combining control-
flow and dataflow will be described. In Section
2 we describe basics of hybrid dataflow com-
puting. Selected hybrid architectures are given
in Section 3. In Section 4 we describe the so-
called micro dataflow which is nowadays used
in state-of-the-art microprocessors. Finally, in
Section 5 we compare the hybrid dataflow ap-
proaches and discusse some possible research
directions.

2. Hybrid Dataflow

Key features of von Neumann /dataflow hybrids
are given in Table 1.

The spectrum of such hybrids is quite broad,
ranging from simple extensions of a von Neu-
mann processor with a few additional instruc-
tions to specialized dataflow systems which at-
tempt to reduce overhead by increasing the exe-
cution grain size and employing various schedul-
ing, allocation, and resource management tech-
niques developed for von Neumann computers.
The results of these projects show that dataflow
and von Neumann computers do not necessar-
ily represent two entirely disjoint worlds but
rather two extreme ends of a spectrum of pos-
sible computer systems (Beck et al., 1993 and

Silc et al., 1998).

In the following section we describe some ba-
sic terms and concepts, e.g., threaded dataflow,
coarse-grain dataflow, complex dataflow, and
RISC dataflow.

Beyond Dataflow

91

2.1. Threaded Dataflow

By the term threaded dataflow we understand a
technique where the dataflow principle is mod-
ified so that instructions of certain instruction
streams are processed in succeeding machine
cycles. In particular, given a dataflow graph
(program), each subgraph that exhibits a low de-
gree of parallelism is identified and transformed
into a sequential thread of instructions. Such a
thread is issued consecutively by the matching
unit without matching further tokens except for
the first instruction of the thread.

Threaded dataflow covers the repeat-on-input
technique used in Epsilon-1 and Epsilon-2 pro-
cessors, the strongly connected arc model of
EM-4, and the direct recycling of tokens in
Monsoon. Data passed between instructions
of the same thread is stored in registers instead
of written back to memory. These registers may
be referenced by any succeeding instruction in
the thread. This improves single-thread per-
formance because the total number of tokens
needed to schedule program instructions is re-
duced which in turn saves hardware resources.
In addition, pipeline bubbles are avoided for
dyadic instructions within a thread.

Two threaded dataflow execution techniques
can be distinguished — direct token recycling
and consecutive execution of the instructions of
a single thread. The first technique, direct to-
ken recycling, is used in the Monsoon dataflow
computer. It allows a particular thread to oc-
cupy only a pipeline frame slot in the 8-stage
pipeline. This implies that at least 8 threads
must be active for a full pipeline utilization to
be achieved. This cycle-by-cycle instruction in-
terleaving of threads is used in a similar fashion
by some multithreaded von Neumann comput-
ers. The second technique, consecutive execu-
tion, is used in Epsilon-2 and EM-4 which con-
secutively execute instructions from a thread.
The circular pipelined machine organization of
fine-grain dataflow is retained. However, the
matching unit has to be enhanced with a mech-
anism that, after firing the first instruction of
a thread, delays matching of further tokens in
favor of consecutive issuing of all instructions
of the started thread. For example, in strongly
connected arc model, each arc of the dataflow
graph is classified as either a normal arc or a
strongly connected arc. The set of nodes that are

connected by strongly connected arcs is called
strongly connected block. While the standard
instruction firing rule is that a node (instruction)
is fired when all input arcs have matching to-
kens (operands), the enhancement for strongly
connected blocks is that such a block is fired if
its source nodes are enabled and the execution
of the whole block is conducted as a unit, i.e.,
without applying the standard dataflow firing
rule for other nodes in that block.

In all threaded dataflow machines, the cen-
tral design problem is the implementation of
an efficient synchronization mechanism (Sakai,
1995). Direct matching is a synchronization
mechanism that needs no associative mecha-
nisms. As in explicit token store, a match-
ing area in operand memory is exclusively re-
served for a single function instance. This
area is called operand segment. The code
block in instruction memory corresponding to
operand segment is called a template segment.
Its top address is called template segment num-
ber. Operand segment number points to the top
of the operand segment. A token comprises an
operand, operand segment number, a displace-
ment, and a synchronization flag. Displace-
ment serves both as a displacement of the des-
tination instruction in the instruction memory
and as a displacement of the matching operand
in operand memory. Sinchronization flag indi-
cates the type of synchronization which can be
either monadic, left dyadic, right dyadic, and
immediate. The matching address is produced
by concatenating operand segment number and
displacement. Instruction address is derived by
concatenating template segment number and the
displacement. Each slot in an operand segment
also has a presence bit. A dyadic matching is
performed by a test-and-set of the presence bit.
If the presence bit has already been set, the part-
ner data will be read, the bit will be cleared, and
the instruction will be executed. Otherwise, the
arriving data will be stored there and the pres-
ence bit will be set.

2.2. Coarse-Grain Dataflow

Coarse-grain dataflow is a technique for com-
bining dataflow with control-flow which advo-
cates activating macro dataflow actors in the
dataflow manner while executing instruction se-
quences, represented by actors, in the von Neu-

92

Beyond Dataflow

mann style. Coarse-grain dataflow machines
typically decouple the matching stage (some-
times called signal stage, synchronization stage,
etc.) from the execution stage by use of FIFO-
buffers. Pipeline bubbles are avoided by the
decoupling. Off-the-shelf microprocessors can
be used to support the execution stage. Most
of the more recent dataflow architectures fall
in this category and are listed below. Note, that
they are often called multithreaded machines by
their authors.

2.3. Complex Dataflow

Another technique to reduce the overhead of
the instruction-level synchronization is the use
of complex machine instructions, for instance
vector instructions. These instructions can be
implemented by pipeline techniques as in vec-
tor computers. Structured data is referenced in
block rather than element-wise fashion, and can
be supplied in a burst mode. This deviates from
the I-structure scheme where each data element
within a complex data structure is fetched indi-
vidually from a structure store.

An advantage of complex machine operations
is the ability to exploit parallelism at the subin-
struction level. Therefore, such a machine has
to partition a complex machine operation into
suboperations that can be executed in parallel.
The use of a complex machine operation may
spare several nested loops. The use of FIFO-
buffers allows the machine to decouple the fir-
ing stage and the execution stage to bridge the
different execution times within a mixed stream
of simple and complex instructions issued to the
execution stage. As a major difference to con-
ventional dataflow architectures, tokens do not
carry data (except for the values true or false).
Data is only moved and transformed within the
execution stage. This technique is used in the
Decoupled Graph/Computation Architecture,
the Sto//mann Dataflow Machine, and the AS-
TOR architecture. These architectures combine
complex machine instructions with coarse-grain
dataflow, described above. The structure-flow
technique proposed for the SIGMA-1 enhances
these fine-grain dataflow computer by structure
load/store instructions that can move, for in-
stance, whole vectors to/from structure store.
Arithmetic operations are executed by the cyclic
pipeline within a PE.

2.4. RISC Dataflow

The development of RISC dataflow was an addi-
tional stimulus for dataflow /von Neumann hy-
brids. RISC dataflow architectures support the
execution of existing software written for con-
ventional processors. Using such a machine
as a bridge between existing systems and new
dataflow supercomputers should have made the
transition from imperative von Neumann lan-
guages to dataflow languages easier to the pro-
grammer. The basic philosophy underlying the
development of the RISC dataflow architecture
was to use a RISC-like instruction set, to change
the architecture to support multithreaded com-
putation, to add fork and join instructions in
order to manage multiple threads, to implement
all global storage as I-structure storage, and to
implement load /store instructions to execute in
split-phase mode.

3. Selected Representatives

Next, we briefly describe some highly influen-
tial hybrid dataflow projects.

3.1. Threaded Dataflow
3.1.1. EM-4 and EM-X

In the EM-4 project (Sakai et al., 1989) the
essential elements of a dynamic dataflow archi-
tecture using frame storage for local variables
are incorporated into a single chip processor. In
this design each strongly connected subgraph of
a function body is implemented as a thread that
uses registers for intermediate results. The EM-
4 was designed for 1024 PEs. Since May 1990,
the EM-4 prototype with 80 PEs is operational.
Each PE consists of a processor (EMC-R) and
a data repository obeying the single-assignment
rule, called I-structure memory.

The processor and its memory (containing
operand segments and template segments) are
interfaced with memory control unit. The in-
struction buffer is used as a token store. A
FIFO type buffer is implemented using a dual
port RAM on chip. If this buffer is full, a part

Beyond Dataflow

93

of the off-chip memory is used as secondary
buffer. The fetch/matching unit is used for
matching tokens and fetching instructions. It
performs direct matching for packets and in-
struction sequencing for a strongly connected
block (thread). The heart of the EMC-R is the
execution unit, which fetches instructions un-
til the end of the thread (if the next instruction
is strongly connected with the current instruc-
tion, instruction fetch and data load of the next
instruction are overlapped with the execution).
Instructions with matching tokens are executed.
Instructions can emit tokens or write to register
file.

In 1993, an upgrade to EM-4, called EM-X,
was developed (Kodama et al., 1995). It was
designed to support latency reduction by fus-
ing the communication pipeline with the exe-
cution pipeline, latency hiding via multithread-
ing, and run-time latency minimization for re-
mote memory access. EM-4 can access remote
memory by invoking packet system handlers
on the destination PE. Clearly, when the des-
tination PE is busy, remote memory requests
are blocked by the current thread execution.
To remedy this, EM-X supports direct remote
memory read/write mechanism, which can ac-
cess the memory independently of thread execu-
tion. For these reasons, the EMC-Y single-chip
processor was used in EM-X (instead of EMC-
R that was used in EM-4).

3.1.2. Monsoon

The Monsoon dataflow multiprocessor (Papa-
dopoulus and Culler, 1990) was built jointly
by MIT and Motorola. In Monsoon, dataflow
PEs are coupled with each other and with I-
structure storage units by a multistage packet-
switching network. Each PE is using an eight-
stage pipeline. The first stage is the instruction
fetch stage which precedes token matching (in
contrast to dynamic dataflow processors with
associative matching units). Such a new ar-
rangement is necessary since the operand fields
in an instruction denote the offset in the mem-
ory frame that itself is addressed by the tag of
a token. The explicit token address is com-
puted from the frame address and operand off-
set. This is done in the second stage, called
effective address generation, which is the first
of three pipeline stages that perform the token

matching. In the third stage, called presence bit
operation, a presence bit is accessed to find out
if the first operand of a dyadic operation has al-
ready arrived. If not, the presence bit is set and
the current token is stored into the frame slot
of the frame memory. Otherwise, the presence
bit is reset and the operand is retrieved from
the slot. Operand storing or retrieving is the
task of the fourth pipeline stage — frame opera-
tion stage. The next three stages are execution
stages in which, besides other things, the next
tag is computed concurrently. The eighth stage,
also called form-token stage, forms one or two
new tokens that are sent to the network, stored
in a user token queue, a system token queue,
or directly recirculated to the instruction fetch
stage of the pipeline.

The Monsoon dataflow processor (Papadopou-
los and Traub, 1991) can be viewed as a cycle-
by-cycle interleaving multithreaded computer
due to its ability of direct token recycling. Us-
ing this technique, a successor token is directly
fed back in the eight-stage pipeline bypassing
the token store. Another instruction of the same
thread is executed every eighth processor cy-
cle. Monsoon allows the use of registers (eight
register sets are provided) to store intermediate
results within a thread, thereby digressing from
the fine-grain dataflow execution model.

Since September 1990, 1 PE x 1 I-structure
memory configuration (also referred to as the
two-node system) is operational while the first
8 x 8 configuration (16-node system) was de-
livered in the fall of 1991. In total, sixteen
two-node Monsoon systems were constructed
and delivered to universities across the USA and
two 16-node systems were delivered to MIT and
Los Alamos National Laboratories.

3.1.3. Epsilon-2

Epsilon-2 machine (Grafe and Hoch, 1990) sup-
ports a fully dynamic memory model, allowing
single cycle context switches and dynamic par-
allelization. The system is built around a mod-
ule consisting of a processor and a structure unit,
connected via a 4 x 4 crossbar to each other,
an I/0O port, and the global interconnection net-
work. The structure unit is used for storing data
structures such as arrays, lists, and I-structures.

94

Beyond Dataflow

The Epsilon-2 processor retains the high perfor-
mance features of the Epsilon-1 prototype, in-
cluding direct matching, pipelined processing,
and alocal feedback path. The ability to execute
sequential code as a grain provides RISC-like
execution efficiency.

3.1.4. RWC-1

The massively parallel computer RWC-1 (Sakai
et al., 1993) is a descendant of EM-4 (as it is
EM-X). A multidimensional directed cycles en-
semble network connects up to 1024 PEs. Two
small-scale systems, Testbed-I with 64 PEs and
Testbed-II with 128 PEs are used for testing and
software development. The PE is based on re-
duced interprocessor-communication architec-
ture which employs 2-issue superscalar execu-
tion, a floating-point multiplier/adder module,
and offers fast and simple message handling
mechanism, hard-wired queuing and scheduling
mechanism, a hard-wired micro-synchronization
mechanism, integration of communication,
scheduling and execution, and simplification of
the integrated structure (Matsuoka et al., 1998).

3.2. Coarse-Grain Dataflow
3.2.1. StarT

The StarT project was launched by MIT and
Motorola in mid-1991. The StarT, sometimes
also written as *T (Nikhil et al., 1992), is a
direct descendant of dataflow architectures, es-
pecially of the Monsoon, and unifies them with
von Neumann architectures. StarT has a scal-
able computer architecture designed to support
a broad variety of parallel programming styles
including those which use multithreading based
on non-blocking threads. A StarT node con-
sists of the data processor (dP), which executes
threads, the synchronization coprocessor (sP),
which handles returning load responses and join
operations, and the remote-memory request pro-
cessor (RMem) for incoming remote load/store
requests. The three components share local
node memory. The node is coupled with a high
performance network having a fat-tree topology
with high cross-section bandwidth.

Due to its on-chip special-function unit, the
2-issue superscalar RISC microprocessor Mo-
torola 88110 was chosen as the basis for the

node implementation. However, in order to
keep the communication latency to a minimum,
a number of logic modules were added to the
88110 chip to make it acting as a tightly-coupled
network interface. The resulting chip was called
88110MP (MP for multiprocessor) with 10 - 20
machine cycles overhead for sending and re-
ceiving data between the node and the network.
Two 88110MP microprocessors were used to
implement the StarT node. The first one oper-
ated as dP, with its special-function unit serv-
ing as sP. dP and sP were optimized for long
and short threads, respectively. The second
88110MP was tailored to act as RMem to han-
dle remote memory requests from other nodes
to the local node memory (64 MB).

The fat-tree network was based on the MIT Arc-
tic packed routing chip (Boughton, 1994) that
was twice as fast as Monsoon’s PaRC and was
expected to drive the interconnection network at
1.6 Gbyte/s/link in each direction with packet
sizes ranging from 16 to 96 bytes. Sixteen nodes
were packaged into a “brick” with 3.2 GFLOPS
and 3200 MIPS peak performance. Sixteen
bricks can be interconnected into 256-node ma-
chine with the potential to achieve 50 GFLOPS
and 50 000 MIPS.

As reported in (Arvind et al., 1997), MIT de-
cided to go back to the drawing board and to
start afresh on PowerPC-based StarT machines
after Motorola and IBM started manufactur-
ing PowerPC family of RISC microprocessors.
Thus, PowerPC 620 was planned in StarT-ng
machine (Ang et al., 1995) but the architecture
was redesigned once again — this time around
a 32-bit PowerPC 604 — and was called StarT-
Voyager machine (Ang et al., 1996). This ma-
chine, however, bears little resemblance to the
original StarT architecture and no similarity to
Monsoon.

3.2.2. TAM

The Threaded Abstract Machine (TAM) (Culler
et al., 1991) is an execution model for fine-
grain interleaving of multiple threads, that is
supported by an appropriate compiler strategy
and program representation instead of elaborate
hardware. TAM’s key features are placing all
synchronization, scheduling, and storage man-
agement under explicit compiler control.

Beyond Dataflow

95

3.2.3. ADARC

In the Associative Dataflow Architecture
(ADARC) the processing units are connected
via an associative communication network
(Strohschneider et al., 1994). The processors
are equipped with private memories that con-
tain instruction sequences generated at compile-
time. The retrieval of executable instructions is
replaced by the retrieval of input operands for
the current instructions from the network. The
structure of the associative switching network
enables full parallel access to all previously gen-
erated results by all processors. A processor ex-
ecutes its current instruction (or instruction se-
quence) as soon as all requested input operands
have been received.

3.2.4. Pebbles

The Pebbles architecture (Roh and Najjar, 1995)
is a coarse-grain dataflow architecture with a
decoupling of the synchronization unit and the
execution unit within the PEs. The PEs are
coupled via a high-speed network. The local
memory of each node consists of an instruction
memory, which is read by the execution unit,
and a data memory (or frame store), which is
accessed by the synchronization unit. A ready
queue contains the continuations representing
those threads that are ready to execute. The
frame store is designed as a storage hierarchy
where a frame cache holds the frames of threads
that will be executed soon. The execution unit
is a 4-issue superscalar microprocessor.

3.2.5. MTA and EARTH

The Efficient Architecture of Running Threads
(EARTH) (Hum et al., 1994 and Maquelin,
1995) is based on the MTA (Multithreaded
Architecture) and dates back to the Argument
Fetch Dataflow Processor. An MTA node con-
sists of an execution unit that may be an off-the-
shelf RISC microprocessor and a synchroniza-
tion unit to support dataflow-like thread syn-
chronization. The synchronization unit deter-
mines which threads are ready to be executed.
Execution unit and synchronization unit share
the processor’s local memory, which is cached.
Accessing data in a remote processor requires

explicit request and sends messages. The syn-
chronization unit and execution unit communi-
cate via FIFO queues: A ready queue containing
ready thread identifiers links the synchroniza-
tion unit with the execution unit, and an event
queue holding local and remote synchronization
signals connects the execution unit with the syn-
chronization unit, but also receives signals from
the network. A register use cache keeps track
of which register set is assigned to which func-
tion activation. MTA or EARTH rely on non-
blocking threads. The EARTH architecture is
implemented on top of the experimental (but
rather conventional) MANNA multiprocessor.

3.3. Complex Dataflow
3.3.1. ASTOR

The Augsburg Structure-Oriented Architecture
(ASTOR) (Zehendner and Ungerer, 1987) can
be viewed as a dataflow architecture that utilizes
task level parallelism by the architectural struc-
ture of a distributed memory multiprocessor,
instruction-level parallelism by a token-passing
computation scheme, and subinstruction-level
parallelism by SIMD evaluation of complex ma-
chine instructions. Sequential threads of data
instructions are compiled to dataflow macro ac-
tors and executed consecutively using registers.
A dependence construct describes the partial or-
der in the execution of instructions. It can be
visualized by a dependence graph. The nodes
in a dependence graph represent control con-
structs or data instructions; the directed arcs
denote control dependences between the nodes.
Tokens are propagated along the arcs of the de-
pendence graph. To distinguish different activa-
tions of a dependence graph, a tag is assigned to
each token. The firing rule of dynamic dataflow
is applied but tokens do not carry data.

The ASTOR architecture consists of PEs con-
nected by an instruction communication net-
work to transfer procedure calls and data com-
munication network for parameter passing. No
global storage is used. Due to the separation
of code and data objects, each PE consists of
two loosely coupled parts: First, the program
flow control part consists of a static and dy-
namic code storage, the static and the dynamic
code access manager, the I/O managers, and the
control construct managers (individualy named

96

Beyond Dataflow

call, loop, choice and dependency manager).
Second, the data object processing part con-
sists of a data storage, several data access man-
agers, an 1/O manager, some data transforma-
tion units, and the computational structure man-
ager. All managers in a PE work in parallel to
each other. Asynchronous processing and de-
coupling of the managers is achieved by buffer-
ing the links between them.

3.3.2. Sto//man Dataflow Machine

The Stollman dataflow machine (Gliick-Hiltrop
et al., 1989) is a coarse-grain dataflow archi-
tecture directed towards database applications.
The dataflow mechanism is emulated on a
shared-memory multiprocessor. The query tree
of a relational query language (such as SQL) is
viewed as a dataflow graph. Complex database
query instructions are implemented as coarse-
grain dataflow instruction and (micro-)coded as
a traditional sequential program running on the
emulator hardware.

3.3.3. DGC

In Decoupled Graph/Computation (DGC) ar-
chitecture (Evripidou and Gaudiot, 1991) the
token matching and token formatting and rout-
ing are reduced to a single graph operation
called determine executability. The decoupled
graph/computation model separates the graph
portion of the program from the computational
portion. The two basic units of the decoupled
model (computational unit and graph unit) op-
erate in an asynchronous manner. The graph
unit is responsible for determining executability
by updating the dataflow graph, while the com-
putation unit performs all the computational op-
erations (fetch and execute).

3.4. RISC Dataflow
3.4.1. P-RISC Architecture

The Parallel RISC (P-RISC) architecture (Nik-
hil and Arvind, 1989) based on the above prin-
ciples and consists of a collection of PEs (with
local memory) and a global memory, intercon-
nected through a packed-switching communi-
cation network.

Following the principles underlying all RISC
architectures, the ALU of P-RISC PEs distin-
guishes between load/store instructions, which
are the only instructions accessing global mem-
ory (implemented as I-structure storage), and
arithmetic/logical instructions, which operate
on local memory (registers). Fixed instruction
length and one-cycle instruction execution (ex-
cept for load/store instructions) are the charac-
teristics of this processor. In addition, P-RISC
lacks any explicit matching unit. Instead, all
operands associated with a sequential thread of
computation are kept in a frame in local pro-
gram memory. Each execution step makes use
of an (IP, FP) pair, where IP serves to fetch
the next instruction while FP serves as the base
for fetching and storing operands. The pair
is called continuation and corresponds to the
tagged part of a token in a tagged-token dataflow
machine. To make P-RISC multithreaded, the
stack of frames must be changed to a tree of
frames, and a separate continuation must be as-
sociated with each thread. The frame tree al-
lows different threads of instructions accessing
different branches of the tree concurrently while
the separate continuation extents the concept of
a single PC and a single operand base register to
multiple instances. Continuations of all active
threads are held in the continuation queue. At
each clock cycle, a continuation (also called to-
ken) is dequeued and inserted into the pipeline.
It is first processed by the instruction fetch unit,
which fetches from instruction memory the in-
struction pointed to by IP. Next, operands are
fetched from program memory by the operand
fetch unit. This uses operand offsets (specified
in the instruction) relative to the FP. The exe-
cutable token is passed to the ALU or, in case
of a load/store instruction, to the global mem-
ory. To solve the memory latency problem, the
load/store instructions are implemented to op-
erate in a split-phase manner. The execution of
an ALU instruction produces result tokens and
new continuations. Result tokens are stored in
the appropriate frame in (local) frame memory
by the operand store unit. Continuations are
new { FP, IP)-pairs, generated by increment-
ing the current IP value or, in case of a branch
instruction, replacing it by the target pointer.
They are enqueued in the continuation queue of
the local PE.

Beyond Dataflow

97

4. Micro Dataflow

In addition, the latest generation of micropro-
cessors — as exemplified by the Intel Pentium I11,
MIPS R12000, Hewlett-Packard PA-8500, DEC
Alpha 21264, etc. — absorbed some ideas from
the dataflow approach.

In particular, state-of-the-art processors usu-
ally display an out-of-order dynamic execution
whereby the processor dynamically issues an
instruction as soon as all its operands are avail-
able and the required execution unit is not busy.
This technique is referred to as local dataflow or
micro dataflow by microprocessor researchers
(Silc et al., 1999).

In the first paper on the Pentium Pro the in-
struction pipeline is decribed as follows (Col-
well and Steck, 1995): “The flow of the Intel
Architecture instructions is predicted and these
instructions are decoded into micro-operations
(uops), or series of ops, and these ops are
register-renamed, placed into an out-of-order
speculative pool of pending operations, exe-
cuted in dataflow order (when operands are
ready), and retired to permanent machine state
in source program order.” That s, after abranch
prediction (to remove control dependences) and
register renaming (to remove antidependences
and output dependences) the instructions (or

ops) are placed in the instruction window of
pending instructions, where ops are executed
in the dataflow fashion, and then in a reorder
buffer that restores the program order and ex-
ecution states of the instructions. Instruction
window and reorder buffer may coincide. State-
of-the-art microprocessors typically provide 32
(in MIPS R10000), 40 (in Intel Pentium Pro)
or 56 (in HP PA-8000) instruction slots in the
instruction window or reorder buffer. Each in-
struction is ready to be executed as soon as all
operands are available. A 4-issue superscalar
processor issues up to 4 executable instructions
per cycle to the execution units, provided that
resource conflicts do not occur. Issue and ex-
ecution determine the out-of-order section of a
microprocessor. After execution, instructions
are retired in program order.

Comparing advanced dataflow computers with
such superscalar microprocessors reveals sev-
eral similarities as well as differences which
are briefly discussed below. While a single

thread of control in modern microprocessors
often does not incorporate enough fine-grained
parallelism to feed the multiple functional units
of today’s microprocessors, dataflow approach
resolves any threads of control into separate in-
structions that are ready to execute as soon as
all required operands become available. Thus,
the fine-grained parallelism potentially utilized
by a dataflow computer is far larger than the
parallelism available for microprocessors.

Data and control dependences potentially cause
pipeline hazards in microprocessors that are
handled by complex forwarding logic. In fine-
grain dataflow computers pipeline hazards are
avoided due to the continuous context switches
(with the disadvantage of a poor single thread
performance). In microprocessors, antidepend-
ences and output dependences are removed by
register renaming that maps the architectural
registers to the physical registers of the micro-
processor. Thereby the microprocessor inter-
nally generates an instruction stream that sat-
isfies the single assignment rule of dataflow.
Modern microprocessors remove antidepend-
ences and output dependences on-the-fly and
avoid the high memory requirements, the often
awkward solutions for data structure storage and
manipulation, and for loop control caused by the
single assignment rule in dataflow computers.

The main difference between the dependence
graphs of dataflow and the code sequence in
an instruction window of a superscalar micro-
processor is branch prediction and speculative
execution. In microrocessors, the accuracy of
the branch prediction is surprisingly high —more
than 95 % are reported in (Chang et al., 1994)
for single SPEC benchmark programs. How-
ever, rerolling execution in case of a wrongly
predicted path is costly in terms of processor
cycles, especially in deeply pipelined micropro-
cessors. In the dataflow environment, however,
the idea of branch prediction and speculative
execution has never been evaluated. The rea-
son for this may be that dataflow was consid-
ered to produce an abundance of parallelism
while speculation leads to speculative paral-
lelism which is — because of instruction dis-
carding when branch is mispredicted — inferior
to “real” parallelism.

Due to the single thread of control, a high de-
gree of data and instruction locality is present
in the machine code of a microprocessor. The

98

Beyond Dataflow

locality allows to employ a storage hierarchy
that stores the instructions and data potentially
executed in the next cycles close to the execut-
ing processor. Due to the lack of locality in a
dataflow graph, a storage hierarchy is difficult
to apply in dataflow computers.

The operand matching of executable instruc-
tions in the instruction window of micropro-
cessors is restricted to a part of the instruction
sequence. Because of the serial program order,
the instructions in this window are likely to be-
come executable soon. Therefore, the matching
hardware can be restricted to a small number
of instruction slots. In dataflow computers the
number of tokens waiting for a match can be
very high. A large waiting-matching store is re-
quired. Due to the lack of locality the likelihood
of the arrival of a matching token is difficult to
estimate so caching of tokens to be matched
soon is difficult in dataflow.

A large instruction window is crucial for to-
day’s and future superscalar microprocessors to
find enough instructions for parallel execution.
However, the control logic for very large in-
struction windows gets so complex that it hin-
ders higher cycle rates. Therefore alternative in-
struction window organizations are needed. In
(Palacharla et al., 1997) a multiple FIFO-based
organization is proposed. Only the instructions
at the heads of a number of FIFO buffers can
be issued to the execution units in the next cy-
cle. The total parallelism in the instruction win-
dow is restricted in favor of a less costly issue
that does not slow down processor cycle rate.
Thereby the potential fine-grained parallelism
is limited — a technique somewhat similar to the
threaded dataflow approaches described above.

It might be interesting to look, with respect to
alternative instruction window organizations, at
dataflow matching store implementations and
dataflow solutions like threaded dataflow as
exemplified by the repeat-on-input technique
in the Epsilon-2 and strongly-connected arcs
model of EM-4, or the associative switching
network in the ADARC, etc. For example,
the repeat-on-input strategy issues very small
compiler-generated code sequences serially (in
an otherwise fine-grained dataflow computer).
Transferred to the local dataflow in an instruc-
tion window, an issue string might be used
where a series of data dependent instructions
are generated by a compiler and issued serially
after the issue of the leading instruction. How-
ever, the high number of speculative instructions
in the instruction window remains.

5. Comparison and Discussion

The architectures that were described in this pa-
per are only a part of a broader spectrum of
architectures, with von Neumann approach at
one end and fine-grain dataflow approach on
the other end (Table 2).

Table 3 compares these architectures accord-
ing to several attributes, such as the type of
instruction execution parallelism, and the type
of synchronization mechanism.

As already stated by Maurice V. Wilkes in his
book Computing Perspectives, if any practical
machine based on dataflow ideas and offering
real power emerges, it will be very different
from what the originators of the concept had

| Architecture [Key features |
(The closest architure type to the fine-grain dataflow machine.)
threaded dataflow instructions of certain instruction threads are processed

in succeeding machine cycles

coarse-grain dataflow

activates macro dataflow actors in the dataflow manner
but uses control-flow to execute each of these actors

complex dataflow
techniques

complex machine operations can be implemented by pipeline

RISC dataflow

parallel control operators based computational model
(The closest architure type to the von Neumann machine.)

Table 2. Key features of hybrid dataflow architectures.

Beyond Dataflow

99

| Architecture || Parallelism | Execution mode | Synchronization | Matching | Registers |

one

von Neumann || control thread none no yes

multithreaded || several active full /empty

von Neumann || control threads bits locked no yes

RISC several active vector control

dataflow control threads pipelining operators yes yes

coarse-grain several active vector matching

dataflow control threads pipelining operations yes yes
several active

complexw control threads vector matching

dataflow with complex pipelining operations yes yes
machine operatin

threaded several active matching

dataflow control threads repeat-on-input | operations yes yes

fine-grain single matching

dataflow instructions operations yes no

Table 3. Augmenting dataflow with control-flow.

in might. We have shown in this paper that due
to implementation problems fine-grain dataflow
remains to be a simple and elegant theoretical
model.

Dataflow machines, and especially fine-grain
dataflow machines, are no longer considered
to be a viable option for general purpose com-
putations. For DSP algorithms however, the
dataflow model of architecture is a natural fit.
Especially the coarse-grain dataflow machines
overcome many of the problems encountered in
fine-grain dataflow architectures. The coarse-
grain dataflow architectures enable efficient im-
plementations for high performance digital sig-
nal processing.

It seems that, in order to build real dataflow ma-
chines, dataflow has to borrow some concepts
from the von Neumann model of computation.
On the other hand, the research in modern mi-
croprocessor architecture revealed the fruitful-
ness of dataflow conceps in the use of instruc-
tion level parallelism.

As a result, the dataflow and control-flow re-
search communities now study many of the
same questions. In principle, an algorithm de-
fines a partial ordering of instructions due to
control and data dependences. The total order-
ing in an instruction stream for today’s micro-

processors stems from von Neumann languages.
But why should

® a programmer

— design a partially ordered algorithm,

— and then code the algorithm in rotal
ordering because of the use of a se-
quential von Neumann language,

e the compiler

— regenerate the partial order in a de-
pendence graph,

— and then generate a reordered “opti-
mized” sequential machine code,

e the microprocessor

— dynamically regenerate the partial or-
der in its out-of-order section, execute
due to a micro dataflow principle,

— and then re-establish the unnatural se-
rial program order for in-order com-
mitment in the retire stage ?

Ideally, an algorithm should be coded in an ap-
propriate higher-order language (e.g., dataflow-
like languages might be appropriate). Next, the
compiler should generate machine code that still
reflects the parallelism and not an unnecessary
serialization. Here, a dataflow graph viewed

100

Beyond Dataflow

as machine language might show the right di-
rection. A parallelizing compiler may generate
this kind of machine code even from a program
written in a sequential von Neumann language.
The compiler could use compiler optimization
and coding to simplify the dynamic analysis
and issue out of the instruction window. The
processor dismisses the serial reordering in the
completion stage in favor of only a partial re-
ordering. The retire unit retires instructions not
in a single serial order but in two or more series
(as in the simultaneous multithreaded proces-
sors). Clogging of the reorder buffer is avoided
since clogging of one thread does not restrict
retirement of instructions of another thread.

References

[1] B.S. ANG, ARVIND, D. CHIOU, StarT the next gener-
ation: Integrating global caches and dataflow archi-
tecture. In Advanced Topics in Dataflow Computing
and Multithreading (G.R. GAO, L. BIC, J.-L. GAU-
DIOT, Eds.) (1995) pp. 19-54. IEEE Computer
Society Press, Los Alamitos.

[2] B.S. ANG, D. CHIOU, L. RUDOLPH, ARVIND, Mes-
sage passing support on StarT-Voyager. Technical
Report MIT/CSG Memo 387, Laboratory for Com-
puter Science, MIT, Cambridge, 1996.

[3] ARVIND, L. BIC, T. UNGERER, Evolution of dataflow
computers. In Advanced Topics in Data-Flow Com-
puting (J.-L. GAUDIOT, L. Bic, Eds.) (1991) pp.
3-33. Prentice Hall, Engelewood Cliffs.

[4] ARVIND, A.T. DAHBURA, A. CARO (1997), Com-
puter architecture research and the real world. Tech-
nical Report MIT/CSG Memo 397, Laboratory for
Computer Science, MIT, Cambridge, 1997.

[5] M. BECK, T. UNGERER, E. ZEHENDER, Classification
and performance evaluation of hybrid dataflow tech-
niques with respect to matrix multiplication. Pre-
sented at the Proceedings of the GI/ITG Workshop
PARS, (1993) pp. 118-126, Dresden, Germany.

[6] G.A. BOUGHTON, Arctic routing chip. Lect. Notes
Comput. Sc., 853 (1994),310-317.

~

P.-Y. CHANG, E. HAO, T.-Y. YEH, Y.N. PATT, Branch
classification: A new mechanism for improving
branch predictor performance. Presented at the Pro-
ceedings of the 27th International Symposium on
Microarchitecture, (1994) pp. 22-31, San Jose, CA.

R.P. CoLWELL, R.L. STECK, A 0.6 m BiCMOS
processor with dynamic execution. Presented at the
Proceedings of the International Solid State Circuits
Conference, (1995) pp. 176-177.

e

[9] D.E. CULLER, A. SAH, K.E. SCHAUSER, T. VON
EICKEN, J. WAWRZYNEK, Fine-grain parallelism
with minimal hardware support: A compiler-
controlled threaded abstract machine. Presented
at the Proceedings of the 4th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, (1991) pp. 164—
175, Santa Clara, CA.

[10] P. EVRIPIDOU, J.-L. GAUDIOT, The USC decoupled
multilevel data-flow execution model. In Advanced
Topics in Data-Flow Computing (J.-L. GAUDIOT,
L. Bic, Eds.) (1991) pp. 347-379. Prentice Hall,
Englewood Cliffs.

[11] E. GLUCK-HILTROP, M. RAMLOW, U. SCHURFELD,

The Stollman dataflow machine. Lect. Notes Com-
put. Sc., 365 (1989),433-457.

[12] V.G. GRAFE, J.E. HoCcH, The Epsilon-2 multi-
processor system. J. Parall. Distr. Comput., 10
(1990),309-318.

[13] H.H.J. HuM, K.B. THEOBALD, G.R. GAO (1994),
Building multithreaded architectures with off-the-
shelf microprocessor. Presented at the Proceedings
of the 8th International Parallel Processing Sympo-
sium, (1994) pp. 288-294, Canciin, Mexico.

[14] Y. KoDAMA, H. SAKANE, M. SATO, H. YAMANA,
S. SAKAIL Y. YAMAGUCHI Y, The EM-X parallel
computer: Architecture and basic performance.
Presented at the Proceedings of the 22nd Annual In-
ternational Symposium on Computer Architecture,
(1995) pp. 14-23, Santa Margherita Ligure, Italy.

[15] O.C. MAQUELIN, H.H.J. HUM, G.R. GAO, Costs and
benefits of multithreading with off-the-shelf proces-
sors. Lect. Notes Comput. Sc., 966 (1995),117-128.

[16] H. MATSUOKA, K. OKAMOTO, H. HIRONO, M. SATO,
T. YOKOTA, S. SAKAL, Pipeline design and enhance-
ment for fast network message handling in RWC-1
multiprocessor. Presented at the Proceedings of the
Workshop on Multithreaded Execution, Architecture
and Compilation, (1998), Las Vegas, NE.

[17] R.S. NIKHIL, ARVIND, Can dataflow subsume von
Neumann computing? Presented at the Proceed-
ings of the 16th Annual Symposium on Computer
Architecture, (1989) pp. 262-272, Jerusalem, Israel.

[18] R.S. NIKHIL, G.M. PAPADOPOULOS, ARVIND, *T:
A multithreaded massively parallel architecture.
Presented at the Proceedings of the 19th Annual
Symposium on Computer Architecture, (1992) pp.
156-167, Golden Coast, Australia.

[19] S. PALACHARLA, N.P. Jouppl, J.E. SMITH,
Complexity-effective superscalar processors. Pre-
sented at the Proceedings of the 24th Annual In-
ternational Symposium on Computer Architecture,

(1997) pp.
206-218, Denver, CO.

[20] G.M. PAPADOPOULOS, D.E. CULLER, Monsoon: An
explicit token-store architecture. Presented at the
Proceedings of the 17th Annual Symposium on
Computer Architecture, (1990) pp. 82-91, Seattle,
WA.

Beyond Dataflow

101

[21] G.M. PAPADOPOULOS, K.R. TRAUB, Multithread-
ing: A revisionist view of dataflow architectures.
Presented at the Proceedings of the 18th Annual
Symposium on Computer Architecture, (1991) pp.
342-351, Toronto, Canada.

[22] L. ROH, W.A. NAJJAR, Design of storage hierarchy
in multithreaded architectures. Presented at the Pro-
ceedings of the 28th International Symposium on
Microarchitecture, (1995) pp. 271-278, Ann Arbo,
MI.

~
2

S. SAKAI, Synchronization and pipeline design for
a multithreaded massively parallel computer. In
Advanced Topics in Dataflow Computing and Mul-
tithreading (G.R. GAO, L. BIC, J.-L. GAUDIOT, Eds.)
(1995) pp. 55-74. IEEE Computer Society Press,
Los Alamitos.

™
=)

S. SAKAIL K. OKAMOTO, K. MATSUOKA, H. HIRONO,
Y. KoDAMA, M. SATO, T. YOKOTA, Basic features
of a massively parallel computer RWC-1. Presented
at the Proceedings of the 1993 Joint Symposium on
Parallel Processing, (1993), Tokyo, Japan.

[25] S. SAKAIL Y. YAMAGUCHI, K. HIRAKI, Y. KODAMA,
T. YUBA, An architecture of a dataflow single
chip processor. Presented at the Proceedings of the
16th Annual Symposium on Computer Architecture,
(1989) pp. 46-53, Jerusalem, Israel.

[26] J. SILC, B. ROBIC, T. UNGERER, Asynchrony in par-
allel computing: From dataflow to multithreading.
Parall. Distr. Comput. Practices, 1 (1998),57-83.

[27] J. SILC, B. ROBIC, T. UNGERER, Processor Architec-
ture — From Dataflow to Superscalar and Beyond.
Springer-Verlag, Heidelberg, Berlin, New York
1999.

[28] J. STROHSCHNEIDER, B. KLAUER, S. ZICKENHEIMER,
K. WALDSCHMIDT, Adarc: A fine grain dataflow ar-
chitecture with associative communication network.
Presented at the Proceedings of the 20th Euromicro
Conference: System Architecture and Integration,
(1994) pp.445-450, Liverpool, England.

[29] E. ZEHENDNER, T. UNGERER, The ASTOR archi-
tecture. Presented at the Proceedings of the 7th
International Conference on Distributed Comput-
ing Systems, (1987) pp. 424-430, Berlin, Germany.

Received: February, 1999
Revised: February, 2000
Accepted: March, 2000

Contact address:

Borut Robic¢

Faculty of Computer and Information Science
University of Ljubljana

Trzaska 25

1001 Ljubljana, Slovenia

phone: +386-61-176 8256

e-mail: borut.robic@fri.uni-1j.si

Jurij Sile

Computer Systems Department
Jozef Stefan Institute

Jamova 39

1001 Ljubljana, Slovenia
phone: +386-61-177 3268
e-mail: jurij.silc@ijs.si
Theo Ungerer

Department of Computer Design and Fault Tolerance
University of Karlsruhe

76 128 Karlsruhe, Germany
phone: +49-721-608 6048

e-mail: ungererQira.uka.de

BORUT ROBIC is an associate professor of Computer Science at the Uni-
versity of Ljubljana, Slovenia. From 1984 to 1993 he has been assistant
researcher at the Department of Computer Science and Informatics,
Jozef Stefan Institute, Ljubljana. From 1994 to 2000 he has been a re-
searcher at the Computer Systems Department at the same institute, and
also an assistant professor at the Faculty of Computer and Information
Science, University of Ljubljana. Robt received the Ph.D. degree in
computer science from University of Ljubljana, Slovenia, 1993. His
present research interests include parallel computating, computational
and complexity theory, and algorithm design.

JURD SILC is a researcher at the Jozeef Stefan Institute in Ljubljana,
Slovenia. From 1980 to 1986 he has been assistant researcher at the
Department for Computer Science and Informatics. From 1987 to 1993
he has been the Head of the Laboratory for Computer Architecture at
the same department. Since 1994 he has been Deputy Head of the Com-
puter Systems Department at the Jazef Stefan Institute. Silc received
his Ph.D. degree in Electrical Engineering from University of Ljubljana,
Slovenia, in 1992. His research interests include parallel computation,
computer architecture and high-level synthesis.

THEO UNGERER is a professor of Computer Science at the University of
Karlsruhe, Germany. Previously, he was scientific assistant at the Uni-
versity of Augsburg (1982-89 and 1990-92), visiting assistant professor
at the University of California, Irvine (1998-90), professor of computer
architecture at the University of Jena, Germany (1992-1993). Since
1993 he is with the Department of Computer Design and Fault Toler-
ance, University of Karlsruhe. Ungerer received a Doctoral Degree at
the University of Augsburg in 1986, and a second Doctoral Degree (Ha-
bilitation) at the University of Augsburg in 1992. His current research
interests are in the area of processor architecture and the area of parallel
and distributed computing. He is a member of the ACM, the IEEE, the
GI, and FIFF.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

