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Siegfried Höfinger1 , Othmar Steinhauser1 and Peter Zinterhof2

1 Institute for Theoretical Chemistry, Molecular Dynamics Group, University of Vienna, Vienna, Austria
2 Institute for Mathematics, University of Salzburg, Salzburg, Austria

A new Direct SCF-Hartree Fock program �DSCF� has
been improved by the method of DIIS.�17�, �18� General
performance measurement tools, as provided on the SGI-
Power Challenge�R10000 �194 MHz� running IRIX 6.2,
which are the shell-commands perfex -a a.out and ssrun
-[pcsampl, ideal, usertime] a.out, have been used for
profiling the code. The main cpu-time-consuming sub-
routine was detected and parallel versions for PVM 3.3
as well as MPI have been deduced. An additional module
for the purpose of achieving load-balance was introduced
and obtained speed-up parameters are presented and
compared.

1. Introduction

Electronic structure determination has always
been one of the key topics in computational
chemistry and, due to the enormous progress
in the performance of today’s hardware archi-
tecture, this subject is becoming more and more
important even in the fields of traditional bio-
sciences, such as molecular biology, immunol-
ogy, pharmaceutics, drug design and many more.
As a result of this, a well designed algorithm
for the calculation of molecular orbitals of large
systems is still an interesting task one can pay
attention to.

1.1. Time Independent Schrödinger
Equation

The state of the art method for gaining some
information about the electrons within a certain
molecule is iteratively solving the time indepen-
dent Schrödinger equation �1��
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where the square bracket term on the left hand
side of equation 1 is usually referred to as the
Hamiltonian Operator Ĥ, whose first part com-
prises the Kinetic Energy1 of the electrons and
whose second part describes the Potential for
the electrons
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consisting of Nuclear Repulsion, Nuclear At-
traction2 and Electron Repulsion.

Furthermore, the ψel��r1� �r2 � � �� of equation 1 is
called the Wave-function of the Electrons3 and

1 As usual, the ∆i is used as an abbreviation for the Laplacian Operator.
2 the Zk stands for nuclear charge at center �rk.
3 Note, that for this very general formulation each electron has its own spatial coordinates�ri.
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the Eigenvalue E on the right hand side of equa-
tion 1 stands for the Total Energy of the electrons
and from all of these it may become clear that
the whole Schrödinger equation represents an
Eigenvalue Problem.

For a graphical explanation of the individual
variables, please have a look at the following
figure 1.
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Fig. 1. Schematic view of the Hamiltonian Operator Ĥ
describing the electronic structure of SO2, which has
been selected to function as a model-system for all

further analysis.

1.2. Decoupling of Electron Repulsion

The coupling of electrons, as given from the last
term of equation 2, leads to a correlated motion
of electrons, that, explicitly treated, would re-
sult in tremendous computational efforts, which
might be fairly released, if the following approx-
imation is used,
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with ρ��́r� standing for the Electron Density
around point �́r and vef f ��ri� being an Effective
Potential.
With this approximation, the general n-particle
Schrödinger equation 1 reduces to its decoupled
one-electron form of n4 identical one-particle
equations
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where now the φk��r� are one–electron wave-
functions or molecular orbitals �MO5 � and
equation 4 once more reflects an eigenvalue
problem.

The fundamental property characterizing a mole-
cule, the so called one-electron density ρ��r�,
is related to the n-particle wave-function
ψel��r1� �r2 � � � �rn� by
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and takes the special form
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for a Slater Determinant.6

1.3. Effective Potential

The practical representation of vef f ��r� in equa-
tion 4 gives rise to two different main stream di-
rections in quantum mechanics, where the one
is called Density Functional Theory �5� and the
other is referred to as Hartree Fock Theory �6�
�7�. The latter has been used for the present
program we are talking about.

In Hartree Fock theory � HF � the 3rd and 4th

term of equation 4 are replaced by the following
closed form

4 n stands for total number of electrons.
5 Molecular orbitals shall be designated φk and are said to form an orthonormal set.
6 ψel��r1� �r2 � � �� � P �φ1��r1�φ2��r2� � � � φn��rn�� where P means Permutation and all is done in order to respect the Pauli Principle

�3�, that results from the antisymmetric character of the wave-function.
7 Jj in equation 7 is called Coulomb Operator and Kj in equation 7 is called Exchange Operator.
8 Note, that the Index k refers to φk of equation 4 and thus shows up the exchange character of Kj.
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�
�� φk��r� �8�

Kj�Kj��r�φk��r��

�
��
Z

�ŕ

φ�j ��́r�
1����́r��r
���φk��́r��dŕ
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Thus the sum over J-terms together with equa-
tion 6 is precisely the Coulomb Potential � 3rd

term of equation 4 � and the sum over K-terms
represents a Nonlocal Effective Exchange Po-
tential.

So far we always talked about the electrons only
and never spent a word on nuclear charge distri-
bution, that theoretically should again be sub-
ject to another wave-function and treated in the
same quantum way the electrons had been. The
neglect of an explicit wave-function for the de-
scription of the nuclear charges is due to the
fact, that the two wave-functions, for electrons
and nuclei either, may be separated into two in-
dependent ones, which is commonly known as
the Born-Oppenheimer Approximation9 �2�.

1.4. SCF-Procedure

As may be seen from equation 4, the decoupled
one–electron Schrödinger equation depends on
the electron density ρ��r�, which in its turn is
a function of all MOs involved. Therefore all
other electrons have a strong influence on the
solution of the eigenvalue problem for a partic-
ular electron.

This leads to the paradox situation, that one
should already know all MOs in order to be
able to determine one particular MO explicitly.

To overcome this principal problem, equation 4
has to be solved via a so-called Self Consistent

Field procedure � SCF �, which in a sketchy
way may be described as

� Set up a first trial density ρ1��r�, that will
naturally be far away from the actual phys-
ical relevant one.

� Solve the eigenvalue problem 4 and thereby
get access to a set of MOs, which in turn
results in a better, more realistic new den-
sity ρ2��r� via equation 6.

� Resolve the next eigenvalue problem using
the improved density ρ2��r� and again get
another, even more improved set of MOs
and so on� � � until two subsequent sets of
MOs are almost identical to each other and
differ only by a predefined small threshold
value.

1.5. DIIS-Method

Contrary to our initial report �16� within the
present version, we make use of the Conver-
gence Acceleration of Iterative Sequences.�17�,
which is also known as DIIS, meaning Direct
Inversion in Iterative Subspace�18�, and which
in an oversimplifying way may be regarded as a
method capable of drastically reducing the total
number of necessary iterations. Thus for our
special SO2 case, the application of DIIS could
reduce the total number of iterations necessary
to achieve self consistency from 44 to 16 and,
according to the fact that each individual iter-
ation involves the most elaborate task of ERI-
computation, the availability of DIIS becomes
a limiting factor in terms of cpu-time as well.

1.6. LCAO, Main Problem and Method

According to the LCAO – approach10, the MOs
are again expanded into a linear combination of
atomic orbitals� AO11 �, where the latter might
also simply be called Basis Functions12

φk��r� �
X

i

ck�i ϕi��r� �10�

9 All nuclear centers are considered fixed in space with fixed partial charges Z��rk� located at those very points in space.
10 Linear Combination of Atomic Orbitals.
11 Atomic orbitals shall be designated ϕi.
12 Basis functions are those widely known 1s, 2s, 2px, 2py, 2pz� � � orbitals for the description of one-electron atomic systems

such as H, He�, B2�� � �
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Schematic Representation of SO2

CenterElement 1 S 2 O 3 O
Cntr. Shll.Typ �1�S �2�SP �3�SP �4�SP �5�S �6�SP �7�SP �8�S �9�SP �10�SP
Basisf.Typ 1S 2S 6S 10S 14S 15S 19S 23S 24S 28S

3Px 7Px 11Px 16Px 20Px 25Px 29Px
4Py 8Py 12Py 17Py 21Py 26Py 30Py
5Pz 9Pz 13Pz 18Pz 22Pz 27Pz 31Pz

Table 1. Shell concept explained at the model-molecule SO2, that has been used for further analysis.

and the basis functions ϕi are again expanded in
a series over Primitive Gaussians χj
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X

j

di�j χj��r� � �11�

which typically are Cartesian Gaussian Func-
tions located at some place �Ax� Ay� Az� in
space13 �8� �9�.
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The main problem for SCF-calculations is the
evaluation of the ERIs, the Electron Repulsion
Integrals, that are 6-dimensional, 4-center inte-
grals over the basis functions ϕ .

ERI�
Z

�r1

Z

�r2

ϕi��r1�ϕj��r1�
1

j�r2��r1j
ϕk��r2�ϕl��r2� �dr1 �dr2

�13�

There are various ways to compute ERIs �10�
�11� �12�, but the method used in the present
program is the recursive method14described by
Obara and Saika �12�.

1.7. Shell Concept and Model-Molecule
SO2

Without any intention of going into further de-
tails, we just want to outline, at least basically,
the principal scheme behind the recursive con-
struction of ERIs due to Obara and Saika �12�.
For all further report we present data for a simple
molecule, that has been used as a certain kind

of reference – SO2 in particular. A schematic
representation of the molecule is given in ta-
ble 1. The applied basis function specifica-
tion has been the standard 6-31G basis-set �13�
�14�. The main advantage of this 6-31G basis-
set is, that there exist cross-contracted shells,
e.g. SP-contracted shells, which will utilize the
same exponential factor � α in equation 12 � for
S-type basis functions as well as P-type basis
functions15, and hence will offer a chance to
calculate the more complicated ERIs, that con-
tain P-type basis functions, in an recursive way
from easily generated pure S-type ERIs.

As stated above, ERIs are 4-center integrals,
and therefore we will have to combine 4 centers
together with the according contracted shells to
determine how many ERIs may be built in one
subsequent, recursive subprocess. For example,
consider the center-quartet 1 1 2 3 , then
one possible combination of contracted shells
would be �2��3��5��9�16, with the basic S-type
ERI made up from basis functions 2 6 14 24,
and after initial calculation of this basic S-type
ERI, a total number of 63 related ERIs may be
derived recursively, such as 2 6 14 25, 2 6 14
26, 2 6 14 27, 2 7 14 24, 2 7 14 25, 2 7 14 26
� � � 5 9 14 27.

2. Performance Analysis

2.1. General Status

To shed some light onto critical regions of our
program, we have used performance measure-

13 An S-type basis function will consist of primitive gaussians with l � m � n � 0, a P-type however of primitives with
l � m � n � 1, which may be solved at 3 different ways, either l � 1 and m � n � 0, or m � 1 and l � n � 0, or n � 1 and
l � m � 0. D-type specification will likewise be l � m � n � 2 and similarly F-type l � m � n � 3.

14 All complicated ERI-types �l � m � n � 0� may be deduced from the easier computed �Si� SjjSk� Sl� type.
15 For example, basis functions 6, 7, 8 and 9 of contracted shell �3� at center 1 will all have the same exponent α .
16 There are 90 possible combinations of relevant contracted shells within this particular center-quartet and we have only picked

one out of them.
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ment tools, as provided on a SGI-Power Chal-
lenge�R10000 �194 MHz� running IRIX 6.2.

Some insight into the basic events of the R10000
processor for some specific program execution
may be gained by using the shell-command per-
fex -a a.out. Then a table is given, which repre-
sents a listing of total counts of various events,
such as 2nd level data cache misses, or issued
loads, or graduated loads, or � � � that happened
during program execution and thus17 a relative
weighting of critical events may be done to no-
tice some basic bottlenecks. A listing of the
top 6 events during our SCF-process together
with some relative numbers of highly sensitive
events is given in table 2.

2.1.1. Interpretation

At least no principal performance bottlenecks
were encountered, especially when looking at
highly sensitive events, such as data cache misses
and mispredicted branches. So we don’t think
that this application suffers from serious perfor-
mance problems, which could be solved at the
programmer’s level.

2.2. Main Time Consuming Modules

The other thing we were highly interested in,
was to select those subroutines and functions,
that play the main part during program execu-
tion as far as cpu-time is concerned. Therefore
we did some performance measurement on the
SGI-Power Challenge�R10000 �194 MHz� run-
ning IRIX 6.2, namely ssrun -[pcsampl, ideal,
usertime] a.out, which all produce ordered list-
ings of the involved modules according to their
fraction in the total cpu-time.

No matter which of the three optional parame-
ters were selected in particular, it always turned
out that 99.7 % of the total cpu-time was spent
in Subroutine FMAT, which is our module for
ERI–computation.

3. Parallelization

As has become clear from the previous sec-
tion 2.2, our primary goal for parallelization
purposes had to be subroutine FMAT — the
ERI-calculation module.

For the first approach we used PVM 3.318 for a
host–node model due to the MPMD scheme19,
where the outermost loop20 within subroutine
FMAT had been split and partitioned over a cer-
tain range of nodes.

Top 6 Events and Relative Timings
Event Counts Typical Absolute Relative

Event–Cost Time �min� Time �%�

Cycles 6.663 1010 1.00 5.724 100.00
Issued Loads 3.674 1010 1.00 3.157 55.15
Graduated Loads 2.954 1010 1.00 2.538 44.34
Issued Stores 1.555 1010 1.00 1.336 23.34
Graduated Stores 1.548 1010 1.00 1.329 23.23
Decoded Branches 5.888 109 1.00 0.506 8.84
Graduated FP Instruc. 3.881 109 1.00 0.334 5.83

Prim. Data Cache Miss 2.033 108 9.03 0.158 2.76
Mispredicted Branch 6.499 108 1.50 0.084 1.46
Sec. Data Cache Miss 1.381 105 192.12 0.002 0.04

Table 2. Relative timings of specific hardware counters on R10000, SGI for one SCF-process completion.

17 After multiplying those absolute counts with specific event–cost–figures.
18 Rel. 11 on the alpha-cluster made up of equal dec 3000 nodes, Rel. 10 on the SGI Power Challenge R10000.
19 Multiple � different and executable � Programs Multiple Data.
20 Loop over quartets of center.
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Wall Clock Times and Speed–Up
Number of Nodes Wall Clock Time �min� Speed Up

Dec 3000 Cluster 1 – sequential 46:12
Dec 3000 Cluster 2 32:03 1.44
Dec 3000 Cluster 4 21:00 2.20
Dec 3000 Cluster 8 13:34 3.46

Table 3. Wall-clock times for parallel SCF on Dec 3000 cluster for different number of nodes and derived
speed-up parameter. Arithmetic average partitioning scheme. � Without DIIS ! �

To begin with, we present data � table 3 � result-
ing from a simple arithmetic average partition-
ing scheme, where each of the involved nodes
got to work on a certain subset of center quartets
and the number of individual items within this
subsets was derived by simply dividing the total
number of all possible center quartets through
the number of nodes involved. � partitioning
scheme also shown on left side of table 4 �

3.1. Load Balancing

After realizing the poor speed up factors ob-
tained from the initial, simple arithmetic aver-
age partitioning scheme � left side of table 4
�, we went one step further and introduced a
pre-scanning subroutine, with which we could
estimate the net work to be done. This means,
that instead of actual calculating ERIs, we just
increment a counter variable in the according
section of the program, where usually the re-
cursive relations for the computation of ERIs
come into play, and thus we end up with a rep-
resentative number for the total computational
work to be done, which may be divided through
the number of nodes involved and in a sub-
sequent repetition of the dummy loops it may
be useful to assign the upcoming center quar-
tets to the same node-specific pair-list as long
as the mentioned fraction total work counter

number of nodes is not
reached. In this way we were able to build so
called load-balanced pair-lists, that represented
the outermost loop over center quartets. The
latter scheme gave rise to the following pair-
lists of center21 � right side of table 4 � and
a summary of corresponding speed-up data for
the likewise improved parallel versions is given
in table 5 for the PVM version as well as for the
MPI version both executed on the SGI-Power

Challenge�R10000 �194 MHz�. A graphical
representation of table 5 is given in figure 2.
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Fig. 2. Comparison of Speed-up Factors for PVM and
MPI approach.

4. Discussion

4.1. Dominance of Heavy Atoms like S

As might have become clear from section 1.7
all center quartets containing atom S � or related
pairs of centers – 1, 2, 3 � will result in larger
numbers of according ERIs, because S is built
up from 3 cross contracted SP-shells — �2�, �3�

21 According to the specification done in table 1 pair 1 will be 1 1 , 2 is 1 2 , 3 is 1 3 , 4 is 2 2 , 5 is 2 3 and 6 is

3 3 .
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and �4� — whereas the remaining two O-atoms
are only built up from 2 SP-shells, which is also
noticed in table 4 � right side �, because node
IV for example is mainly working on ERIs not
containing atom S, thus effecting 10 different
center quartets, whereas node I may only work
on 3 center quartets but these will always in-
clude atom S and the work of both nodes should
still be almost equal to each other.

4.2. Amdahl’s Law and a Detailed Picture
of the Time Distribution within the
Parallel Process

According to Amdahl’s Law

SpeedUp �
1

s � 1�s
Ncpu

�14�

with s standing for the serial fraction and Ncpu
for the number of nodes, we should obtain

speed up values almost equal to the number of
nodes involved, if we assume that s is suffi-
ciently small and that communication may be
neglected. From section 2.2 we may conclude
that s � 0�003, which leads to theoretical speed
up values of 1.994 for 2 nodes, 3.964 for 4 nodes
and 7.836 for 8 nodes.

Nevertheless our measured speed up values as
represented in table 5 differ quite a lot from
those theoretical values, which is due to the
fact, that despite serious efforts to enable a well
balanced work distribution one cannot over-
come the principal block structure for ERI-
computation � section 1.7 �. This means, that
even after building load balanced pair-lists all
nodes will still have to work on slightly varying
fractions of partial work, that are comparable to
each other, but not exactly equal.22

So after 3 nodes, for example, have already fin-
ished their partial work, node IV may still be
busy completing its last center quartet, which

Pair-list of Center for SO2
Arithmetic Average

Node Left Pair Right Pair
of Center of Center

I 1 1
1 2
1 3
1 4
1 5

II 1 6
2 2
2 3
2 4
2 5

III 2 6
3 3
3 4
3 5
3 6

IV 4 4
4 5
4 6
5 5
5 6
6 6

�

Pair-list of Center for SO2
Load Balanced

Node Left Pair Right Pair
of Center of Center

I 1 1
1 2
1 3

II 1 4
1 5
1 6
2 2

III 2 3
2 4
2 5
2 6

IV 3 3
3 4
3 5
3 6
4 4
4 5
4 6
5 5
5 6
6 6

Table 4. Arithmetic average and load-balanced partitioning scheme of the outermost loop over center quartets into
node-specific pair-lists of center for SO2 — 4 nodes considered.

22 Like the area of a puzzle can be divided into a number of almost equal partial areas, but not into exactly equal partial areas,
without destroying some particular puzzle slice.
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Wall Clock Times and Speed–Up
Number of Nodes Wall Clock Time �sec� Speed Up

SGI Pow.Chll. PVM 1 – sequential 268.19
SGI Pow.Chll. PVM 2 149.78 1.79
SGI Pow.Chll. PVM 4 88.66 3.03
SGI Pow.Chll. PVM 8 44.40 6.04
SGI Pow.Chll. MPI 1 – sequential 252.51
SGI Pow.Chll. MPI 2 132.50 1.91
SGI Pow.Chll. MPI 4 86.10 2.93
SGI Pow.Chll. MPI 8 43.28 5.83

Table 5. Wall clock times for parallel DSCF for either PVM 3.3 or MPI approach on SGI-Power Challenge�R10000
�194 MHz� for different number of nodes and derived speed-up parameter. Load balanced partitioning scheme.
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forces all other 3 nodes to stay idle in the mean-
time and thus induces an artificial enlargement
of the serial fraction of program execution. Ac-
cording to this, in order to get a closer picture
of how the cpu-time is spent in the different
parallel tasks, we inserted time stamps in the
source code of the program, so that each of the
working nodes could report its own individual
time it spent on the execution of its partial work.
The authors found it most useful to utilize the
dtime() function, that returns the actual cpu-
time since the last call to dtime��. In this man-
ner we actually could visualize the aforemen-
tioned latency-effect due to the undestroyable
block-structure of the different nodes concern-
ing their individual partial work to perform and
a summary of the obtained cpu-time-flowcharts
is given within figures 3, 4 and 5.

4.3. PVM versus MPI

After treating the PVM program the same way
and inserting the same kind of time stamps there,
we noticed slight differences between the MPI
and the PVM approach concerning cpu-time
distribution, which surprisingly was not due to
communication impairment in the PVM task.
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Fig. 4. Cpu-time distribution to the different threads for
the MPI-approach of the DSCF calculation of SO2
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The effect decreases with increasing number of
nodes and thus becomes less harmful for the ac-
tual interesting jobs. An overview of the differ-
ent influence of the PVM-delay is given within
figures 6, 7, 8 and 9.

4.4. Neglectable Influence of the Additional
Partitioning Module

With the help of the mentioned time labels we
furthermore could easily estimate the cost of
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Fig. 5. Cpu-time distribution to the different threads for the MPI-approach of the DSCF calculation of SO2
considering 1 master and 4 node processes �left� 1 master and 8 node processes �right�. The execution cycle is

indicated by the arrows.

this additional load balancing subroutine, that
from the point of view of the SCF process is re-
garded artificial and not necessary and therefore
should be kept at a minimum expensive level.
It turned out, that the actual cpu-time spent for
this additional task was 0.33 sec, which, even
for the fastest run, is only a percentage of 0.76
%.

4.5. Conclusion

Recursive ERI-computation according to Obara
and Saika �12� cannot be done in 100 % parallel
mode, but after introduction of some load bal-
anced pair-lists, a considerable amount of the
global work may be parallel computed on dis-
tributed nodes.
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