Journal of Computing and Information Technology - CIT 8, 2000, 1, 41-69 41

Polyvalent Parallelizations
for Hierarchical Block Matching

Motion Estimation

Charalampos Konstantopoulos, Andreas Svolos and Christos Kaklamanis

Computer Engineering and Informatics Department, University of Patras and Computer Technology Institute, Athens,

Greece

Block matching motion estimation algorithms are widely
used in video coding schemes. In this paper, we design an
efficient hierarchical block matching motion estimation
(HBMME) algorithm on a hypercube multiprocessor.
Unlike systolic array designs, this solution is not tied
down to specific values of algorithm parameters and thus
offers increased flexibility. Moreover, the hypercube net-
work can efficiently handle the non regular data flow of
the HBMME algorithm. Our techniques nearly eliminate
the occurrence of “difficult” communication patterns,
namely many-to-many personalized communication, by
replacing them with simple shift operations. These
operations have an efficient implementation on most of
interconnection networks and thus our techniques can
be adapted to other networks as well. With regard
to the employed multiprocessor we make no specific
assumption about the amount of local memory residing
in each processor. Instead, we introduce a free parameter
S and assume that each processor has ©(S) local mem-
ory. By doing so, we handle all the cases of modern
multiprocessors, that is fine-grained, medium-grained
and coarse-grained multiprocessors and thus our design
is quite general.

Keywords: motion estimation, block matching algo-
rithms, multiresolution pyramid, programmable archi-
tectures, multiprocessors, interconnection networks, hy-
percube, mesh.

1. Introduction

Block matching motion estimation algorithms
are widely used in video coding schemes [1, 2].
The basic idea is to divide the current frame into
equally sized blocks, and then to find for each
block the best matching block in an available
previous frame. This can be done by full (ex-
haustive) search within a search window (opti-
mal solution), or by using an intelligent non ex-
haustive search (suboptimal solution) in order

to reduce the computation requirements. Ad-
ditionally, a multiresolution representation of
video frames can be used for achieving higher
performance (hierarchical block matching algo-
rithms). Next, the motion vector of each block
in the current frame is determined by the relative
displacement of the best matched block in the
previous frame. As a measure of block similar-
ity, the mean absolute difference between two
blocks is typically used because it requires no
multiplication and has similar performance to
the mean square error.

Due to its high computational demands, video
coding is usually implemented in hardware.
Hardware architectures can be split into applica-
tion-specific and programmable [3, 4]. In the
first case, special purpose hardware is optimally
designed. For example, a large number of ar-
chitectures have appeared for block matching
motion estimation algorithms especially for the
full search algorithm [5]. Due to its highly reg-
ular data flow, most realizations of this algo-
rithm are based on mesh-like systolic arrays.
Despite their high efficiency, these application-
specific designs lack flexibility. A change in
algorithm parameters or improvements in the
coding scheme may lead to a costly hardware
redesign. On the other hand, programmable ar-
chitectures offer higher flexibility at a cost of
reduced efficiency [6, 7, 8, 9, 10]. The coding
algorithms are developed in software and thus
any change can be easily handled. In the lit-
erature, many designs have been reported that
follow either of the two approaches (for a survey
see [3,4,5]).

42 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

In this paper, following the programmable ar-
chitecture approach, we study the software-
based realization of the HBMME algorithm on
a hypercube-based multiprocessor. We also
present an efficient full search block match-
ing motion estimation (FSBMME) algorithm
which is used as a subroutine in the HBMME
algorithm. A basic point in our study is the
amount of local memory at each processor.
Specifically, we assume that there is ©(S) lo-
cal memory at each processor where S is a free
parameter. Most programmable architectures
used in video coding are coarse-grained mul-
tiprocessors where each processor has enough
memory to keep all data it will need through-
out algorithm execution. Thus interprocessor
communication is almost eliminated and pro-
cessors can operate independently. In our study,
by including the amount of local memory at
each processor as a free parameter, we consider
all classes of modern multiprocessors, that is
fine-grained, medium-grained as well as coarse-
grained parallel machines. As will become
evident later, the smaller the value of the pa-
rameter S is, the harder it is to design an effi-
cient algorithm. This is because interprocessor
communication becomes inevitable when pro-
cessors have limited local memory. In order to
keep communication overhead low, we need to
carefully arrange the necessary communication
operations. In addition, the use of a power-
ful network such as the hypercube for the im-
plementation of the HBMME algorithm is well
justified, because this algorithm has a non reg-
ular data flow and its inherent communication
is not local. Thus it cannot be easily imple-
mented on systolic arrays. Dedicated hardware
designs for the HBMME algorithm|[11, 12, 13]
require high external memory bandwidth or re-
lieve these requirements by using large on chip
memory.

However, we do not simply count on the large
communication bandwidth of the hypercube net-
work in order to efficiently execute data trans-
fers required by our algorithms. We further
enhance this performance by minimizing the
occurrence of “difficult” communication pat-
terns such as many-to many personalized com-
munication. To this end, we devise efficient
techniques which allow the utilization of sim-
ple communication operations, shifts, in place
of complex communication operations most of
the time. Since shifts have simple implementa-

tion on most of interconnection networks, our
algorithms can be easily adapted to other in-
terconnection networks as well, e.g the mesh
network. The clear advantage of the hypercube
over sparser interconnection networks such as
the mesh lies in the faster execution of the dif-
ficult communication patterns which inevitably
arise due to the inherent irregularity of the HB-
MME algorithm. Thus, although there exist
nearly optimal algorithms which implement this
kind of irregular communication on other net-
works as well, a comparative increase in the exe-
cution time should be expected when extending
our algorithms to sparser networks.

The rest of this paper is organized as follows.
In Sect. 2, we briefly review the block match-
ing motion estimation algorithms. In Sect. 3 we
discuss the basic assumptions and communica-
tion operations used in our algorithms. After
having defined the basic assumptions and com-
munication primitives, in the next two sections
we present our parallel algorithms. In Sect. 4,
we present the implementation of FSBMME on
the hypercube-based multiprocessor whereas in
Sect. 5 we describe the parallel algorithm for
HBMME on the same multiprocessor. Then, in
Sect. 6, we discuss how we can adapt our design
to other interconnection networks as well. In the
next section, Sect. 7, we present experimental
results which confirm the main theoretical re-
sults of the paper. Finally, in section Sect. §, we
summarize our work in this paper.

2. Block Matching Algorithms

In the FSBMME algorithm, the current frame
N x N is divided into blocks of size M x M and
each block is compared with all the blocks of
size M x M within a search window of size
(M 4+ 2d) x (M + 2d) in the previous frame
(Fig. 1(a)). Here d denotes the maximum dis-
placement in each direction. We also refer to
a block M x M with its top left corner at the
pixel (u, [) as block (u, [). For all displacements
(x,¥)(x,y = —d, - - -, d) the mean absolute dif-
ference (MAD) between the block (u, [) of the
current frame X and the block (# + x, [+ y)in
the search window of the previous frame Y is

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 43

given by:

M—1M-
Z Z (u+i, 1+j)

i=0 j=0
— Y (utx+i, I+y+)) | (1)

MAD,,;)

where X (u+i,14j), Y(u+x+i,l+y+])
denote the intensity values of the corresponding
pixels. Now, the motion vector v (u, [) of the
block (u,) is given by

v(u,l) = arg I(nilgMAD(u,z)(%y) . (2
X,y

The choice of the right block size is impor-
tant for the FSBMME algorithm. With either
too large or too small block size, the algorithm
might well yield false motion estimates [11].
The HBMME algorithm solves this kind of
problems by using a multiresolution (hierarchi-
cal) representation of video frames in the form
of a Laplacian pyramid [1, 14, 15]. The basic
idea is to start the estimation of motion field
from the lowest resolution level. At this level,
the block size is relatively large in comparison
with the frame size at that resolution level and
the estimated motion vectors capture the large-
scale movements existing in the scene. Then,
these vectors are passed onto the next higher res-
olution level as an initial estimate. The higher
resolution levels refine on the motion vector es-
timates and thus smaller block size should be
used. The lower resolution frames in the pyra-
mid are obtained by a series of low-pass filtering
and subsampling operations.

There are a number of variations of the basic
algorithm. The first variation is to skip the
subsampling between successive levels of the
pyramid. Alternatively, we can use only sub-
sampling without low pass filtering. A third
possibility is the use of overlapping blocks at
each level. In this scheme, the motion vector of
each block at one level is initialized as a linear
interpolation of the motion vectors of its ad-
jacent blocks at the previous lower resolution
level. Finally, we can use either the FSBMME
algorithm or a non exhaustive search BMME
algorithm for motion estimation at each level.

An example of motion vector estimation by us-
ing a 3-level hierarchy is shown in Fig. 1(b).
First the motion vector d3 of the largest block
is estimated (the lowest resolution level). Then

at the next higher resolution level the vector d;
is calculated around the point which d3 points
to. In the third level the vector d; is estimated
using the smallest size block. The final motion
vector is the vector sum d of dy, dy, d.

3. Basic Assumptions and Communication
Operations

Having presented the basic points of both FS-
BMME and HBMME algorithm, we are now
ready to start the description of the parallel im-
plementation of these two algorithms. In this
section, we will first refer to the basic assump-
tions we make and then we will give the details
of the communication primitives we use for im-
plementing the algorithms.

As has already been mentioned, the parallel im-
plementation of the FSBMME and HBMME
algorithm is carried out on a hypercube-based
multiprocessor. We assume that this multipro-
cessor consists of P? (P = 2P) processors with
each processor having ©(S) local memory. In
order to keep analysis simple, we assume that
S = s, X s, where s, = 2". For convenience
too, we view the hypercube as a two dimen-
sional P x P grid and thus when we use terms
like row, column, block and all that, we will ac-
tually mean the corresponding subhypercube.
Initially, the pixel values X (i,) and Y (i, j) of
the current and previous frame respectively are
J

stored in processor (Léj, L—J) where proces-

Sr
sor (i, f) is the processor with address j + iP.

An important consideration in our study is also
whether or not processors can utilize all their
communication links simultaneously [16].
When processors communicate with all their
neighbors at the same time (all-port assump-
tion), we can make use of the full communica-
tion bandwidth provided by the hypercube net-
work. Incontrast, when each processor can send
to or receive from only one of its neighbors at
a time (one-port assumption), we do not fully
exploit the communication capabilities of the
hypercube network. On the other hand, all-port
assumption usually implies increased hardware
complexity for the communication interface of
hypercube nodes. In regard to our study, it will

44 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

FrameY |
Frame X "u,hfd
d d
w,D ' e,
A
M o e,
M
(a) FSBMME Algorithm

Frame Y

Frame X

(b) HBMME Algorithm

Fig. 1. BMME algorithms.

become clear later that our algorithms can be
easily adapted to both these assumptions.

Before proceeding further, we must introduce
the basic communication operations used in
our algorithms. In deriving the communica-
tion complexity of these operations, we assume
that sending a message of size M along one hy-
percube link incurs 7 + M delay where the
7 is the fixed start-up cost for sending packets
and f is the data transfer rate (bandwidth) of the
link. Ashas been mentioned in the introduction,
we will handle all the classes of modern multi-
processors: fine-grained, medium-grained and
coarse-grained multiprocessors. Apart from the
amount of local memory at each node, these
classes of multiprocessors differ in the methods
they use to route packets across their intercon-
nection networks. For a detailed description of
various routing methods see [17].

Most of fine/medium-grained multiprocessors
employ the simple store-and-forward technique
for routing packets. In this technique a packet is
first stored in full in one processor, before this
processor forwards the packet to the next pro-
cessor en route. Thus sending a packet of size M
on a P-node hypercube takes O(log P(t+Mf3))
time at most. Notice that the size M of pack-
ets is relatively small in fine-grained machines.
The same is also true for the start-up overhead
7 and thus we can safely ignore this parame-
ter in our time estimates. However, in the case
of coarse-grained multiprocessors the start-up
overhead 7 is much larger and it should be taken
into account. This is primarily due to the fact
that most modern coarse-grained multiproces-
sors are manufactured with commodity multi-
processors which have not been optimized for

use in high speed interconnection networks [18].
In addition, the size M of messages is usually
large in this kind of machines and thus the use
of a store-and-forward routing method requires
a large buffer space, O(M), at each processor.

Due to these serious drawbacks of store-and-
forward routing method, most modern coarse-
grained parallel machines use an alternative
routing method: wormhole routing [19]. This
kind of routing makes better use of the network
bandwidth: each message is split into small ba-
sic units (called flits) and then these units are
pipelined all along the route from the source to
the destination of the message. With wormhole
routing, every node needs only one flit buffer
space per incident link. Further, the start-up
overhead for sending a message is paid once at
the source node of the message and not at each
node along the route of the message. Another
positive aspect of wormhole routing is that, due
to pipelining the time of sending a message is
almost independent of the distance between the
sender and the recipient of the message. Thus
under low load condition, the network gives the
impression that there is a point-to-point link be-
tween each pair of processors. Even if the net-
work is moderately or heavily loaded, the use of
virtual channels [20] alongside wormhole rout-
ing as well as the use of high speed intercon-
nection links significantly alleviate the problem
of congestion in modern coarse-grained multi-
processors. The same effect of the very small
variance in the time required for executing an
arbitrary routing instance can also be achieved
by some randomized algorithms. In this kind
of algorithms, input packets are first sent to
random intermediate destinations and then to
their ultimate destination nodes [21]. Due to

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 45

this common property of modern routing meth-
ods, most of the algorithms that have been pre-
sented in the literature for coarse-grained ma-
chines [22, 23, 24] make the simplified assump-
tion that the cost of sending a message between
any pair of nodes is independent of the distance
between the sender and the receiver of the mes-
sage. Thus this cost is simply given by the
expression 7. + M. where 7. is some fixed
communication overhead and f. is the mean
data transfer rate through the network.

In our algorithms, we handle all methods of
routing: store-and-forward and wormhole/ran-
domized routing. However, in coarse-grained
machines, processors usually have sufficient
memory to keep all data they will need through-
out algorithm execution. Thus processors can
operate almost independently of each other and
the interconnection network remains idle most
of the time. In contrast, processors in fine-gra-
ined machines frequently exchange messages
and the interconnection network is constantly
utilized during the algorithm execution. Thus
most of the following communication opera-
tions assume a store-and-forward routing model.
Only the last operation is studied under the
wormhole /randomized routing model too since
there is a case, not very possible in practice,
where processors of coarse-grained machine
should frequently send and receive messages.

For more details of the following operations see
[25, 26]. The time estimates for the first three
operations are obtained under one-port assump-
tion.

e Shift(A,B,i,L.P): B(j)[r] — A((j+1i)
modP) [r] where j = 0---P — 1, r =
0---L—1, Pis the size of the hypercube,
A and B are two L-element arrays stored
locally in each processor and the notation
B (j) [r] denotes the r*" element of array
B stored in processor j. This operation
moves the elements of array A of proces-
sor (j+ i) mod P to the first L positions
of array B of processor j. This transfer is
carried out by visiting the hypercube di-
mensions one at a time in a descending
order. The complexity of the operation is
O (Llog P B) in general.

e Data_Sum(A,B,L,P): the sum of the corre-

sponding elements of the L-element array
A across all processors is stored into the
L-element array B of processor 0. In other
words, if A(i)[j] is the j"*-element of the
array A of processor i then the result of
the Data_Sum is: B(0)[j] = Sh=' A(i)[j]
and j = 0---L — 1. The operation con-
sists of log N steps. At the i step (i =
0---logN — 1), the processors whose i
bit is 1 send their data to their neighbors
along i’ dimension. These processors in
turn add the incoming data to their own
data and the whole process is repeated for
the (i + 1) bit. Obviously, the Data_Sum
operation can be easily modified to store
the final sum not only in processor 0 but in
any other processor. In addition, due to the
associativity of the addition, it is clear that
the algorithm can visit the hypercube di-
mensions in any order without altering the
ultimate sum. As will be seen later, both
these facts are exploited to a large extent in
our algorithms. The operation complexity
is O (L logP B + LlogP Top) where T,
is the time for performing a single arith-
metic operation.

Broadcast(A,B,L,P): Processor 0 broad-
casts the contents of its L-element array
A and these are stored in the array B of
each processor. The time complexity is

also O (Llog P B)'.

Random Access Read RAR(A,B,L,P): In
this operation each processor reads the
contents of a L-element array A residing
in some other processor and then stores
the data into its array B. Note that it is
not necessary for all processors that con-
tact a particular processor to read the same
L-element array.

Each RAR operation consists of two phases
where the second phase is the reverse of the
first. The basic communication pattern in
each phase is the many-to-many person-
alized communication with possibly high
variance in the message size. In this kind
of communication, each processor of a par-
allel machine sends distinct messages to

! When processors can send and receive messages through all their links at the same time (all-port capability), the communication
complexity of the above three communication operations falls to O ((L 4 log P) 8).

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

only some of the processors of the ma-
chine. In addition, these messages do not
necessarily have the same size. This com-
munication pattern, which is also known
as h-relation, is prevalent in parallel al-
gorithms and its importance for efficient
implementation of parallel algorithms has
long been recognized [27]. For this rea-
son, numerous proposals for implementa-
tion of the h-relation has appeared in the
literature [28, 29, 30, 31, 32, 33]. The main
objective of these algorithms is to decom-
pose the irregular pattern of an h-relation
into a number of more regular communica-
tion patterns such as all-to-all personalized
communication with messages of nearly
uniform size or even simple one-to-one
permutation routing where all messages
communicated have also nearly the same
size. In doing so, some of these algorithms
use randomization as a tool for minimizing
the number of rounds of regular communi-
cation required overall [33]. On the other
hand, deterministic algorithms have also
been proposed [28, 30, 31, 32]. Most of
these algorithms assume that there is a vir-
tual point-to-point link between each pair
of processors and hence are well suited for
coarse-grained machines with wormhole
or randomized routing. In our study, we
use the algorithm in [31] for implemen-
tation of the RAR operation on coarse-
grained machines. In this algorithm, there
are two phases of communication. Data
are first routed to intermediate destinations
and then, during the second phase, they are
routed to their final destination. By first
sending data to intermediate destinations,
the algorithm achieves a more balanced
distribution of communication across the
network.

For the hypercube network, implementa-
tion of the RAR operation has been pre-
sented in [25]. This algorithm assumes a
store-and-forward routing model and that
each processor has only one data element
in its local memory. For coarser data dis-
tributions we can use the algorithm in [34].
This algorithm solves the problem of rout-
ing N packets on a P-processor hypercube
such that each processor is the source of at
most k; packets and the destination of at
most kp packets. This routing can be ac-

complished in O ((ky + k> + log? P) B+

N I(I’Jg N T0p> . The basic assumption of this

algorithm is that each processor can send
and/or receive along all its links at the
same time (all-port capability).

Both algorithms in [25, 34] use similar
techniques and employ sorting as a basic
step for ordering packets according to their
destination addresses. This sorting step
also determines the complexity of these
two algorithms.

In regard to parallel sorting algorithms,
there is a vast amount of literature. These
algorithms are divided into two major clas-
ses. The first class includes all these algo-
rithms which are not based solely on com-
parisons in order to sort their inputs. This
means that their performance depends on
the specific values of input keys. Exam-
ples of this kind of sorting algorithms [35,
36, 37| are the sample sort, radix sort,
flashsort etc. In contrast, the algorithms
of the second class are based on sort-
ing circuits and perform comparisons in
a predetermined order in order to sort in-
put elements. Thus these algorithms are
oblivious to the values of their input keys
and their performance is more predictable.
The most known example of oblivious
sorting algorithm is the odd-even merge
sorting [26] which is one of the oldest,
yet widely used parallel sorting algorithm.
The complexity of this algorithm for sort-
ing N elements on a N-node hypercube is
O (log”N B +log” N T,p). In our study
however, it is possible to lower this com-
plexity by exploiting the special structure
of BMME algorithms. If the total num-
ber P of hypercube nodes is smaller than
the number N of input elements, which al-
gorithm gives the best results depends on
the value of ratio ¥. In [35], a experi-
mental study of various sorting algorithms
was carried out on the CM-2 parallel ma-
chine which is a SIMD hypercube-based
machine. This study showed that when
the ratio % is relatively small, the best re-
sults are given by bitonic sorting [38], a
sorting algorithm very similar to the odd
even merge sorting. This result has also
been verified in [39]. The running time

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 47

of odd-even merge sorting algorithm is
O (% log*P B+ Xlog® N T,p) under one-
port assumption. If processors are capa-
ble of sending to or receiving from all
their neighbors (all-port capability) the

above complexity falls to O ((% log P+
log? P) B+ % (log2 P+ log N) Top).
When the number of elements at each pro-
cessor is large, the most efficient algorithm
is the sample sorting whereas for all val-
ues of the ratio % in between the above two
cases the radix sorting algorithm presents
the best performance.

4. The Parallel FSBMME Algorithm

In this section we will study the realization of the
FSBMME algorithm on the hypercube network.
As has already been stated, in this algorithm the
current frame (frame X) is partitioned into y; N2
non overlapping M x M blocks. We assume
that N and M are powers of 2, namely N = 2"
and M = 2™. The basic operations in the al-
gorithm are given by (1), (2). In our study, we
first consider the case S < M?. Considering the
values parameter M takes in practice, inequality
S < M? implies that our multiprocessor is fine
grained and each block M x M is assigned to
bp processors where bp = MTZ . Next we will
examine the case of our multiprocessor being
medium/coarse-grained, that is S > M2, Tt will
become clear later that the latter case is much
easier to handle than the former.

4.1. Fine-Grained Multiprocessors

As Fig. 1(a) shows, in order to find the mo-
tion vector of a block (u,), the MAD should be

evaluated for all the (2d + 1)2 candidate vec-
tors (x,y). All pixels of the previous frame Y
required for these calculations are located in-
side the search window of the block (u, [). The
parallel algorithm for this estimation consists
of O([%12) steps. At each step, each processor
fetches in its local memory a different square
subregion of the previous frame Y. This subre-
gion has size 2s, x 2s, and is stored into four
sy X s, local temporary arrays: tempgg, tempoy,

temp;o, tempy;. Having this set of pixels of
frame Y in their local memory, all processors
of block (u, I) can now calculate the MAD for
as much as S candidate motion vectors of the
block. In what follows, we give more details of
this scheme. For the moment also, we assume
one-port capability. Next, we will see how our
scheme can be adapted to the case of all-port
capability.

One-port capability Fig. 2 shows one pro-
cessor belonging to a block (u, [), processor

(8h) (g € [y M — 1], he [{-- BN~
1]), and all pixels of frame Y that will be
needed by this processor throughout the exe-
cution of the FSBMME algorithm for the block
(u, 1). In general, this region of pixels has size
(2d + s,) x (2d + s,) and is distributed among

(2 [d] +1)x (2 [d] + 1) processors. In this

figure we assume that - d — 4 thatis s, divides d

exactly. The general case where d is not a mul-
tiple of s, will be handled later in this section.

As a first step of motion estimation, each pro-
cessor execute four shift operations: Shift(Y,
temp00, —< — <4 P 5 P?), Shift(¥,temp01,— <+
1-4Pp.S.P?), Shift(Y,temp10,— £ — (£ —1)P, S,
P?), Shift(Y, templ1,—£ 4+ 1— (£ —1)P.S,P?)
(O(Slog P B) total delay). For processor (g, i),
these four shifts transfer the pixels of frame Y
stored in the 4 top left processors enclosed by
the first dashed square of Fig. 2, namely pro-

cessors (g — L. h—4), (g— L h—42 +1),

sr? Sr
(g— G+ Lh-g)(e= g+ Lh—g+1),
into arrays temp00, tempOl, templ0, templ1

respectively.

After these shifts, the processors of each block
can estimate the MAD for § candidate vec-
tors, namely the vectors (—d + i, —d +j) where
i,j=0,---s, — 1. Specifically, each processor
first computes S partial sums locally, each sum
corresponding to one of the S MAD computa-
tions (O(S? T,,) arithmetic complexity). After
this set of local computations, which we name
local Data_Sum operation for brevity, all partial
sums belonging to the same MAD computa-
tion should be added together. This is carried
out in O (S logbp B + Slogbp Top) time by a
Data_Sum operation inside each block. Af-
ter this operation the top-left processor of each

48 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

block (processor (%, é) for a block (u, 1)) has

in its local memory the values of the MAD for §
candidate vectors . Next these processors esti-
mate the minimum of these values and keep the
candidate vector giving the minimum.

After calculating the best vector among the first
S candidate vectors, processors of each block
proceed to the estimation of the MAD for a new
set of candidate vectors. Now, each processor
executes two shift operations: Shift(¥,temp00,

—£ 42— 4p .5 P)and Shift(Y,temp10,— < +
2 — (£ —1)P,S,P?). These shift operations

Sr

overwrite the contents of arrays temp0O and
temp10 whereas the contents of arrays tempO1
templ1 remain intact. As a result, each pro-
cessor has the pixels of a new 2s, x 2s, subre-
gion of the previous frame Y in its local mem-
ory. For example, processor (g, %) has the
pixels Y(i,j) of the previous frame Y where
i=—d+gsp,--,—d+gs, +2s5, — 1] =
—d + hs, + sy, -+, —d + hs, + 3s, — 1, that
is all pixels stored in processors enclosed by
the second dashed square in Fig. 2. Thus all
processors corresponding to a block can now
estimate the MAD for a new set of candidate
vectors, namely the vectors (—d + i, —d + j)
wherei =0,---,s,—landj= s, ---, 25, — 1.
In general, by following the route of Fig. 2, we
can estimate the MAD for all candidate vectors
and thus determine the motion vector of each
block. The shape of the route is such that it en-
sures maximal temporal locality: at each step,
except the first one, each processor needs to ex-
ecute only two shift operations instead of four.
As a result of these operations, two new s, X s,
subregions of frame Y are transferred inside the
local memory of each processor. Fig. 2 shows
how these subregions are placed in the temp ar-
rays of processor (g, k) at each iteration. These
subregions together with two adjacent s, X s,
subregions already stored in the local memory
of the processor from the previous step form a
new 2s, X 2s, subregion of the previous frame
Y. Thus the calculation of the MAD for a new
set of S candidate vectors can now be carried
out.

Apparently, under this scheme most of s, X s,
subregions are fetched twice by each processor.
However this is the best we can achieve under
the assumption of O(S) local memory. More
complex kinds of scanning of the region in Fig. 2

(e.g. Hilbert curve [40] based scanning) do not
reduce this redundancy. Also, one may notice
that most of the processors in charge of a block
ask for the same data throughout the execution
of the FSBMME algorithm. Thus instead of a
series of shift steps, a reasonable solution would
be to execute a number of multicasting steps
where at each step all processors get a common
s x s, block of pixels. However, this scheme
turns out to be less efficient than ours. Although
all processors receive the same block of pixels,
this block does not correspond to the same mo-
tion vector for all the procesors. Thus, initially

2
processors must receive at least Q(MT) blocks
of pixels before they can start estimating MAD
values. Clearly, this also raises the per proces-

sor memory requirement to at least Q(MTZ) local
memory. By contrast, our scheme respects the
O(S) local memory bound since MAD estima-
tions can start without delay just after every two
shift operations. This also leads to a smaller
total delay. Recall that broadcast operations are
not any faster than shift operations on the hyper-
cube network. Both operations have O(log N)
complexity on a N-node hypercube.

The total complexity of the parallel FSBMME
algorithm can be easily estimated. Each step
along the route of Fig. 2 takes O ((S2 + Slog bp)

T,p+ SlogP B) time. Since there are O (‘g—2>

steps overall, the total complexity of the FSB-
MME algorithm is O ((sz + d? log bp) Top+
d*log P B) when assuming one-port capability.

We have described the parallel FSBMME al-
gorithm assuming that the displacement d is a
multiple of parameter s,. When this is not true,
the basic technique of Fig. 2 can be applied
again with the only difference that processor
(g, h) in Fig. 2 will take pixel blocks of size
smaller than s, X s, from the processors along

the border of the search window, namely pro-
cessors (g + i, h + j) where i = —[4],[4]
and j = ~[4]- T4 ori = —[4] T4
and j = —[%1, [%1 In particular, the pro-
cessors at the four corners of the search win-
dow (processors (g + i, h+j)i = — [%], [%],
j= —[%], (%]) should give a block of size

d mod s, X d mod s,. Processors on the upper
and lower border (processors (g + i, h +j) i =

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

49

~ ProcEessors
5r

~ processors
i

-l
-

¥
¥

|t

tempy

ey termgy, | tempy, | tempy| temgy | tempy

4
5

terngyg | tempy,

empy| temp | tenpy, [tempy| tempy | temp

Processors

tempm temF'ol LEMy,

tempg

Lty | terrify, | bermpy) tenpy, | 1Emiy

temipy | temnpy | termpy,

k4

ternpy| tempy| tempy, |tempy| tetnpy | termpy

tetnpy

Processor(ghy ____ e Tiamo

1+

temmpy, | tempy | tempy, tempg | termpy, |tempyg

F 3

tempy |tempy; | tempy

tempy | tempy | tempy tempy | tempy, | tempy,

4
i

tetnpy |tetnpy, | tetnpy

Processors

temmpy, | tempy | tempy, tempg | termpy, |tempyg

tempy, (temp,, | tempy,

temypy, | terngy, | tempy, et | tempy, | tempy,

tempy, | tempy, | tempy

k J

temngy | tempy | ety [tempy| tempy, | tempy

Fig. 2. Transfer of pixels of frame Y into the temp arrays of processor (g, #) by following a meander-like route.

_(si,.]a [%1,]‘ = —[%1 +1--- [%1 —1) will pro-
vide a block of size d mod s, x s, whereas pro-

cessors along the left and the right border (pro-

cessors (g+i,h+j)i= _[%]4_1...(11 —1,

Sr
Jj= —[sir], [%1) should give a s, X d mod s,
block of pixels. All other processors inside the
search window will send a s, x s, block of pixels
to processor (g, 1) as before.

This special treatment of the processors along
the border of the search window gives rise
only to lower-order terms in the overall
complexity. Thus the asymptotic complex-
ity of the parallel FSBMME algorithm is
o ((sz + d? log bp) T,y + d*log P ﬁ) again.

All port capability If processors are capable
of sending and receiving along more than one
link at the same time (all-port capability) we can
reduce the communication overhead of the pre-
vious algorithm. The basic idea is to overlap in
time the steps of the previous process. Except
the first step, all other steps first execute two
shift operations then a local Data_Sum opera-
tion and finally a Data_Sum operation. An im-
portant point in the above process is that rather
than moving the previous frame Y around the
hypercube by a series of horizontal and vertical
shifts by T 1,we maintain the initial placement

of Y by transferring and storing copies of this
frame into temporary arrays (tempgg, tempoy,
tempg, tempy). In order to understand the dif-
ference, let us consider an example. Assume
that a processor (i, j) needs all the s, x s, blocks
of frame Y stored in processors (i, v) where
v = j---j+ g. The straightforward solution
would be to execute g horizontal shifts by —1
of the frame Y (O(gSlog N) total delay). Note
that these successive shifts cannot be overlapped
in time. Since frame Y is moved around the hy-
percube, the net effect of these shifts (shift by
—gq) is achieved only when they are executed se-
rially. However, in our scheme, since the frame
Y maintains its initial placement throughout the
execution, processor (i,j) can get the g s X s
blocks by executing the following Shift opera-
tions: Shift by —1, Shift by —2 ... Shift by —¢
(O(gSlogN) total delay again). More impor-
tantly, these operations can be executed in any
order. In other words, there is no dependence
among them as in the case of shifts by —1.

From the previous example, it is now clear that
the permanent storage of frame Y across the
processors dramatically reduces the interdepen-
dence between the successive steps of the pro-
cess depicted in Fig. 2 since from the beginning
of each step we know where we can find the
pixels of frame Y needed for this step without
having to wait for the completion of the previ-

50 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

ous steps. As aresult, each step can be executed
almost independently of the other steps. Only
at the point where the newly estimated MAD
value is compared with the best MAD value es-
timated so far, the current step needs the results
of the previous steps. But the scheduling of
the operations is such that this information is
always available on time.

We will now give the details of this scheduling.
As mentioned before, except the first step?, all
other steps in the above iterative process per-
form two Shift operations and then calculate
the MAD values for a certain set of S candidate
vectors. The overlapping of these steps should
be such that a minimal number of concurrent
operations contend for the same node or link.
The proposed scheduling guarantees that at any
given moment each node executes arithmetic
calculations of only two operations, namely a
local Data_Sum operation and a Data_Sum op-
eration. It is also guaranteed that at most three
communication operations (two Shift and one
Data_Sum operation) contend for the same hy-
percube link at the same time. All the above will
be proved after giving the basic points of our
scheduling. Our scheduling consists of three
phases:

1. The first 2log P steps in Fig. 2 are suc-
cessively initiated every 2Sf time units.
Obviously, during this phase only Shift
operations are in progress. The interval
of 25f time units is sufficient for transfer-
ring two messages of size S over the same
link. These messages corresponds to the
two Shift operations executed at each step.

2
2. Inthis phase, the remaining (2 [i-‘ + 1>

Sr
—2log P — 1 steps are initiated one after
another with 3SB + (S + $?)T,, time units
separation between successive initiations.
This time is necessary for completing a lo-
cal Data_Sum operation (S? T, time units
), the arithmetic operations of a accumu-
lation step of a Data_Sum operation (S7,,
time units) and the transfer of three mes-
sages of size S over the same link. These
messages correspond to three communi-
cation operations contending for the same
link, namely two shift and one Data_Sum

operation. After initiating the last step, the
above execution rate is sustained until the
execution of the local Data_Sum operation
of this step. After this point, all the remain-
ing concurrent operations can be executed
at a faster pace. Thus we are moving to
the third phase.

3. In this phase, only Data_Sum operations
are still in progress. These operations cor-
respond to the last log bp steps of the par-
allel algorithm. Assuming there is no col-
lision among these operations, this phase
can be completed in (SB + ST,,) logbp
time unaits.

In fact, for this overlapping scheme to work, we
should slightly modify the internal algorithm of
the basic Data_Sum operation. Each Data_Sum
operation in its simplest form stores its final re-
sult at the top left processor of each block (pro-
cessor O of the corresponding bp-node subhy-
percube). During its execution, each Data_Sum
operation visits hypercube dimensions in the or-
der O---logbp — 1. Thus partial sums are get-
ting collected into successively smaller subhy-
percubes all containing processor 0. If we over-
lapped these operations in time without making
any modification in the basic algorithm, some
nodes would have to execute arithmetic oper-
ations for O (logbp) Data_Sum operations at
each step of the second phase. But this con-
trasts with our assumption that at each step of
the second phase each node is in charge of only
one Data_Sum operation.

Clearly, in order to lower processing demands
during the second phase of the proposed schedul-
ing and hence the total arithmetic complexity,
we should modify the Data_Sum operations ex-
ecuted inside each M x M block. As has been
mentioned in Sec. 3, it is almost straightfor-
ward to alter the Data_Sum algorithm so as to
collect the final sum at an arbitrary hypercube
node. At that point, we have also noted that due
to the associativity of the addition, the correct-
ness of the Data_Sum algorithm is independent
of the specific order in which Data_Sum oper-
ations visit hypercube dimensions. Now using
these modified Data_Sum operations we obtain
the following efficient overlapping scheme. In
each M x M block, the first Data_Sum opera-
tion stores its result at node 2°, the second one

2 For convenience, we assume that this specific step is executed alone, without overlapping.

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 51

at node 2! and generally the j Data_Sum op-
eration (j = 1---(2d + 1)?) stores its result at

node 20— 1modloghp of the pp-node subhyper-
cube corresponding to the M x M block. In
addition, each Data_Sum operation visits hy-
percube dimensions cyclically with the j* op-
eration starting from the hypercube dimension
(j—1) mod log bp. In this way, at any given mo-
ment all concurrent Data_Sum operations use
the same hypercube dimension for their mes-
sage transfers. What remains is to prove that
this series of Data_Sum operations can be exe-
cuted with neither link nor node contention.

Lemma 4.1. Concurrent Data_Sum operations
do not compete for the same links. In addi-
tion, at any time step each node calculates at
most S partial sums all coming from the same
Data_Sum operation.

Proof. We prove the lemma by induction on
the number of elapsed time steps. Clearly, the
lemma is trivially true for the first step. Assume
now that the lemma is true for all Data_Sum op-
erations initiated up to time step i. Consider
the Data_Sum operation starting at time step
i + 1. This Data_Sum operation will store its
result at node 2/™m°dl°2bP The first message
transfer of this operation is carried out along
hypercube dimension i mod log bp in direction
0 — 1. Atthe same time all previously initiated
concurrent Data_Sum operations use the same
hypercube dimension but in direction 1 — 0
and thus there is no link collision. Clearly after
this step the newly initiated Data_Sum operation
works alone in the (log bp — 1)-dimension sub-
hypercube xxx---x1x---x whereas all other
—
imodlog bp
Data_Sum operations work inside the comple-
mentary subhypercube xxx - - - x0x - - -x . From
S~
imodlog bp

both this fact and the induction hypothesis, we
can now easily see that all concurrent Data_Sum
operations work on different hypercube nodes
and links and thus we have proved the lemma.

O

The previous lemma suggests that all-port ca-
pability is not essential for pipelining consec-
utive Data_Sum operations. This fact has also
been showed in [16] where efficient pipelining

of consecutive operations was achieved by us-
ing a 2-dilation embedding of a complete binary
tree on the hypercube. However, the algorithm
in [16] is not as regular as ours.

We have described how we can efficiently over-
lap Data_Sum operations without all-port ca-
pability. Unfortunately, for overlapping Shift
operations in time we need this capability. As
has already been mentioned in Sec. 3, in a sin-
gle invocation of a Shift operation, hypercube
dimensions are visited one at a time in a de-
scending order. In our algorithm, at each step
we use two Shift operations for transferring a
new region of pixels of the previous frame Y in-
side the local memory of each processor. These
two shifts can be easily combined into one op-
eration and hence performed at the same time.
This compound operation visits hypercube di-
mensions in exactly the same way as simple
Shift operations. The only difference is that
now the size of messages is double. Clearly, if
each of these composite operations is initiated
with one step delay from its previous one, all
concurrent operations at any given moment use
different hypercube dimensions and thus there
is no link collision.

Link collision arises only among Data_Sum and
Shift operations. However, at most three mes-
sages of size S try to pass through the same
link at the same time and thus communication
complexity increases only by a factor of 3, a
constant factor. Two of these messages belong
to a composite Shift operation whereas the third
one is from a Data_Sum operation.

Finally, it can be easily seen that node con-
tention among different local Data_Sum oper-
ations cannot possibly arise. Since each step
in Fig. 2 execute a Local Data_Sum operation
only once and there is also sufficient delay be-
tween successive step initiations in our schedul-
ing, local Data_Sum operations corresponding
to different steps are all executed at different
moments.

After this sequence of overlapping Shift and
Data_Sum and local Data_Sum operations, we
have not yet determined the motion vectors of
M x M blocks, but we are close to it; for each
M x M block we know those candidate vectors
which give the smallest logbp MAD values.
Each such vector and its corresponding MAD
value has been stored in one of the nodes 2'

52 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

(i=0---logbp — 1) of the subhypercube cor-
responding to the M x M block; recall that each
Data_Sum operation has stored its result in one
of these nodes. In order to estimate the final
best candidate vector, we gather these MAD
values to the node 0 of the above subhypercube
(O(B) delay) and then this node estimates the
minimum of these MAD values (O(logbp T,)
arithmetic complexity). The vector which gives
this minimum determines the motion vector of
the M x M block.

We have described how the operations of the
FSBMME algorithm can be overlapped in time.
The overall time complexity can be easily
estimated by summing the running time of
the three phases of the scheduling. Clearly,
the first phase takes 4Slog PB time units to
complete whereas the second one requires

<<(2 2] + 1)2 - 1> (3B + (S + Sz)Top)>

time units. Finally, all the Data_Sum opera-
tions of the third phase can be completed in
log bp (STOP + SB) time units. Summing all
these complexities, we can easily see that the to-
tal time for this pipelined FSBMME algorithm
is O((d*S + Slogbp)T,, + (SlogP + d*)B).
This complexity does not change if we also take
into account the last step of finding the mini-
mum among the smallest log bp MAD values;
this step has only O(+log bp T,,) complexity.

Before concluding the discussion about the im-
plementation of the FSBMME algorithm on
the hypercube-based fine grained machine, we
should refer briefly to the systolic array designs
that have been proposed in the literature for this
algorithm. Most of these designs were derived
by following the systematic approach of map-
ping the dependence graph of the basic oper-
ations of the FSBMME algorithm onto lower
dimension systolic arrays[3]. The main differ-
ence between these designs and ours is that input
frames in these designs are fed online during the
algorithm execution whereas in our design the
input frames have been already stored in the lo-
cal memory of processors before the execution
starts. However, among other proposals, type-1
array in [41], architecture AB2 in [42] and the
design proposed by [43] are the most relevant to
our design. Similarly to our parallel algorithm,
in these systolic array architectures all arith-
metic operations of a MAD calculation relevant
to a particular motion vector are executed in

parallel whereas the MAD calculations for dif-
ferent motion vectors are executed serially one
after another. Another common point between
our algorithm and the above mentioned propos-
als is that frame X maintains its initial position
throughout the algorithm execution whereas in
contrast the pixels of frame Y are repeatedly
shifted. Especially type-1 array in [41] uses a
meander-like data flow similar to that of Fig. 2
for moving the pixels of frame Y.

4.2. Medium/Coarse-Grained
Multiprocessors

In this case S > M? and thus each processor is
assigned the motion vector estimation of more
than one block M x M, namely % blocks. The
parallel algorithm for coarse-grained multipro-
cessors is very similar to that presented in the
previous paragraph. Each processor will need
again all the pixels inside the (2d+s,) x (2d+s,)
subregion of Fig. 2(b). These pixels are fetched

in a series of O ([%12> steps of shift opera-

tions, following the route of Fig. 2(b). After
each step, each processor is able to calculate
the MAD criterion for all its blocks and for a
particular set of S candidate vectors . The com-
munication complexity of each step is O(7. +
SB.) assuming wormhole/randomized routing
(O(Slog P B) under a store and forward routing
model and one-port assumption) and the arith-
metic complexity is equal to the time required
to calculate the MAD values for % blocks and

S candidate vectors, that is O(S? T,p) overall.
Under a store-and-forward routing model these
steps can be easily overlapped in time again
by using the previous pipeline scheme for fine-
grained multiprocessors.

5. The Parallel HBMME Algorithm

In this section we will study the realization of
the HBMME algorithm on the hypercube net-
work. For the sake of presentation, we first
assume that neither subsampling nor low pass
filtering is performed between successive layers
of the pyramid (basic scheme). Apparently, the
basic scheme is not a “good” algorithm from
image processing point of view. However, for
our purposes, this simplification helps to more

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 53

Mk-lI

N

[
Aﬁ\—"ﬁ:l <
%

o

|
i |
o N A

PHCRBIE

._“\h*f,-—f‘ Q—"“”"H_F.
O-\’ff.

|
B s

Fig. 3. Different motion vectors for each block M; X M result in irregular communication patterns.

easily explain the basic difficulties arising in
our effort to parallelize the HBMME algorithm.
As the complete HBMME algorithm, with sub-
sampling and low pass filtering included, is a
fairly complicated algorithm by itself, the pre-
sentation of our basic techniques directly on this
algorithm would be obscured by unnecessary
technical details. In contrast, the basic scheme
serves for presenting the key techniques of our
parallel algorithm in a more manageable way.
Then we will show how to adapt these tech-
niques in order to handle the complete HBMME
algorithm. Apart from the increased complex-
ity due to the inclusion of low-pass filtering and
subsampling, our main techniques remain the
same in the abstract level needing only some
modifications in the low implementation level.

Finally, due to space limitation, we will not
consider overlapping blocks and non exhaus-
tive search algorithms. However, the techniques
which we develop in the following subsections
can be easily adapted to these cases. An in-
crease in time complexity should be expected
in the case of overlapping blocks as processors
in overlapping regions must execute all the op-
erations relevant to the overlapping blocks. The
slowdown factor is proportional to the degree of
block overlapping.

5.1. The Basic Scheme

We assume that there are k levels in the hierar-
chy, k being the lowest and 1 the highest (initial)
resolution level. Due to the absence of subsam-
pling, the dimensions of video frames at each
level remain the same and equal to N x N. We

introduce some useful notation. M; x M; will
denote the dimensions of the blocks at the level
i where i = 1,---,k and M; is a power of 2
(M; = 2™). bp; will denote the number of pro-
cessors in charge of a block M; x M; at level i

(bp; = MTIZ) Finally d; will denote the maxi-
mum vertical and horizontal displacement that
a block can have at level i. We also make the
realistic assumption that M; > M;_;.

The simplest approach in implementing the HB-
MME algorithm would be to naively apply the
previous algorithm for FSBMME once at each
pyramid level. Soon, we would realize that
this approach incurs large communication over-
head. Let us see in more detail how this over-
head arises. The motion field at level k can ef-
ficiently be estimated without any problem by
simply using the FSBMME algorithm of Sect. 4.
Figure 3 shows the motion vectors just after the
execution at this level; a set of motion vectors
has been produced one for each block M, x M.
These vectors probably have different size and
direction as Fig. 3 shows. For instance, at level
k—1, block A will need the pixel values enclosed
by the line with pattern* — ——"" whereas block
B will need the pixel values enclosed by the line
with pattern “ —-—". Clearly, these two search
windows are located at a different distance and
direction from their corresponding blocks. This
variation in the relative displacements is get-
ting larger and larger as the algorithm moves to
higher resolution levels. Since there does not
exist a uniform displacement for all blocks of
the frame, a large number of shift operations are
required overall in order to fetch the pixels of
each search window to the corresponding block

54

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

of the current frame.

Obviously, the basic FSBMME algorithm
should be enhanced with techniques which are
able to keep communication overhead low. The
employed techniques depend very much on the
values of parameters d;. First, we will study
the case d; < % (i = 1,---, k) which is often
met in practice and then we will deal with the
general case where there is no restriction on the
values of d;. As will become clear in the next
paragraphs, the design of an efficient algorithm
in the first case requires much less effort than in
the general case.

5.1.1. The Case d; < %

The execution of the algorithm starts from the
k' level and ends up at the first level. The cal-
culations at a particular level cannot start before
the motion estimates from the lower resolution
levels are available. So, there is no parallelism
across the levels. On the other hand, the com-
putations inside each level can be easily paral-
lelized by following a data parallel approach.
Again, we draw a distinction between fine-
grained (S < M,%) and medium/coarse-grained

multiprocessors (S > M?).

Fine-grained multiprocessors. Since the size
of M;x M; blocks are getting smaller and smaller
as we are moving to higher resolution levels,
there may be a level i* after which the size of
these blocks is smaller than ©(S), that is the
size of local memory of each processor. If this
is actually the case, then after level i* we execute

. Mrame Y at level k
] i :
! g i=1 k.
T
1 i=1 Mk i=1 1'
— M, :
: IZdi :
Lo Bl]
a)dg < W
2

the variant of the algorithm for medium/coarse-
grained multiprocessors described later in the

paper.

For the moment, we will describe the execution
of the algorithm at the lowest resolution level
k. Exactly the same techniques are used for all
other levels up to level i*. Figure 4(a) shows
a block at level k. The area enclosed by the
dashed line contains all pixels of the previous
frame Y that could be possibly required by the
processors of this block at all levels of the pyra-
mid. The basic steps at level k are:

o transfer of pixels of the shaded region
of frame Y inside the block M} x M;.
Two horizontal shifts by S°5_ d; and two
vertical shifts by the same displacement
can perform this transfer in O (Slog P f8)
(O((S+1ogP)pB)) time under one-port
(all-port) assumption. Obviously, these
operations are performed in parallel for
all the blocks of the frame. After these
movements each processor will hold 9§
(= ©(S)) pixels at most. This is due
to the values of parameters d; (d; < M;
i = 1,---,k). Later, when we examine
the general case, it will become clear that
this initial concentration greatly reduces
the communication cost and thus it is very
important for achieving an efficient algo-
rithm.

e execution of the FSBMME algorithm. Af-
ter the completion of the previous step,
each block has all the required informa-
tion for the estimation of its motion vector

- d; % d; »
o | I
i' """" 1
17| I .
| E ll2nm,
3M 58 _l---I-I-- -Mi
L] | ZNIi
ZMi M, 2V, SKE

b) The general case

Fig. 4. Efficient techniques for the basic scheme of the HBMME algorithm.

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 55

and thus it needn’t communicate with its
adjacent blocks any longer. The algorithm
in each subhypercube Mj x M is similar to
the algorithm presented in Sect. 4.1. Since
now each processor may be in charge of 9
s %X s, blocks, one may expect that pro-
cessors should be sending more than one
messages of size S at each step of a Shift
operation, even under one port assump-
tion. However, this is not the case. As the
Shift operation belongs to the class of data
permutations , each processor sends and
receives only one block of size S during
this operation. In our algorithm, a pro-
cessor needs to send only one of the nine
blocks of size S stored in its local mem-
ory. Each processor can easily determine
this block by examining the current shift-
ing distance.

Apparently, the number of messages sent
at each step of Data_Sum operation does
not change too. This operation is not af-
fected by the different placement of frame
Y, since it has as input the partial sums es-
timated by the Local Data_Sum operation
at each processor.

As now all the Shift operations are exe-
cuted inside log bpi-node subhypercubes,
the total communication complexity of
the FSBMME algorithm falls to O ((d,%—i-
Slogbpy)B) under all-port assumption
whereas its arithmetic complexity remains

the same, namely O ((d,%S +Slog bpk) Top) .

e In each block M} x My, broadcasting of
the estimated motion vector to all the pro-
cessors of the block (O (log bpy p) delay).

After the estimation of the motion field at level
k, the algorithm visits the other levels of the
pyramid and it repeatedly executes the three
steps above up to level i*. For example, at level
k — 1 the first step is the collection in each block
M1 X My_ of all the pixel values of the pre-
vious frame Y which are within Zf;l d; pixels
around the new position of the block. Clearly,
the new position of the block at level k — 1 is
determined by the motion vector of its “parent”
block M, x My, atlevel k. Notice that this motion
vector is also the same for the other three M;,_ | X
M;._1 “child” subblocks of the M} x M} block.
Thus the first step can be executed with sim-
ple shift operations without encountering any of

the problems of Fig. 3. The complexity of the
first step is O (Slogbpr B) (O (Slogbpiy1 B)
at level i) and not O (Slog P f) as at the level
k. This is because shift operations can now
be performed inside subhypercubes Mj x My
in contrast to the level £ where the whole hy-
percube P x P is used. All the above com-
plexities are obtained under one port assump-
tion. Under all-port assumption, the first step at
level i can be executed in O ((S + logbpi+1) B)
time. Under the same assumption, the sec-
ond and third steps at level i have complexities
O ((d? + Slogbp;) B + (d?S + Slog bp;) Top)
and O (log bp; B) respectively.

After level i* we use the algorithm vari-
ant for medium/coarse-grained multiproces-
sors. Based on the results of the next para-
graph, the execution of HBMME algorithm
at the last i* — 1 levels of the pyramid in-
curs O ((S + logbp;+) B) communication and

o((S Z;*:_lldjz)Top) arithmetic delay assum-
ing all-port capability. Thus, for the case
d; < Y (i=1---k) the total communica-
tion and arithmetic complexity of the HB-

MME algorithm is O (logP + Zf:i* ((dj.%-

Slogbp) B + S (djz +log bpj> T0p> +

S (Z;:_ll dj2> Top> under all-port assumption.
The complexity for one-port assumption can be
easily derived in the same way by summing the
delays of the algorithm steps under this assump-
tion. We leave the details to the reader.

Medium/Coarse-grained multiprocessors. In
this case, the size of blocks at level k is smaller
than the size of local memory of each proces-
sor, that is M7 = O(S). Like the previous algo-
rithm, each processor first gathers all pixels of
the previous frame Y which are within Eile d
pixels around its own portion. After this step,
each processor has all necessary information for
applying the HBMME algorithm to its blocks
and thus no further communication is required
among processors. Hence the communication
complexity in this case is only O (7. + SpB.) as-
suming wormhole or randomized routing and
O(SlogP () under a store-and-forward rout-
ing model and one-port assumption. The arith-

56 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

metic complexity of the algorithm is as much as

) (S (EJ’;I d}) Top>.

5.1.2. The General Case

In the general case the parameters d; have ar-
bitrary values, thereby complicating the design
of an efficient algorithm. If we try to apply
the methods of the previous subsection, we will
soon find out that after the first step of data col-
lection for each block, the load of some proces-
sors is not necessarily bounded. This violates
our initial assumption that the memory of each
processor is O (S). Thus, we have to devise dif-
ferent techniques in order to handle the general
case.

As has been shown in Fig. 3, except the lowest
resolution level, all other levels require com-
munication that does not have a special pat-
tern. As the algorithm execution moves to the
highest resolution level of the multiresolution
pyramid this pattern is getting more and more
irregular and thus more general communication
operations such as RAR operations are clearly
needed. Ashas already been mentioned, under a
store-and-forward routing model each RAR op-
eration is realized using two sorting steps one
at the beginning and one at the end of the oper-
ation. These two steps are the most expensive
in each RAR operation and thus determine the
whole complexity of the operation too. On a
N-node hypercube , sorting N elements, one el-
ement per node, can be executed in near optimal
time, that is close to O(logN) [26]. However,
this kind of sorting algorithms is rather theo-
retical with large constant factors hidden in the
O-notation. The most known practical sorting
algorithm for the network of hypercube is the
odd-even merge sorting algorithm which has
O (log> N B +log* N T,p) complexity assum-
ing the same data allocation as above, that is
one data element per node. This algorithm first
splits the input elements into % lists of 2 ele-
ments each and then recursively merges larger
and larger sorted lists until the N elements turn
up sorted. Unfortunately, the O(log? N) com-
plexity mentioned above cannot be hidden by
overlapping RAR operations. The practical
sorting algorithms usually employed in RAR
operations, when pipelined, cause a large and
non constant number of packets to contend for

the same links, and thus greatly increase the
local memory requirements.

Having defined the RAR operation as the basic
communication primitive in the general case of
HBMME algorithm, we now describe in more
detail how motion estimation is performed at a
pyramid level i of the hierarchy. Once more,
we first handle the case S < M? and then the
case S > M?. Since the values of M; are not
very large in practice, when the first case is true
then we are almost sure that the employed mul-
tiprocessor is fine-grained. When the opposite
is true, what kind of multiprocessor we assume
depends on the relative values of S and M?. If
S >> M? then our multiprocessor is assumed
to be coarse-grained whereas when the values
of S and M? are comparable we can assume
that our multiprocessor is medium-grained or
even fine-grained. In regard to the employed
routing method, we assume wormhole or ran-
domized routing for coarse-grained machines
and store-and-forward routing for fine-grained,
medium-grained machines.

Fine grained multiprocessors. The simplest
approach to implementing the HBMME algo-
rithm in the general case is to perform (2d; + 1)?
RAR operations at each level i , one operation
per candidate vector. Given Trag the complex-
ity of a single RAR operation, this simple ap-
proach has O(d?Tgag) complexity for level i.
Obviously, there are two ways of reducing this
complexity: a) by decreasing the number of
RAR operations required at level i and b) by re-
ducing the time Tgag required by a single RAR
operation.

We will first describe a technique for decreasing
the number of RAR operations at each pyramid
level. The basic idea is to take advantage of
the special structure of the HBMME algorithm.
Although it is not possible to initially trans-
fer all pixel values needed by the processors of
a block inside this block, these values can be
transferred in batches. Figure 4(b) shows the
search window of a block M; x M; at the level
i. With at most 9 RAR operations, the pixels
of the region A are transferred inside the block
M; x M;. After this transfer each processor
will have 9§ pixel values in its local memory.
Clearly, each block M; x M; has now all the
necessary information for the estimation of the

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 57

MAD at (2M; + 1)* possible displacements. As
has been shown in Sec. 4.1, the communication
operations required by these estimations (Shift
and Data_Sum operations) can be easily over-
lapped and thus these calculations can be com-
pleted with only O ((Slogbp; + M?) B) com-
munication and O (S (Ml2 + log bpi) Top) arith-
metic delay.

After this set of computations, the next batch of
pixel values should be transferred inside each
block M; x M;. In Fig. 4(b), these pixels are
located inside the region B. In fact, since the
regions A and B intersect at region C, only pix-
els outside this region need to be transferred.
In general, following the meandering route of
Fig. 4(b), we can calculate the MAD for all the
candidate vectors inside the search window us-

ing only O U%]z) RAR operations in total.

The right part of Fig. 4(b) shows how we move
from one row to the next higher row of the route
(blocks D and E). In the figure we assumed that
d; 1s a multiple of M;; otherwise, the width of
both the blocks D and E would be smaller than
3M;, namely M; + 2 (d; mod M;).

Besides the above improvement, motion estima-
tion at level i can be further sped up by keeping
low the time complexity (Tgag) of each RAR
operation. In a RAR operation, each proces-
sor i reads a s, X s, block of pixels whose the
top-left corner is, say, at the pixel (#;, [;) of the
previous frame Y. In what follows, we briefly
mention the main steps of a RAR operation in
our algorithm [25]:

1. Each processor i creates a quadruple Q; =
(i, t;, I;, L;—;J + P[{]). The fourth entity
gives the address of the processor holding
the top left pixel (¢;, ;).

2. Sort the quadruples into non-decreasing
order of the fourth entity. After this step,
quadruples destined for the same proces-
sor appear consequently in the sorted or-

der. Let G; = {0}, 0}, -- -Q’ri_l} be such
a group of quadruples residing in proces-
sors ij, ij+1, - - - ij+r; — 1 and whose com-

mon destination is the processor j.

3. For each group Gj, the expressions
(Tj, Lj) = (Mij—q...,,—1 £}, min—g..,,—1 £)
and (Bj,R;)) = (maxizo...rj_lt{ + s,

max;—g..,,—1 b + s,) are estimated and
stored in processor i;. This estimation can
be performed in O(log P 3) time by using
a segmented prefix operation [26]. Notice
that the coordinates (Tj, Lj) and (Bj, Rj)
are the top left and bottom right corners
respectively of the minimal rectangle that
encloses all the s, x s, blocks correspond-
ing to the quadruples of the group G;. It
can also be easily seen that the size of this
rectangle is at most 4.

. The first processor of each group Gj, pro-

cessor i;, sends the tuple (ij, T}, L;, Bj, R;)
to processor j. Since i; < i for any j, [
where j < [, this step can be easily done
by using monotone routing. As each tuple
has O(1) size, the communication delay of
this transfer is O(log P 3) at most.

. Now each processor j that received a tuple

at the previous step knows which pixels of
its local portion are requested by the pro-
cessors of group G;. Notice that the rect-
angle (7}, L;, Bj, R;) may span more than
one processors, at most 4. In this case,
processor j (= ([%],j mod P)) must get
pixels from some of its adjacent proces-
sors, namely processors ([% |,/ mod P +

1), (] +1,jmod P)and (| 5] +1, j mod
P+ 1). These transfers can be easily done
in O((S + log P)B) time using only sim-
ple shift operations and assuming all-port
capability.

. Having collected the required pixels in its

local memory, each processor j multicasts
all pixels of the previous frame Y inside the
rectangle (7}, L;, B}, R;) to all processors of
group G;j. This transfer can be realized in
O ((S+ logP) B) time under all-port as-
sumption by executing a concentrate oper-
ation followed by a generalized operation
(see [25] for more details of these opera-
tions).

. Now each processor examines the received

rectangle and keeps only the pixels that it
actually needs, discarding all other pixels.
The remaining pixels form a s, x s, block
that should be returned to the processor
which initially asked for it. Thus a sort-
ing step is executed where these blocks are

58 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

sorted according to the addresses of their
final destinations. The last information
has been kept in the local memory of each
processor from the second step.

It is worth mentioning that by sending only one
packet from each group G; to the corresponding
destination j we avoid serious hot spots at these
nodes. The packet leaving each group contains
the coordinates of the minimal rectangle enclos-
ing all the requests of the group. As a result,
the region of pixels returned to processors at
step 6 1s somewhat larger than that they initially
asked for. Specifically, each processor receives
a region of at most 4§ pixels instead of S pix-
els. This difference is not large, because the
parameter S is usually small in the case of fine
grained multiprocessors. If processors were to
receive exactly the pixels they asked for, then
processors of each group G; should have sent
separate request-packets to their common des-
tination j. Each such packet would contain the
coordinates of the s, X s, region required by the
sender of the packet. After collecting these re-
quests, destination processors should have sent
different reply-packets to each of the processors
of their group. It is not hard to see that in this
case the number of packets a processor should
receive at step 4 and send at step 6 is not neces-
sarily small since in the worst case a processor

must receive and then send 5 T packets at level

i of the pyramid. Apparently, this could create
serious hot spots at some nodes, thereby raising
the complexity of the RAR operation to at least

Q (SZ—?B) time steps.

As has been mentioned previously, the two sort-
ing steps in the RAR operation dominate the
cost of this operation. Now we will give details
of how these two sorting steps can be efficiently
executed. We prove the following lemma:

Lemma 5.1. The ﬁrst sorting step of a RAR
operation at level i can be performed with

O ((log? P—log? bp;) T,p+ (log” P—log? bp;)
B) delay.

Proof. In each invocation of RAR operation,
each processor (L%J + i, [é] —|-j> (i,j=0---

3 Recall that M; = 2™ s, = 2" and P = 2P.

];i 1) of a M; x M; block (u,) must read the
pixels of a s, X s, block of the previous frame
Y whose top left corner is at pixel (z (irj)> l(w)>

(x+i s,+u, y+j s,+1) where (x, y)is adisplace-
ment vector. Hence, it must communicate with
the processor which stores the pixel ((;), [j))»

+ e .
namely the processor (L%J +i, |57 +]>.

Due to this special reading pattern, the input
of the sorting step of each RAR operation con-

sists of AA/;z sorted lists of at most bp; quadru-

ples each. Each of these lists corresponds to
a M; x M; block of the current frame and the
quadruples of each list are already sorted by the
coordinates of the processors to be contacted.
This ordering becomes more apparent after per-
forming the followmg permutatlon processor
(l]) (lp Up—2" " Imi—rlmi—r—1"" " 10y Jp— Up—2
< Jmi—rfmi—r—1- - -Jo) sends its quadruple to
processor (ip—1ip—2 - im—rfp—1ip—2" " *Jmi—r»
fmi—r—1 """ iQjm—r—1---jo)>. This permutation
transforms each M; x M; block into a lin-
ear array by ‘“scanning” the 22(mi=r) proces-
sors of the block in row-major order. It also
belongs to the well studied class of the Bit-
Permute-Complement permutations and can
be executed in O (logP B) time [25]. Af-
ter this communication step, the emerging
set of sorted lists can be easily merged in
O ((log*P—log?bp;) T,p+ (log*P— logsz,)ﬁ)
time by applying the odd-even merge sorting al-

gorithm.
|

The second sorting step completes the RAR op-
eration by moving each s, X s, pixel block to its
ultimate destination. This can be simply done in
o ((S log P + log? P) B+ log? P Top) time by
using the odd-even merge sorting algorithm and
assuming all-port capability. But we can actu-
ally do better if we just reverse the two phases of
the first sorting step. Thus as a first phase, each
Sy X Sy pixel block destined for processor (i, j)

(ip lip 2 im,—rimi—r—l"'ioajp—ljp—Z"'
Jmi—rmi—r—1"]0) is moved to processor
(ip—tip—2 imimrfp—1p—2" " “Jmi—rs imi—r—1"

I0fmj—r—1"]0). As is proved in lemma 5. 2
this phase can be completed in O (S (log P—
log? bpi) B+ (logzP — log? bp,-) Top) under
one-port assumption and in O ((S (log P—

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 59

log bp;) —|—10g2P—log2bp,~)B—|- (logzP—logszi)
Top) time under all-port assumption. After
this phase, the permutation (ip_ lp—2+""
imi—rimi—r—l' ' 'i07jp—]jp—2' . 'jmi—rjmi—r—l' :]0)
- (ip—lip—Z' : 'imi—rjp—]jp—Z o Jmi—rs Imi—r—1
-+ IQfmi—r—1- - -Jo) 1s executed again. But now
it takes O (Slog P B) time under one-port as-
sumption since all messages sent or received
at each communication step have © (S) size.
However, under all-port assumption this com-
plexity can be lowered to O ((S+ logP)f)
time by overlapping the communication steps
of the algorithm implementing the bit-permute-
complement permutation. After the end of the
second phase, each s, X s, block has reached its
final destination. Now we prove the following
lemma:

Lemma 5.2. The first phase of the second
sorting can be completed in O (S (log2 P—
log? bp;) B+ (log” P—log? bp;) T,p) time un-
der one-port assumption and in O ((S (log P
—log bp;) + log? P — log? bpi) B + (log2 P—
log2 bpi) T0p> time under all-port assumption.

Proof. For the implementation of this stage, we
use a variant of the radix sort algorithm. This
kind of sorting algorithm does not belong to
the class of comparison only sort algorithms,
since it exploits the binary representation of
keys in order to determine their relative order-
ing. For the radix sort algorithm to be an effi-
cient algorithm, the input keys should be inte-
gers taken from a limited range of values. In
our case, the keys are the 2 log P-bit integers
corresponding to the addresses of processors.
The algorithm starts its execution by first ex-
amining the most significant bit of each key
(2log P — 1 bit). Depending on the value of
this bit, each key is moved to the corresponding
(2log P— 1)-dimensional subhypercube. Using
a packing operation [26], this move can be easily
implemented in O (S logP B + logP Top) time
under one-port assumption. If the all-port as-
sumption is true, the steps of the packing op-
eration can be easily interleaved in time [44]
and thus the time for this operation is reduced
to O ((S + logP) B + log P T,). Now the ex-
ecution of the algorithm continues recursively
within the two (2log P — 1)-dimensional sub-

hypercubes. At the i step the i most signif-

icant bit is examined and the keys are moved
to the corresponding (2 log P — i)-dimensional
subhypercubes. Notice also that at the i step
the cost of the packing operation is at most
O ((S+ log P—i) B+ (log P—i) T,p) under all-
port assumption.

In fact, we do not need to examine the last
2(m; — r) bits of the keys. When the algo-
rithm reaches the 2(m; — r)* least significant
bit, all s, x s, blocks destined for processors
of the same M; X M; block are within the same
2(m; — r)-dimensional subhypercube. In addi-
tion, these blocks turn up sorted. Recall from
lemma 5.1 that all the request-packets coming
from the same M; x M; block have already been
sorted at the beginning of each RAR operation.
Since this relative ordering is respected in all
steps of each RAR operation, the s, X s, blocks
asked for by these request-packets end up sorted
after they have been collected inside their corre-
sponding 2(m;—r)-dimensional subhypercubes.

Now it is clear that the number of packing op-
erations required overall is O (log P — log bp;).
Summing the delays of these operations, we
can easily obtain the complexities stated in the
lemma.

O

The second sorting step of a RAR operation
dominates the cost of this operation. Thus the
total complexity of RAR operations at level i is
o (S (log2 P—log? bpi) B+ (log2 P—log? bpi)
Top) under one-port assumption and
O ((S (log P—logbp;) + log? P — logsz,-) B+
(log2 P— log2 bpi) Top) under all-port assump-
tion.

Medium/Coarse Grained Multiprocessors. In
this case, each processor has at least one M; x M;

block in its local memory, namely % blocks.

If this fraction is not very large then consider-
ing the values of M; in practice, we can assume
that our multiprocessor is medium-grained or
even fine-grained. This kind of multiproces-
sors usually employs store-and-forward routing.
Thus each RAR operation can be performed in

o0 ((S log P + log* P) B + % log A]\/’I—ZZ T0p> time

60 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

using the algorithm in [34]. This algorithm as-
sumes all-port capability at each node and im-
plements the many-to-many personalized com-
munication pattern on the hypercube network.
In order to reduce the number of packets re-
ceived by destination nodes, i.e. nodes holding
pixel regions to be read by other processors, we
use a technique similar to that of the previous
paragraph. Specifically, we can ensure that the
number of messages received by each destina-
tion node is at most % by allowing each block

M; x M, to receive somewhat more pixels than
it actually needs at the end of each RAR op-
eration. Specifically, it receives at most 4M?
whereas it needs only M?,

Now if the fraction % takes very large values

(S > M?), then we can assume that the em-
ployed multiprocessor is coarse-grained. As a
matter of fact, it is very likely that the above
inequality is true for all other pyramid levels
too. This in turn implies that the sum of max-
imum displacements d; for all pyramid levels
(Ef;l d;) is much smaller than O(\/S) = O(s,)
in all probability. Clearly, if these assumptions
are true, then each processor can initially per-
form a gathering of all the pixels of the previous
frame Y that it will need throughout the execu-
tion of the HBMME algorithm (O (7. + SB;)
delay). After this step, the load of each pro-
cessor remains O(S). In addition, processors
can now work independently of each other and
thus no further interprocessor communication is
necessary.

On the rare occasion that either the size of blocks
or the maximum displacements at each level are
so large that the initial gathering cannot be per-
formed without increasing the load of each pro-
cessor beyond the bound © (§), we can use the
algorithm in [31] for implementing the RAR op-
eration. As has been mentioned in Sec. 3, this
algorithm assumes a virtual point-to-point link
between each pair of processors and thus trans-
ferring a message of size M between any pair of
processors takes O(1. + M) time. Using this
algorithm we can perform each RAR operation

at pyramid level i in O <P2 T. + SB: + % T0p>
time. l

Besides the improvements we can achieve in the
execution time of a single RAR operation, we

can also reduce the total number of these oper-
ations required at each pyramid level by using
again the technique of Fig. 4(b); each M; x M;
block at pyramid level i reads the pixels of its

search window in O ([%’l] 2) steps following
the route of this figure. Thus the total number of

RAR operations required at level i is O ([%ﬂ 2)
again.

5.2. Subsampling and Low-Pass Filtering

So far we have presented a simplified scheme
for the multiresolution motion estimation algo-
rithm where low pass filtering and subsampling
between successive pyramid levels has been left
out. When using low pass filtering and sub-
sampling, the dimensions of video frames are
getting increasingly smaller at higher levels of
the pyramid and the values of the pixels of each
frame are changing from one level to another.
Despite these complications, our parallel algo-
rithm can be easily adapted to the case of low
pass filtering and subsampling.

The most commonly used low pass filters take
the form of small two dimensional arrays where
the value of each pixel is given by a linear func-
tion of the values of the pixels in its neighbor-
hood [45]. This kind of operation can be im-
plemented on the hypercube by using a parallel
template matching algorithm (see for example
the parallel algorithms in [46, 47]). Different
though the purpose of these algorithms is, their
basic step is a convolution-like operation and
thus they can also serve to implement low pass
filtering. After this operation the low pass fil-
tered frame is subsampled. Many subsampling
patterns have been proposed in the literature but
one of the most commonly used is to keep ev-
ery other pixel along each row and column [45].
For example, the frame at level 2 results from
the low pass filtered frame at level 1 by keep-
ing the pixels (2k, 2/) where k, [=0---§ — 1.
In general, the frame at level i results from
the frame at level i — 1 by keeping the pix-
els (217'k, 27711) where k,1 = 0--- 5% — 1.
The well-known Gaussian pyramid representa-
tion by Burt et al.[48] uses the same kind of sub-
sampling in combination with low pass filtering
based on Gaussian filter. Other multiresolution
schemes[11, 15] use also similar subsampling

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 61

along with simple averaging of neighbouring
pixels as a low pass filter.

This subsampling operation reduces the num-
ber of pixels of input frames as we are moving
to higher pyramid levels. Thus after a certain
level, level log S + 1, some processors begin not
to have pixels to process, as all their stored pix-
els have been discarded due to subsampling pro-
cess and thus these processors remain inactive.
Further, after this particular level, the number of
inactive processors increases by a factor of 4 as
we are moving from one level to the next higher
one. At the same time, each processor which
remains active after level log S + 1 needs more
than ©(S) local memory, namely O(S + k), in
order to keep the different values its pixels as-
sume due to low-pass filtering across pyramid
levels. Fortunately, it is possible to balance the
load of processors by distributing the extra load
to inactive processors. Specifically, the values
of a pixel in processor (i, j) at all levels after
level log S + 1 can be stored in those inactive
processors which are also neighbors in the hy-
percube with processor (i, j). At the beginning
of the execution at each pyramid level higher
than level log S 4 1, this processor can take the
value of its pixel for that level from one of these
neighbors in the hypercube with only O (1) de-
lay.

On the practical side, the algorithm we de-
scribed above is more suitable for fine-grained
machines. In coarse-grained machines, the
value of parameter S is so large that it is very
unlikely the employed multiresolution pyramid
has more than logS + 1 levels. This simply
means that there are not inactive processors in
coarse-grained machines and thus problem of
load imbalance cannot normally arise. How-
ever, in coarse-grained machines we face a dif-
ferent difficulty. As is mentioned before, due
to subsampling the size of input frames from
one level to the next higher one is reducing by
a factor of 4. Accordingly, the number of pix-
els in the local memory of each processor is
reducing by the same factor. Thus at higher
pyramid levels our algorithm begins to assume
fine-grained characteristics: increasingly fewer
arithmetic operations are performed before ex-
ecuting a communication operation. But in
coarse-grained machines, communication oper-
ations are rather expensive in general and thus

* Wormhole or randomized routing model is assumed.

frequent execution of these operations leads to
high overhead. Thus in order to alleviate this
overhead, it would be better if the pixels of input
frames at one pyramid level were gathered in a
specific subhypercube before beginning the exe-
cution of the FSBMME algorithm for that level.
In this way, more pixels correspond to each pro-
cessor and thus the frequency of communication
operations is decreased proportionally. If the
number of pixels per processor increases from
S1 to S, then we can execute the above gather-
ing step in 0(%% + 88+ Top)4 time by using
the concentrate algorithm in [30]. The size of
the subhypercube used for storing the frames at
one pyramid level depends on how many times
a communication operation is more expensive
than a single arithmetic operation. The larger
this difference is the smaller the subhypercube
should be. The optimal size at a pyramid level
can be easily determined by comparing the ex-
ecution time at this level of the algorithm en-
hanced with this gathering step and the execu-
tion time of the algorithm without this step. The
optimal subhypercube size is that which gives
the largest time savings. Based on the formulas
derived in the previous paragraphs of the paper,
we can easily perform this optimization. We
leave the details to the interested reader.

We have described the basic initialization steps
before the execution of the HBMME algorithm
at a particular pyramid level. Apart from these
initial steps, the rest of the algorithm at each
level uses the same techniques we developed
for the basic scheme of our parallel algorithm.
Apparently now, the total complexity of the HB-
MME algorithm is greatly lowered, because the
size of both the frames and subhypercubes in-
volved in the algorithm execution are getting
smaller and smaller as we are moving to higher
pyramid levels. At this point, one may rea-
sonably argue that since the size of frames
are decreasing at higher pyramid levels, our
techniques are not as important at these lev-
els. Naive straightforward techniques could be
acceptable in this case, since at higher levels
the hypercube network does not handle large
data volume. However, under this simplified
strategy, we end up having much larger com-
munication overhead in total. Recall from the
discussion in Sec 5.1 that the basic problem in
using straightforward techniques is that as the

62 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

algorithm proceeds towards lower pyramid lev-
els irregular communication patterns make their
appearance. The irregularity of these patterns is
ever increasing and thus when we arrive near the
bottom of the pyramid where the size of frames
is rather large, we encounter quite large com-
munication overhead, which eventually domi-
nates the total execution time. In contrast, our
techniques ensure that we can count on simple
shift operations most of the time in order to per-
form all the necessary data transfers at the lower
levels of the pyramid, where efficient commu-
nication is highly desirable.

Another difference between the basic scheme
and the complete HBMME algorithm is that
whereas in the basic scheme the size M; x M; of
block at level 1 is increasing with the height of
level i, in the actual algorithm the size of blocks
remains basically the same across the different
pyramid levels. However, as mentioned above,
the frames at higher levels are distributed more
sparsely among the processors, and thus any two
neighboring pixels are now wider apart. This in
turn implies that a block at a particular level
spreads over a larger portion of the processor
array than the blocks at next lower level. Thus
once again, each block at any pyramid level
“contains” all its child blocks at the next level.
Since our parallel algorithm for the practical
case d; < % was based exactly on this prop-
erty, this algorithm can now be used again for
handling the same range of values of displace-
ments d; in the complete HBMME algorithm.

Finally, with regard to the general case of basic
scheme, the algorithm does not make any spe-
cific assumption about the size of blocks at var-
ious levels and thus is directly applicable to the
complete HBMME algorithm. The employed
sorting step in conjunction with the set of shifts
performed “inside” each block can cope suc-
cessfully with the irregular patterns arising at
the lower levels of the pyramid.

6. Extensions to other Interconnection
Networks

So far we have developed parallel algorithms for
motion estimation techniques on a hypothetical
multiprocessor which uses a hypercube network
for interprocessor communication. Yet most of
our techniques are actually independent of the

specific interconnection network we use. This
is certainly true for coarse-grained multiproces-
sors. Our algorithms for this kind of multi-
processors either make a very restricted use of
the interconnection network or are based on a
virtual crossbar communication model where
the cost of each communication operation is
assumed to be independent of the distance of
the processors involved. This model has been
verified in most modern coarse-grained multi-
processors where the role of the employed in-
terconnect is ever diminishing.

Even for fine-grained multiprocessors, where
store-and-forward routing is usually employed,
our algorithms can be easily extended to other
interconnection networks as well. As should
have become apparent in our analysis, shift op-
erations play an important role in our design. In
the FSBMME algorithm as well as in the case
d; < % of HBMME algorithm, all data trans-
fers are carried out through shift operations. We
also use Data_Sum and broadcast operations for
the remaining steps. These three operations are
fairly simple and thus can be efficiently imple-
mented on most of interconnection networks,
e.g. the mesh network.

With regard to the general case of HBMME al-
gorithm, our main objective is to use simple shift
operations as much as possible in place of com-
plex RAR operations. As has already been men-
tioned, the emerging communication pattern in
RAR operations is the many-to-many personal-
ized communication. This kind of communica-
tion has been extensively studied in most com-
munication networks. For instance, on the mesh
network a number of algorithms have been pro-
posed which realize this communication pattern
in near optimal time[49, 50]. The main draw-
back of these algorithms is that they are rather
theoretical with large low-order terms in their
complexity. Thus they are not very practical
for medium and small size parallel machines,
i.e. machines frequently met in practice. Al-
ternatively, we could use practical sorting algo-
rithms again for implementing RAR operations
on the mesh. A number of practical algorithms
for sorting on the mesh has already been pre-
sented in the literature[37, 51, 52, 53]. Most
of these references conclude that bitonic sort-
ing, an algorithm closely related to odd-even
merge sorting, outperforms all other sorting al-
N2

gorithms for small values of ratio 7z (number

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 63

800000 . .
T Anthmet\c Complexlty (sr—2 M=16, P 512

ffffff Asymptotic Arithemtic Complexity (sr-2 M=16, P=512)

---%--- Arithmetic Complexity (sr=2, M=32, P=5 p
Asymptotic Arithmetic Complexity (sr=2, M=32, P=512) 1
~ Arithmetic Complexity (sr=4, M=16, P=: 256 3

- Asymptotic Arithmetic Complexity (sr=4, M=16, P=256)

Arithmetic Complexity (sr=4, M=32, P=256, o
Asymptotic Arithmetic Complexity (sr=4, M=32, P=256) o ~
-- Arithmetic Complexity (sr=8, M=64, P=128)

—<— Asymptotic Arithmetic Complexity (sr=8, M=64, P=128)

700000

600000 -

500000 -

400000 -

arithmetic steps

300000

200000

100000

0

450000 .
—al Commumcauon Complexlty (sr=2, M= 16 P=5 12)

--- Asymptotic Communication Comp\exlty (sr-2 M=16, P=512)
-- Communication Complexity (sr=2, 2, P=51

X

400000 - __

Asymptotic Communication Comp\exlty
~ Communication Complexity (sr=4, M=16,
- Asymptotic Communication Complexity
-~ Communication Complexity (sr=4, M=32,
-~ Asymptotic Communication Complexity (sr=4, M:
- Communication Complexity (sr=8, M=64, P= 128)
—sv— Asymptotic Communication Complexity (sr=8, M=64, P=128)

350000 [~ -

‘H
mm‘v%»*

300000

250000

200000

communication steps

150000

100000 [

50000

0

Fig. 5. Number of arithmetic and communication steps of the FSBMME algorithm.

of elements per processor). This range of val-

ues of ratio];,/—; normally arises on fine-grained
machines. Thus, for this kind of parallel ma-
chines, it would be better to use the odd-even
merge sorting algorithm for implementing RAR
operations on the mesh network. This also im-
plies that we can use again the technique of
lemma 5.1 for further reduction of the execu-
tion time of each RAR operation. Summing
up, the use of shift operations as frequently as
possible in combination with the efficient real-
ization of RAR operations on the mesh network
guarantees fast execution of the general case of
HBMME algorithm on this network.

7. Experimental Results

In order to confirm the theoretical results of
the paper, we conducted a number of experi-
ments. We focused on fine-grained machines,
because most of the analysis in the paper con-
cerns this kind of parallel machines. As it is
difficult to find a hypercube-based parallel ma-
chine with fine-grained characteristics, we had
two options for our experiments; first, to run the
experiments on a coarse-grained parallel ma-
chine with mesh interconnection network and
second, to write a parallel program on a soft-
ware simulator. The first solution was rejected
because the embedding of the hypercube on the
mesh and the coarse-grained characteristics of
the employed machine would cause large incon-
sistency between theoretical and experimental
results. Thus, we decided to run the exper-
iments on a software simulator. Specifically,
we used the Parallaxis-IIT [54, 55], a simula-

tor designed at University of Stuttgart. In fact,
Parallaxis-IIl is a language for data-parallel pro-
gramming which is also machine-independent
across different SIMD computer systems. How-
ever, when the code written in this language is
compiled by a conventional C compiler, sim-
ulation code is obtained. Another interesting
feature of this language is that programmers can
easily determine the interconnection network on
which communication takes place.

Our programs were written in SIMD control
style and assumed one port capability. The all-
port capability was not tested because the simu-
lator does not provide such a capability. Neither
does the simulator provide absolute timing re-
sults in terms of milliseconds. Thus, in our ex-
periments we measured the number of commu-
nication and arithmetic steps required overall.
We assumed that sending or receiving a word
over a hypercube link takes one communica-
tion step, whereas one basic arithmetic opera-
tion (addition, subtraction, comparison) takes
one arithmetic step.

In all our experiments we used frames of size
1024 x 1024. The number of processors P> and
the amount of local memory s, X s, at each pro-
cessor were adjusted in such a way that the equa-
tion s, - P = 1024 always holds. It is also im-
portant to notice that our theoretical results are
not affected by the specific content of the video
frame since all the complexities presented in the
paper are worst case complexities, that is they
remain the same for the same values of the basic
parameters (d, M, sr, P). Thus in most of our
experiments we used synthetic video frames.
Also this kind of video frames help us to debug
the simulation code more easily.

64 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

1.4e+006

T
—=— Arithmetic Complexity (sr=2, P=512)
------ Asymptotic Arithmetic Complexity (sr=2, P=512)
-- Arithmetic Complexity (sr=4, P=256)
Asymptotic Arithmetic Complexity (sr=4,P=256)
~ Arithmetic Complexity (sr=8, P=128]
- Asymptotic Arithmetic Complexity (sr=8, P=128)
level=4 M=128 d=64
level=3 M=64 d=32
level=2 M=32 d=16
level=1 M=16 d=8

X

1.2e+006 [_

PR]

1e+006

800000 [

arithmetic steps

600000 -

400000

200000

0

level

600000

—+— Communication Comp‘\exily (sr=2, P=512) '
---%--- Asymptotic Communication Complexity (sr=2, P=512)
---%--- Communication Complexity (sr=4, P=256)

*
-¢--- Asymptotic Communication Complexity (sr=4,P=256)

500000 | &~ Communication Complexity (sr=8, P=128)
o ic C ication Ct ity (sr=8, P=128)

400000

300000

communication steps

200000

100000 [

level

Fig. 6. Number of arithmetic and communication steps for the case d; < % of the basic scheme of the HBMME
algorithm.

The first set of experiments concerns the FSB-
MME algorithm. Figure 5 shows the variation
of the number of arithmetic and communica-
tion steps with the parameter d. For compari-
son reasons, we also included the corresponding
asymptotic complexities estimated in the paper.
In addition, we considered various combina-
tions of the basic parameters including also the
case where the maximum displacement d is not
a multiple of s,. This case complicates the pro-
gramming as special handling is required along
the border of the search window. From this
set of experiments, we can easily notice that the
arithmetic complexity increases with the param-
eter s, since each processor should execute more
computations as the amount of local memory
s, X §, increases. In contrast, communication
complexity is decreasing since fewer shift and
Data_Sum operations are now needed overall.
The size P x P of the hypercube is also smaller
now due to the assumption that s, - P = 1024.
However, larger messages are now transferred
at each step and thus eventually the overall com-
munication overhead does not significantly fall
with this rise in the amount of the local memory
at each processor. This fact is also consistent
with the asymptotic results presented in the pa-
per.

Another important point in Fig. 5 is that the ac-
tual communication complexity presents some
kind of periodic discontinuity, in contrast to the
remaining complexity curves. Specifically, dis-
continuity occurs at the points where the pa-
rameter d is a multiple of the parameter s,.
These are exactly the points where there is an in-
crease in the number of communication rounds
required overall in the technique of Fig. 2. At

any other point, this number does not change
and is equal to that of the previous discontinu-
ity point. However, this form of discontinuity
corresponds only to lower order terms of the
total complexity and thus it does not appear
again along the curve of the asymptotic com-
munication complexity of the FSBMME algo-
rithm. Except for this difference, all the curves
in Fig. 5 have basically the same shape, namely
parabolic. This should be expected since the
highest order term in both arithmetic and com-
munication complexity contains the factor d.
In addition, the fact that the curves of asymp-
totic and actual complexities are both parabolic
indicates that the asymptotic complexities de-
rived in the paper well capture the basic rate of
growth of the complexities occurring in prac-
tice. However, the apparent difference in the
height of the corresponding curves is due to the
O(1) constant factors of the higher order terms
of the complexities; in contrast to the experi-
mental results, these factors have been omitted
in the asymptotic notation.

At the same conclusion we reached with the
other sets of experiments too. The second set
concerns the basic scheme of HBMME algo-
rithm when d; < % (Fig. 6). For this scheme
we provide analytical results reporting the num-
ber of steps at each level of the pyramid along
with the corresponding asymptotic complexi-
ties. Asis expected, higher pyramid levels incur
larger communication and arithmetic complex-
ity since larger block sizes and displacements
are used at these levels.

We also implemented the complete HBMME
algorithm (low-pass filtering and subsampling

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 65

6500

—=oe— Arithmetic Complexlly (sr=2, P=512)
---%--- Asymptotic Arithmetic Complexity (sr=2, P=512)
6000 . ---2--- Arithmetic Complexity (sr=4, P=256)
» -3~ Asymptotic Arithmetic Complexity (sr=4,P=256)

; Mi=16, di=8 for all levels
5500 -

5000 -
4500

4000

arithmetic steps

3500 -

3000

2500

2000 F e

1500
1

level

5500
—k— Commumcatlon Complexity (sr=2, P=! 512)
---%-- Asymptotic Communication Complexity (sr=2, P=512)
---@--- Communication Complexity (sr=4, P=2!

B~ Asymptotic Communication Complexity (sr=4,P=256)

5000

4500 | 4

4000 |- 4

communication steps

3500 |- T i

3000 [q

2500 L L
1 2 3 4 5
level

Fig. 7. Number of arithmetic and communication steps of the complete HBMME algorithm (d; < %).

included) for the case d; < % In particular,
we considered two different cases for the val-
ues of parameters sr and P (see Fig. 7). We
also assumed that parameters M; and d; have
the same values for all the levels of the pyra-
mid; this assumption is frequently used in prac-
tice. One may notice that the communication
time at higher levels is comparable with that of
lower levels and in the case (s, = 4, P = 256)
is actually higher. This is mainly due to the
fact that at higher levels large subhypercubes
are used (M; x M; = 256 nodes) for shift and
data sum operations while at lower levels these
subhypercubes are getting smaller and smaller
and at the lowest level, level 1, the employed
subhypercubes are of size % X];i; = 16 nodes.
However, the small size of messages at higher
levels (O(1) instead of O(s?) at lower levels)
compensate well for much of the performance
loss caused by the use of larger subhypercubes
at these levels. Notice also that the communica-
tion complexity of the highest level is somewhat
greater than that of the two or three next lower
levels. The main reason for this difference is
that at the highest level we perform shift op-
erations using the entire hypercube in order to
initially transfer pixels of frame Y inside each
block (Fig. 4(a)). Atall other levels these shifts
are carried out inside much smaller subhyper-
cubes and hence this initialization step incurs
much less overhead.

With regard to the arithmetic complexity, it can
be easily seen that the complexity remains the
same for the higher pyramid levels since param-
eters M; and d; have the same values at all these
levels and each processor is in charge of only
one pixel. However, at lower levels processors

are responsible for more than one pixels and
thus a proportional increase in the arithmetic
complexity should be expected.

As a last set of experiments, we tested the
general case of the basic scheme (see Fig. 8).
Specifically, we measured the communication
and arithmetic steps of the algorithm at a par-
ticular pyramid level. Since in the general case
there is no initial data collection step, as in the
case d; < M’ , the experimental results do not
depend on that particular level but instead re-
main the same for the same values of the ba-
sic parameters. One may also easily notice the
increased communication and arithmetic com-
plexity of the general case in comparison to the
case di < % This is due to the relatively
large values of displacements d; and to the em-
ployment of sorting for realizing the necessary
data transfers. It is also apparent that commu-
nication complexity presents some discontinu-
ity at periodic intervals, namely every M; units;
at these specific points we have an increase in
the number of RAR operations required over-
all whereas at all other points this number re-
mains fixed. This steep rise in the communica-
tion complexity at the points where the number
of RAR operations increases clearly shows that
RAR operations take up a significant portion of
the overall communication time. This is also
verified by the fact that the number of commu-
nication steps in Fig. 8 is getting smaller when
the size of blocks M; x M; is increasing and the
other basic parameters (d;, s,, P) remain con-
stant. As M; x M; blocks are getting larger, the
complexity of the sorting steps of each RAR
operation is falling since an increasingly larger
portion of input data are already sorted in this

66 Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

3e+006 T
—»— Anthmet\c Complexlty (sr—4 Mi=8, P 256)

--- Asymptotic Arithmetic Complexity (sr-4 Mi=8, P=256) 7
-~ Arithmetic Complexity (sr=4, Mi=16, P=256) &

X

Asymptotic Arithmetic Complexity (sr 4, M| 16, P=256) #
- Arithmetic Complexity (sr=8, Mi=16, P=12: & 4
- Asymptotic Arithmetic Complexity (sr=8, M| 16, P=128) &
- Arithmetic Complexity (sr=8, Mi=32, P=128) &*
-~ Asymptotic Arithmetic Complexity (sr=8, Mi=32, P=128) 593{

2.5e+006

;
bdosnd

2¢+006 o

1.56+006 o7

arithmetic steps

1e+006

ot GRRR
500000 : » Www”gwmw]
B-R=Rly

1.4e+006

— Communlcahcn Ccmp\exlly (sr—4 M| 8, P=: 256) !
---*--- Asymptotic Communication Complexity (sr=4, Mi=8, P=256)
ke Commumcahon Complexity Fsr-A Mi=16, P=256)
1.26+006 [g | Mi~16, P=256)
e

(sl
Communlcahon Comp\exny (sr=8, Mi=16, 128)
_— , Mi=16, P=128)
--- Communication Comp\exlly (sr-s Mi=32, P= 128)
= C (sr 8, Mi=32, P=128)

1e+006

800000

600000

communication steps

400000

£33
200000 $¥3

0 L L L L L L L L L
50 55 60 65 70 75 80 85 90 95 100

Fig. 8. Number of arithmetic and communication steps for the general case of the basic scheme of the HBMME
algorithm.

case (recall lemmas 5.1, 5.2). In addition, fewer
communication rounds are now required over-
all for transferring all the pixels of the search
window of Fig. 4(b).

On the other hand, arithmetic complexity is al-
most the same for different values of param-
eter M; since curves which differ only in the
value of M; nearly coincide in the left diagram
of Fig 8. The same holds for the correspond-
ing asymptotic results. This very small effect
of parameter M; on the arithmetic complexity
can be explained as follows. The decrease in
the complexity of RAR operations due to the
increase in the value of parameter M; does not
seriously affect the overall arithmetic complex-
ity of the general case because the total arith-
metic delay of RAR operations is very small
in comparison to that of FSBMME computa-
tions. Furthermore, reduction in the number of
the communication rounds needed overall does
not proportionally decrease the total time spent
by the FSBMME arithmetic operations since
now the FSBMME algorithm works on a larger
search window (of size 3M; x 3M;) at each step
along the route of Fig. 4(b). So, it turns out
that the overall complexity of FSBMME com-
putations depends only on the logarithm of M;,
a very slowly growing function.

Finally, it should be mentioned that we did not
test the general case for the complete HBMME
algorithm. This case is mainly of theoretical in-
terest since arbitrary large block displacements
are not considered in practice.

8. Conclusions

We have presented efficient parallel algorithms
for full search and hierarchical block matching
motion estimation on a hypercube based multi-
processor. Our solutions cover the whole range
of modern parallel machines, i.e. fine-grained,
medium-grained as well as coarse-grained ma-
chines. For fine-grained machines, the rich in-
terconnection structure of the hypercube net-
work ensures efficient execution of complex
communication operations such as RAR op-
erations. In addition, our main technique of
maximal utilization of simple shift operations
in place of complex RAR operations makes our
algorithms versatile, easy to execute in other
interconnection networks as well. In regard to
coarse-grained machines, routing methods such
as wormhole and randomized routing greatly fa-
cilitates the algorithm design on these machines
since most of the details of the employed inter-
connection network are nearly hidden from the
programmer. Thus our algorithms for coarse-
grained machines are not specific to the hyper-
cube network but instead they can be applied to
any interconnection network which uses worm-
hole or randomized routing. Finally, a posi-
tive aspect of our design is also that it remains
valid for the whole range of the values of block
matching algorithm parameters.This is very im-
portant in such a rapidly evolving research field
as video coding where optimal parameters of
coding algorithms have not been fixed yet.

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 67

Acknowledgements

This work is supported in part by the Gen-
eral Secretariat of Research and Technology of
Greece under Project I[IENEA 95 EA 1623.

References

[1] M. TEKALP, Digital Video Processing, Prentice Hall
Signal Processing Series, 1995.

[2] B. HASKELL, P. HOWARD, Y. LECUN, A. PURI, J.
OSTERMANN, R. CIVANLAR, L. RABINER, L. BOT-
TOU AND P. HAFFNER, Image and Video Coding -
Emerging Standards and Beyond, IEEE Trans. on
Circuits and Systems for Video Technology, 8(7),
814-837, November 1998.

[3] P. PIRSCH, N. DEMASSIEUX AND W. GEHRKE, VLSI
Architectures for Video Compression- A Survey,
Proceedings of the IEEE, 83(2), 220-246, February
1995.

[4] P. PIRSCH AND H. STOLBERG, VLSI Implementa-
tions of Image and Video Multimedia Processing
Systems, IEEE Trans. on Circuits and Systems for
Video Technology, 8(7), 878-891, November 1998.

[5] S. CHENG AND H. HANG, A Comparison of Block-
Matching Algorithms Mapped to Systolic-Array
Implementation, IEEE Transactions on Circuits
and Systems for Video Technology, 7(5), 741757,
October 1997.

[6] H. YOSHIMURA AND Y. SUZUKI, Multiprocessor
DSPs for Low Bit Rate Video Codec, In P.
Pirsch, editor, VLSI Implementations for Image
Communications, chapter 4, pages 117-148, Else-
vier Amsterdam-London-New York-Tokyo, 1993.

[7] S. AKRAMULLAH AND I. AHMAD AND M. LIOU, Per-
formance of Software-Based MPEG-2 Video En-
coder on Parallel and Distributed Systems, /EEE
Transactions on Circuits and Systems for Video
Technology, 7(4), 687-695, August 1997.

[8] K. SHEN AND E. DELP, A parallel implementation
of a MPEG encoder: Faster than real-time!, In Proc.
of SPIE on Digital Video Compression: Algorithms
and Technologies, pages 407-418, February 1995.

[9] M. TAN AND J. SIEGEL AND H. SIEGEL, Parallel
implementation of block-based motion vector esti-
mation for video compression on the MasPar MP-1
and PASM, In 71995 International Conference on
Parallel Processing, 21-24, August 1995.

[10] A. DOWNTON, Speed-up trend analysis for H.261
and model-based image coding algorithms using a
parallel-pipeline model, Signal Processing: Image
Communication, 7, 489-502, 1995.

[11] G. GUPTA AND C. CHAKRABARTI, Architectures for
Hierarchical and Other Block Matching Algorithms,
IEEE Transactions on Circuits and Systems for
Video Technology, 5(6), 477-489, December 1995.

[12] T. KOMAREK AND P. PIRSCH, VLSI Architectures
for Hierarchical Block Matching Algorithm", In
IFIP Workshop, pages 168—181, December 1989.

[13] L. DE Vos, VLSI Architectures for the Hierarchi-
cal Block Matching Algorithms for HDTV Ap-
plications, In Proc. SPIE Visual Commun. Image
Processing, vol. 1360, pages 398-409, 1990.

[14] Q. WANG AND R. CLARKE, Motion estimation and
compensation for image sequence coding, Signal
Processing: Image Communication, 4, 161-174,
1992.

[15] M. BIERLING, Displacement estimation by hierar-
chical block-matching, In Proc. SPIE Visual Com-
mun. and Image Processing vol. 1001, pages 942—
951, 1988.

[16] C. PLAXTON, Efficient Computation on Sparse In-
terconnection Networks, PhD thesis, Department of
Computer Science, Stanford University, 1989.

[17] D. CULLER, J. SINGH AND A. GUPTA, Parallel Com-
puter Architecture: A Hardware/Software Ap-
proach, Morgan Kauffman Publishers, August 1998.

[18] B. MAGGS, A Critical Look at Three of Parallel
Computing’s Maxims, In Proceedings of the 1996
International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN ’96), pages
1-7", June 1996.

[19] M. LIONEL AND K. MCKINLEY, A Survey of Worm-
hole Routing Techniques in Direct Networks, IEEE
Computer, 26(2), 62-76, February 1993.

[20] W. DALLY AND C. SEITZ, Deadlock-Free Message
Routing in Multiprocessor Interconnection Net-
works, IEEE Transactions on Computers, 36(5),
547-553, May 1987.

[21] C. LEISERSON, Z. ABUHAMDEH, D. DOUGLAS, C.
FEYNMAN, M. GANMUKHI, J. HILL, W. DANIEL
HiLL1s, B. KuzMAUL, M. ST.PIERRE, D. WELLS, M.
WONG-CHAN, S. YANG AND R. ZAK, The Network
Architecture of the Connection Machine CM-5,
Journal of Parallel and Distributed Computing,
33(2), 145-158, March 1996.

[22] 1. AL-FURIAH, S. ALURU, S. GOIL AND S. RANKA,
Practical Algorithms for Selection on Coarse-
Grained Parallel Computers, IEEE Transactions on
Parallel and Distributed Systems, 8(8), 813-824,
1997.

[23] D. BADER, J. JAJA AND RAMA CHELLAPPA, Scalable
Data Parallel Algorithms for Texture Synthesis and
Compression using Gibbs Random Fields, CS-TR-
3123, Department of Electrical Engineering, and
Institute for Advanced Computer Studies, Univer-
sity of Maryland, 1993.

[24] D. BADER AND J. JAJA, Practical Parallel Algorithms
for Dynamic Data Redistribution, Median Finding,
and Selection, In Proceedings of International Par-
allel Processing Symposium, pages 292-301, 1996.

68

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

[25]

[26]

35

S. RANKA AND S. SAHNIL, Hypercube Algorithms
with Applications to Image Processing and Pattern
Recognition, Springer-Verlag, 1990.

T. LEIGHTON, Introduction to Parallel Algorithms
and Architectures: Arrays-Trees-Hypercubes, Mor-
gan Kauffman Publishers, San Mateo, California,
1992.

L. VALIANT, A Bridging Model for Parallel Compu-
tation, Communications of the ACM, 2(8), 103-111,
1990.

S.RANKA, J. WANG AND G. FoX, Static and Runtime
Algorithms for All-to-Many Personalized Commu-
nication on Permutation Networks, /IEEE Transac-
tions on Parallel and Distributed Systems, 5(12),
1266-1274, December 1994.

L. VALIANT, General Purpose Parallel Architectures,
In J. van Leeuwen, editor, Handbook of Theoreti-
cal Computer Science, Elsevier Science Publishers
B.V., Amsterdam, The Netherlands, 943-972, 1990.

R. SHANKAR AND S. RANKA, Random Data Ac-
cesses on a Coarse-Grained Parallel Machine I:
One-to-one mappings, JOURNAL OF PARALLEL AND
DISTRIBUTED COMPUTING, 44(1)(10), 14-23, July
1997.

R. SHANKAR AND S. RANKA, Random Data Ac-
cesses on a Coarse-Grained Parallel Machine II:
One-to-Many and Many-to-one Mappings, Journal
of Parallel and Distributed Computing, 44(1)(10),
24-34, July 1997.

D. HELMA, D. BADER AND J. JAJA, Parallel Algo-
rithms for Personalized Communication and Sorting
with an Experimental Study (Extended Abstract),
In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 211-222, June
1996.

M. ADLER, J. BYERS AND R. KARP, Scheduling Par-
allel Communication: The h-relation Problem, In
MFCS, pages 1-20, 1995.

J. JAJA AND K. RyU, Load balancing and routing
on the hypercube and related networks, Journal of
Parallel and Distributed Computing, 14, 431-435,
1992.

G. BLELLOCH, C. LEISERSON, B. MAGGS, C. PLAX-
TON, S. SMITH AND M. ZAGHA, A Comparison of
Sorting Algorithms for the Connection Machine
CM-2, In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, pages 3—16,
July 1991.

A. DUSSEAU, D. CULLER, K. SCHAUSER AND R.
MARTIN, Fast parallel sorting under LogP: Experi-
ence with the CM-5, I[EEE Transactions on Parallel
and Distributed Systems, 7, 791-805, 1996.

W. HIGHTOWER, J. PRINS AND J. REIF, Implemen—
tations of Randomized Sorting on Large Parallel
Machines, In Proceedings of 3rd Symposium on
Parallel Architectures and Algorithms, pages 158—
167, ACM, 1992.

[38]

[39]

[52]

K. BATCHER, Sorting networks and their applica-
tions, In Proceedings of the AFIPS Spring Joint
Computing Conference, pages 307-314, 1968".

A. WACHSMANN AND R. WANKA, Sorting on a Mas-
sively Parallel System Using a Library of Basic
Primitives: Modeling and Experimental Results, In
Proceedings of 3rd European Conference in Parallel
Processing (Euro-Par), pages 399-408, 1997.

D. HILBERT, Uber die steitige Abbildung einer linie
auf ein Flachenstuck, Math. Ann., 38, 1891.

L. VOs AND M. STEGHERR, Parameterizable VLSI
Architecture for the Full-Search Block-Matching
Algorithm, IEEE Transactions on Circuits and Sys-
tems, 36(10), 1309-1316, October 1989.

T. KOMAREK AND P. PIRSCH, Array Architectures
for Block Matching Algorithms, IEEE Transac-
tions on Circuits and Systems, 36(10), 1301-1308,
October 1989.

C. HSIEH AND T. LIN, VLSI Architecture for Block-
Matching Motion Estimation Algorithm, IEEE
Transactions on Circuits and Systems for Video
Technology, 2(2), 169175, June 1992.

P. VARMAN AND K. DOSHI, Sorting with linear
speedup on a pipelined hypercube, IEEE Transac-
tions on Computers, C-41(1), 97-105, 1992.

M. VETTERLI AND J. KOVACEVIC, Wavelets and Sub-
band Coding, Prentice Hall PTR, Englewood Cliffs
New Jersey 07632, 1995.

V. KUMAR AND V. KRISHNAN, Efficient template
matching on SIMD arrays, In 1987 International
Conference on Parallel Processing, pages 765-771,
1987.

S. RANKA AND S. SAHNI, Image Template Match-
ing on MIMD Hypercube Multicomputers, Journal
of Parallel and Distributed Computing, 10, 1990,
79-84.

P. J. BURT AND E. H. ADELSON, The Laplacian
pyramid as a compact image code, IEEE Trans. on
Communications, COM-31, 532-540, April 1983.

M. KUNDE, Block gossiping on grids and tori: de-
terministic sorting and routing match the bisection
bound, In Proceedings European Symp. Alg., Lect.
Notes Comput Sci. 726, pages 272-283, Springer-
Verlang, 1993.

J. SIBEYN AND M. KAUFMANN, Deterministic 1-k
routing on meshes, In Proceedings 11th Symp. The-
oret. Asp. Comput. Sci., Lect. Notes Comput. Sci.
775, pages 237248, Springer-Verlag, 1994.

R. DIEKMANN, J. GEHRING, R. LULING, B. MONIEN,
M. NUBEL AND R. WANKA, Sorting Large Data Sets
on a Massively Parallel System, In Proc. 6th IEEE
Symposium on Parallel and Distributed Processing,
pages 2-9, 1994.

TH. STRICKER, Supporting the hypercube program-
ming model on mesh architectures (A fast sorter
for iWarp tori), In Proceedings of 4th ACM-SPAA,
pages 148-157, 1992.

Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation 69

[53] K. BROCKMANN AND R. WANKA, Efficient Oblivi-
ous Parallel Sorting on the MasPar MP-1, In IEEE
Proc. HICSS-30 I, pages 200-208, 1997.

[54] T. BRAUNL, S. FEYRER, W. RAPF AND M. REIN-
HARDT, Parallele Bildverarbeitung, Addison-
Wesley, Bonn, 1995.

[55] http://www.informatik.uni—stuttgart.de/ipvr/bv/
p3.

Received: May 15, 1999
Accepted in revised form: January 21, 2000

Contact address:

Charalampos Konstantopoulos

Computer Engineering and Informatics Department
University of Patras and

Computer Technology Institute

11 Aktaiou & Poulopoulou Str.

GR-118 51 Thiseio, Athens

Greece

phone: (00301) 3416220

Fax: (00301) 3416700

e-mail: konstant@cti.gr

Andreas Svolos
Computer Engineering and Informatics Department
University of Patras and
Computer Technology Institute
11 Aktaiou & Poulopoulou Str.
GR-118 51 Thiseio, Athens
Greece
phone: (00301) 3416220
Fax: (00301) 3416700
e-mail: svolos@cti.gr
Christos Kaklamanis
Computer Technology Institute and
Department of Computer Engineering and Informatics
University of Patras
26500 Rio
Greece
phone: (003061) 997868
Fax: (003061) 993973
e-mail: kaklQcti.gr.

CHARALAMPOS G. KONSTANTOPOULOS received the “Diploma” (five-
year first degree) in computer engineering from the Department of Com-
puter Engineering and Informatics of the University of Patras, Greece
(1993). He is currently a PhD candidate at the same department. He is
also a researcher at the Computer Technology Institute, Patras, Greece.
His research interests include parallel algorithms and architectures, ef-
ficient algorithms for image processing especially for image and video
coding/decoding.

ANDREAS I. SVOLOS was born in Athens, Greece, on January 29, 1971.
He received the “Diploma” (five-year first degree) in computer engi-
neering from the University of Patras, Greece, in 1993. He is currently
pursuing the Ph.D. degree from the University of Patras, where he is
working on his dissertation on efficient algorithms in parallel image
processing. His research interests are in the areas of image processing,
data structure theory, and parallel and distributed processing. He is a
member of IEEE and SPIE.

CHRISTOS KAKLAMANIS received his S.B. (1986) in Computer Engi-
neering from the EECS Department at Massachusetts Institute of Tech-
nology, his S.M. (1989) and PhD (1992) in computer science from
Harvard University, Cambridge, USA. Currently he is Associate Pro-
fessor in the Department of Computer Engineering and Informatics at
the University of Patras, Greece. He is also a Senior Researcher at the
Computer Technology Institute, Patras, Greece. His research interests
include parallel algorithms and architectures, distributed computing and
communications, theory of computation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

