Journal of Computing and Information Technology - CIT 8, 2000, 1, 1-12 1

Complexity Issues on Designing
Tridiagonal Solvers on 2-Dimensional
Mesh Interconnection Networks:

Eunice E. Santos

Department of Electrical Engineering and Computer Science

Lehigh University

We consider the problem of designing optimal and ef-
ficient algorithms for solving tridiagonal linear systems
with multiple right-hand side vectors on two-dimensional
mesh interconnection networks. We derive asymptotic
upper and lower bounds for these solvers using odd-even
cyclic reduction. We present various important lower
bounds on execution time for solving these systems
including general lower bounds which are independent
of initial data assignment, and lower bounds based on
classifications of initial data assignments which classify
assignments via the proportion of initial data assigned
amongst processors. Finally, different algorithms are
designed in order to achieve running times that are within
a small constant factor of the lower bounds provided.

1. Introduction

In this paper, we consider the problem of de-
signing algorithms for solving tridiagonal lin-
ear systems. Such algorithms are referred to as
tridiagonal solvers. A method for solving these
systems, in which there is particular interest by
designers, is the well-known odd-even cyclic re-
duction method which is a direct method. Due
to this interest, we chose to focus our atten-
tion on odd-even cyclic reduction. Thus, our
results will be applicable to tridiagonal solvers
designed on a two-dimensional mesh utilizing
cyclic reduction. Much research has been spent
exploring this problem which deals with design-
ing and analyzing algorithms that solve these
systems on specific types of interconnection
networks [1, 5, 7, 8, 9, 10, 11] such as hyper-
cube or butterfly. However, very little has been

* Research partially supported by an NSF CAREER Grant.

done on determining lower bounds for solving
tridiagonal linear systems [4, 6, 10, 11] on any
type of interconnection network or on specific
general parallel models [9]. Moreover, few of
these papers consider the case of multiple right-
hand side (RHS) vectors and the authors know
of no papers which derive lower bounds on par-
allel run-time for odd-even cyclic solvers with
multiple RHS vectors.

The main objective of this paper is to present
asymptotic upper and lower bounds on the run-
ning time for solving tridiagonal systems with
multiple right hand sides which utilize odd-even
cyclic reduction on 2-dimensional meshes. Our
decision to work with meshes is based on the
simple fact that they are very common and fre-
quently used interconnection networks. The re-
sults obtained in this paper will provide not only
a means for measuring efficiency of existing al-
gorithms but also provide a means of pinpoint-
ing algorithm design issues, data layouts and
communication patterns in order to achieve op-
timal or near-optimal running times.

While we have already derived results for tridi-
agonal solvers with only a single vector ona 2-D
mesh [10], the results were not easily adaptable
to multiple vectors. In fact, multiple vectors
produced several layers of complexity towards
analysis of this problem. Some of the interest-
ing results we shall show include the following:
The skewness in the proportion of data will sig-
nificantly affect running time. Another inter-
esting result is the proof on the threshold for

2 Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

processor utilization. For some problem sizes,
using common data layouts and straightforward
communication patterns do not result in signif-
icantly higher complexities than assuming that
all processors have access to all data items re-
gardless of communication pattern. In many
cases, common data layouts can be used to ob-
tain optimal running times. However, there is
no one algorithm, data layout or communication
pattern which will provide optimal run-times
for all cases. In fact, we present more than 6
algorithms/subalgorithms which are needed in
order to show how to achieve optimal or near-
optimal running times for all cases.

The paper is divided as follows. Section 2 con-
tains a description of the 2-D mesh topology. In
Section 3 we discuss the odd-even cyclic reduc-
tion method for solving tridiagonal systems. In
Section 4, we derive various important lower
bounds on execution. First, we derive gen-
eral lower bounds for solving tridiagonal sys-
tems, i.e. the bounds hold regardless of data
assignment. We follow this by deriving lower
bounds which rely on categorizing data layouts
via the proportion of data assigned amongst pro-
cessors. Furthermore, we describe commonly-
used data layouts designers utilize for this prob-
lem. Lastly, we present a variety of algorithms
and subalgorithms which will produce running
times within a small constant factor of the lower
bounds derived. Section 6 gives the conclusion
and summary of results.

2. 2-Dimensional Mesh Interconnection
Network

A mesh network is a parallel model on P pro-
cessors in which processors are grouped as two
types: border processors and interior proces-
sors. Each interior processor is linked with
exactly four neighbors. Each but for four bor-
der processors have three neighbors. And the
remaining four border processors have exactly
two neighbors. More precisely:

e Denote processors by some p; ; where
1<ij<VP

- For 1 < i,j < /P the four neighbors of
Pij are piy1j, Pi—1,> Pij+1,> and p;j_1

- Fori= land 1 < j < /P the three neigh-
bors of p;j are piy1, pijr1, and p;j—1

-Fori = vPand 1 < j < /P the three
neighbors of p; j are p; 1 j, pijy1, and p; j—1

- Forj = land 1 < i < /P the three neigh-
bors of p;j are pi1,, pi—1,> and pj ji1

-Forj =+Pand 1 < i < /P the three
neighbors of p; j are p; 11, pi—1,j, and p; j_1

- Fori =1 andj = 1 the two neighbors of
pij are piy1j, and p; i1

- Fori = 1 and j = /P the two neighbors
of pi;j are pjt1,j, and p; ;1

- Fori = v/P and j = 1 the two neighbors
of p;jare p;_1j, and p; j11

- Fori = /P and Jj= V/P the two neighbors
of p;jare p;_1j, and p; ;1

Communication between neighbor processors
require exactly 1 time step. By this, we mean
that if a processor transmits a message to its
neighbor processor at the beginning of time
X, its neighbor processor will receive the mes-
sage at the beginning of time x + 1. More-
over, we assume that processors can be receiv-
ing[transmitting] a message while performing a
local operation.

3. Odd-Even Cyclic Reduction Method

The Problem: Given M which is an NXN
matrix, and R vectors by, b, - - - bg each of size
N. For each s(< R), solve xg where Mxg = b.

We assume that by, by - - - bgr can be stored in
one matrix B of size NxR where the s col-
umn of B represents vector bs. We make an
analogous assumption for Xxp, X, - - - Xxg. More-
over, we assume for the sake of simplicity that
1 < P = 2% < NR where k is an integer
and R = 2". An algorithm is simply a set of
arithmetic operations such that each processor
is assigned a sequential list of these operations.
An initial assignment of data to the processors
is called a data layout. A list of message trans-
missions and receptions between processors is
called a communication pattern. These three

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks 3

Fig. 1. Row dependency for odd-even cyclic reduction for N =

components (algorithm, data layout, communi-
cation pattern) are needed in order to determine
running time.

Odd-even cyclic reduction [2, 3, 7] is a recursive
method for solving tridiagonal systems of size
N = 2" — 1. This method is divided into two
parts: reduction and back substitution.

The first step of reduction is to remove each
odd-indexed xy; and create a tridiagonal system
of size 2"~! — 1. We then do the same to this
new system and continue in the same manner
until we are left with a system of size 1. This
requires n phases. We refer to the tridiagonal
matrix of phase j as M/ and the vector as b?.
The original M and by are denoted M° and bY.
The three non-zero items of each row i in M/ are
denoted ¥, n}, (left, middle, right). Below is
the list of operauons needed to determine the
items of row i in matrix M/ (which we refer to

as M.

i—1 i—1
e = _L fl = n
l m’_1 RAR
—2-1 i+2/—1
i —1 i—1
h :e{li -1 flj’Jerzz &

15andR = 1.

. i1 .

m]l 1-{—@57’; 2j— 1+f;l] 2/ 1
1

b] s,ll_i-e{b{w 2j— 1+f;

S0 = s1+2/ 1

The results in this paper assume that determin-

ing values for each e}, f/, &, ., ml, or b@, are
atomic, i.e. if a processor is computing, for

example, ¢/, then the processor must compute

all the operations to satisfy the equation for ¢}
given above.

Clearly, each system is dependent on the previ-
ous systems. The lower half of Figure 1 shows
the dependency between all the M’’s in the re-
duction phase. The nodes in level j of the figure
represent the rows of M/. A directed path from
node a in level k to node b in level j implies
that row a in M* is needed in order to determine
the entries for row b in M/. In fact, Figure 1
also pinpoints the dependencies between all the
b’s i’s. Since there are no dependencies between

some b’s1 ; and some by, , (where s1 # $7), the
only dependencies remaining are those between
MP’s and b’s. From the definition of the prob-
lem, we see that for each s, b§ i 1s dependent on

M.

4 Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

In this paper, for simplicity, we assume that if an
algorithm employs odd-even cyclic reduction,
we assume that a processor computed items of
whole rows of a matrix (i.e. the three non-zero
data items).

The back substitution phase is initiated after the
system of one equation has been determined.
We recursively determine the values of the xg;’s.

n—1

. . on—1

The first operationisx; _, = -2 .
2n—= 1
2n—

maining variables xg;, let j denote the last phase
in the reduction step before x;, is removed, then
- ’{:_lxs.

j—1 j—1
il i/~
Xy = .

i mé_l

For the re-

Again, we are assuming the operations to com-
pute the xg;’s are atomic for R = 1. However,
for the case of R > 1, we divide the operations
for x4, into the following atomic operations:

j—1 j—1
By T X

j__)
mfl

temp; =

and

i—1
s, i
Xg; = —— — temp;.

i mé_l

Returning back to Figure 1, we see that the back
substitution is represented by the top half of the
graph. In essence, the entire tridiagonal sys-
tem’s dependency graph is R + 1 copies of the
graph in Figure 1 (one for the M matrix, and
the remaining for the R vectors) with some ad-
ditional edges. Clearly, for any two vectors of
b, their respective dependency graphs will not
have any edges between them. In fact the only
edges to be added are from the sub-dependency
graph of M to every vector of b. In other
words, for all vectors bg, each node in the M
sub-dependency graph will have an edge to the
“mirror” node in the sub-dependency graph of
bs.

The serial complexity of this method is denoted
by S(N. R, P) where P = 1. R = 1 is a special
case, i.e.

S(N,1,1) = 19N — 141log(N + 1) — 4.

ForR > 1,
S(N,R, 1) = I5N—10n—5+M(6N —4n—1).

In Section 4, we derive several important lower
bounds on running time for odd-even cyclic
reduction algorithms on 2-D mesh networks.
Specifically, we derive general lower bounds in-
dependent of data layout, lower bounds which
are based on categorization of data layouts, and
lower bounds on running time for common data
layouts for this problem. In Section 5.6 we
present optimal algorithm running times on 2-d
mesh topologies.

4. Lower bounds for Odd-Even Cyclic
Reduction

Definition 4.1. The class of all communica-
tion patterns is denoted by C. The class of all
data layouts is denoted by D. A data layout D
is said to be a single-item layout if each non-
zero matrix-item is initially assigned to a unique
processor.

In the following sections we shall provide lower
bounds based on certain types of data layouts as
well as general lower bounds. The lower bounds
hold regardless of the choice of communication
pattern.

4 1. A General Lower Bound for Odd-Even
Cyclic Reduction

In this subsection we assume the data layout is
the one in which each processor has a copy of
every non-zero_entry of M° and b{. We denote
this layout by D. Since D is the best data lay-
out possible, a lower bound based on this data
layout will provide a general lower bound.

Remark 4.1. Wewill denote the (parallel) com-
putation lower bound for odd-even cyclic reduc-
tion of size N and R and utilizing P processors
by S(N, R, P).

Remark 4.2. Let A be an odd-even cyclic re-
duction algorithm. A computation lower bound
for A, given P processors and assuming none of
the P processors are totally idle is S(N, R, P) =

Q%R +logN).

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks 5

Theorem 4.1. Let A be an odd-even cyclic re-
duction algorithm. The following is a lower
bound for A regardless of data layout and com-
munication pattern:

max(S(N, R, P), \/(P/R))=Q(Y2+ log N
+/(P/R)). ifP < RN3
max(S(N, R, RN3))=Q(N3), otherwise

Proof. We will begin by assuming that all P
processors will be used in computation and/or
communication. Clearly, S(N, R, P) is a lower
bound for the problem. Furthermore, we see
that there are groups of processors which work
together in order to solve the items in the de-
pendency graph of M or in any of the by’s
graphs. Denote these (not necessarily disjoint)
groups of processors by My, M, --- M,. Let
P' = max;<; |M;| (< min(N, P)). Since these
processors must ultimately produce only one
row of M in the back substitution phase, it is
clear there is some type of “all-to-one broad-
cast” of P’ processors in order to complete the
back-substitution phase of M and/or bs. Thus,
on a two-dimensional mesh, this will require

communication of at least v/ P'. Moreover, this
will also require computation of at least %.

Therefore, a lower bound, assuming all P pro-

cessors are used, is max(S(N, R, P), &, v/ P').
This leads to the fact that P = max(1, £) in or-
der to minimize the lower bound. Furthermore,

we see that using more than Q(RN %) proces-
sors, will reduce efficiency; i.e. the threshold

e 2
for procesor utilization is Q(RN3). O

In Section 5.6 we will provide optimal algo-
rithms, i.e. the running times are within a small
constant factor of the lower bounds. There-
fore, we note that our results show that when

P i1s sufficiently large, 1.e. P = Q(RN%) us-

ing more than RN3 processors will not lead to
any substantial improvements in running time
if utilizing data layout D.

4.2. Lower Bounds for O on 3-data layouts

Many algorithms designed for solving tridiago-
nal linear systems assume that the data layout is

single-item and that each processor is assigned

roughly }—,th of the rows of MY and the items of
b where P is the number of processors avail-
able. However, in order to determine whether
skewness of proportion of data has an effect on
running time and if so, exactly how much, we
classify data layouts by initial assignment pro-
portions to each processor. In other words, in
this section, we consider single-item data lay-
outs in which each processor is assigned at most

a fraction 1% of the rows of M and items of b
NR+N—P+1
where 1 S C S P(W)

Definition 4.2. Consider ¢ where 1 < ¢ <
p (NR +N—-P+1

NR+ N
processors is said to be a 5-data layout if

). A data layout D on P

(a) D is single-item,

(b) no processor is assigned more than a frac-
tion 5 of the rows of M or items of b,

(c) at least one processor is assigned exactly a
fraction 5 of the rows of M O or items of b, and

(d) each processor is assigned at least one row
of M° or items of b.

Denote the class of 5 data layouts by D(p).

Theorem 4.2. If D € D(3), then for any A €
O for R vectors, a lower bound is

@ NRC)
" 87 6P
NR NRc

max(S(N, R, P)

Proof. The computational lower bound must
also be a lower bound for the problem regardless
of communication. Thus S(N, R, P) is a lower
bound. Moreover, since at least one processor is
assigned % pieces of data, this processor (de-
noted as py) can either choose to use that data
item in a binary arithmetic operation or send out
the item to another processor. Therefore, it is

clear that % must also be a lower bound.

We will now describe the argument for why @
must also be a lower bound. We will use a
contradiction argument.

Consider any two data items from M and/or B.
These two items are said to be "related" if they

6 Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

are both required by some computation in order

to provide final solutions. Clearly, any initial

data item of M, i.e. MY will be related to any
VP

other initial item of M. Suppose the TP isnota
lower bound, this implies that any two proces-
sors which are both assigned initial items of M
cannot be more than or equal to a distance of
4 from each other on the 2-D mesh. Further-
more, consider a processor p which computes
M"~1. Processor p will require data from all of
the items of MY, Clearly, only processors which

are within at most a distance of % —1 canbe as-
signed items from M". Furthermore, expanding

VP Nz

the distance from %- — 1 to ¥~ — 2 from p will
now contain all the processors which will uti-

lize any item from M° for computation. Finally
expanding the distance from p to % — 3 will
represent all the processors that are assigned
data items from not only M° but also items of
B which are related to any item in MY, Every
processor is assigned at least one initial piece
of data and the layout is single-item. Moreover,
every item in B” is related to at least one item of
MP. Thus, every processor assigned an item of
BY or M° must be inside this region. However,
the region does not include all the processors in
the mesh. Therefore, this is a contradiction. O

Analyzing the result given in the above theorem,

we see that I%—data layouts will result in the best
lower bounds for this class of data layouts, i.e.

Corollary 4.1. If D € D(%), then for any
A € O for R vectors, a lower bound is

max(S(N, R, P), VP) = Q" + logN + VP)

Comparing results against the general lower
bound, we see that for sufficiently large N (i.e.
N >> P, or more precisely P < R(N)%),
the lower bound for -data layouts is precisely
equal to the general lower bound. The com-
plexity of any algorithm A € O using a %—data
layout is Q(logN + 8 + /P). In Section 5.6,
we present algorithms that are within a small

constant factor of the bounds presented in this
and previous subsections.

5. Optimal Algorithms, Data Layouts, and
Communication Schedules

In this section, we design the algorithms which
will produce running times which are within a
small constant factor of the lower bounds de-
rived in the last section. We begin by dis-
cussing the data layouts we plan to use. We
follow this with a discussion of some of the
communication schedules (mostly dealing with
distribution /broadcast of the data to processors
that require this information for computation).
Lastly, we present the optimal algorithms along
with their running times. We will discuss under
which circumstances one algorithm should be
used over another in order to achieve optimal or
near-optimal running times.

5.1. Definitions of Data Layouts

In the previous sections, we have derived var-
ious lower bounds on running time for tridi-
agonal solvers which utilize odd-even cyclic
reduction on a 2-dimensional mesh intercon-
nection topology. In order to design algorithms
which are within a constant factor of these lower
bounds, we must determine which types of data
layouts we will use. In this section, we present
definitions on data layouts in order to use these
layouts in the next subsections in our algorithm
designs.

We would like to point out that while we can
easily use the best data layout D to obtain the
general lower bounds, in this section we will
present data layouts which are not so powerful
but which still achieve the lower bounds stated.
In fact, in the cases where N >> P, no proces-
sor is assigned more than O(N—If) data items.

We begin by presenting partial layouts and in
each subsection, we discuss a data layout we
will utilize in our optimal algorithms.

Definition 5.1. Let P be an integer where 1 <
P < Nand2'—1 < P < 2/ —1. Adatalayout
on P processors, py, - - - pp, is an M-replicative-
blocked data layout if for all j < 21, pj is as-
signed the nonzero items in rows (j—1)2" 7"+ 1
to (j+ 1)2"7" — 1 of M. We denote this layout
by DMJJ.

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks 7

Definition 5.2. Let P be an integer where 1 <
P < Nand2'—1 < P < 27 1. Adatalayout
on P processors, py, - - - pp, is an bs-replicative-
blocked data layout if for all j < 2771, pj is
assigned by where (j — D241 <1<
(j+ 1)2"~" — 1. We denote this layout by Dy, p.

Definition 5.3. Let P be an integer where 1 <
P < N and P = 2'. A data layout on P pro-
cessors, pi, - - - pp, is an M-single-item-blocked
data layout if (a) for all j < P— 1, p; is assigned
the nonzero items in rows (j— 1) pog + 1 t0 jpr
of M°, (b) pp_1 is assigned the nonzero items in
rows (P —2) 5 + 110 (P—1)5% — L of MY,
and (c) pp is assigned the nonzero items in row
N of M. We denote this layout by Djy p-

Definition 5.4. Let P be an integer where 1 <
P<Nand2—1 < P <2t _1. Adata layout
on P processors, p1, - - - pp, is an bg-single-item-
blocked data layout (a) for all j < P — 1, p; is
assigned the vector items (j— 1) 5o + 1 to j 5t
of bs, (b) pp—1 is assigned the nonzero items in
vector items (P —2) g + 1 to (P — 1) 5 — 1
of bs, and (c) pp is assigned the vector item N
of bsp. We denote this layout by D{)s’ P

5.1.1. Data Layout 1

If P> RN 3 then we will only use R225] pro-
cessors, and, in this case, we will simply assume

n—1

P = R225 1,

This data layout will be utilized in order to
achieve the general lower bounds when R < P.

We begin by partitioning the processors into R
groups of % = 2%~ processors. For the sake
of simplicity, we will assume that r is even.
These R groups will be referred to as P; j where

1<ij<VR

The processors assigned to group Py, are p;;
where (s — 1)2¢°2 + 1 < i < 527 and
(r— 122 +1<j< ks,

We will create a new notation for the mesh pro-
cessors in order to utilize the partial data layouts

defined in this section. Consider the processors
in group Py, these processors will be denoted

k—r . k—L .
by pi, i, -+ - il where pls—12" T4k (=12 24
R

is denoted by

- pt (if i is odd
(i—1)y/P/R+j

if i is even

s,t
" Pl)RR /PR 1

For each group P ;, we will allocate the items of
M using datalayout D, L. Moreover, this group

of processors will be allocated vector b(s_l) Py

using data layout Dy .

(s—1)E>

5.1.2. Data Layout 2

This data layout will be utilized in order to
achieve the general lower bounds when R > P.

We begin by partitioning the assignment of the
b vectors to the P processors. Each processor
will be assigned % whole vectors. In particular
pi,j will be assigned the items in vectors by where

(i-DEA+G-DE+1 <1< (=) E+()F.
Moreover, every processor will be assigned the
items in matrix M.

5.1.3. Data Layout 3

This is a single-item data layout and will be
utilized in order to achieve the single-item data
layout lower bounds when P < N.

We will create a new notation for the mesh pro-
cessors in order to utilize the partial data layouts
defined in this section. The processors will be
denoted by p1, p2, - - - pp where p*/ is denoted
by

= Plic1)/Pi/P—jt1 if i is even

We will allocate the items of M using data lay-
out D}VL p- Moreover, the processors will be al-
located each vector bg using data layout D{)& p-
Clearly, this is a 5-data layout where ¢ is con-
stant.

8 Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

5.1.4. Data Layout 4

This is a single-item data layout and will be
utilized in order to achieve the single-item data
layout lower bounds when P > N and R < P.

We begin by partitioning the processors into
R groups of % = 2% processors. These R

groups will be referred to as P; where 1 < i <
R.

If R < /P then the processors assigned to group
P, are p;; where (I — 1)287 + 1 < i < RFF
and 1 <j < /P.

We will create a new notation for the mesh pro-
cessors in order to utilize the partial data layouts
defined in this section. Consider the processors
in group Py, these processors will be denoted
by pll, plz, a -pl% where P1—1)2k—r4ij is denoted

by

l . ..
" Py if i is odd
o

P

i)P v/Pjit 1 if i is even
However, if R > V/P then the processors as-
signed to group P; where [= x% + y are p;j

wherei:x+1and(y—1)§+1gjgy%

We will create a new notation for the mesh pro-
cessors in order to utilize the partial data layouts
defined in this section. Consider the processors
in group Py, these processors will be denoted

by p, ph, - - - p'» where p(l_l)zkirﬂj is denoted
4

!
REEY

Regardless of the size of R, for group P, we
will allocate the items of M using data layout

D;w, - Moreover, each group P; will be allo-
cated vector by using data layout D;) . Clearly,
IR

this is a 5-data layout where c is constant.

5.1.5. Data Layout 5

This is a single-item data layout and will be
utilized in order to achieve the single-item data
layout lower bounds when R > P > N.

We begin by partitioning the assignment of the
bs vectors to the P processors. Each processor

will be assigned 1—I§ full vectors. In particular p; ;

will be assigned the items in vectors by where
(i—l)%ﬂi—l)%ﬂ <I< (i—l)%nL(j)%.
Moreover, processor p; | will be assigned the
items in matrix M. Clearly, this is a 5-data
layout where c is constant.

The data layouts presented in this subsection
will be used to design optimal or near-optimal
algorithms for solving tridiagonal systems on a
2-dimensional mesh. We again note that while
we could have simply assumed the best data lay-
out for designing our algorithms to achieve the
general lower bounds, we instead have listed
data layouts in which no processor has been
assigned more than O(2%) initial data items.
Furthermore, we have presented several single
item data layouts which we will be using in our
optimal algorithm designs in later subsections.

In the following subsection, we present some
communication schedules which we will use in
our algorithms designs. These schedules are
used to address data redistribution.

5.2. Communication Schedules

For some of the algorithms we will design in
the next subsection, it is important that we are
able to redistribute the data from one layout to
another. In this section, we present communi-
cation schedules which do the needed redistri-
butions.

5.3. Schedule 1

In this communication schedule, we are redis-
tributing data layout 3 into the layout in which
the matrix M is distributed using Dy, p and each
bs is distributed using Dy, p. Clearly, only
neighbor processors (as ordered in the data lay-
out discussion for 3) need to communicate.

This would be accomplished by running the fol-
lowing:

For all j < P — 2, processors p; do in parallel

send all initially assigned data items to
processor pj |

For all j > 2, processor p; do in parallel

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks 9

send all initially assigned data items to
processor pj_1

Running Time: O(2Y).

5.4. Schedule 2

In this communication schedule, we are redis-
tributing data layout 4 into the layout in which
the matrix M is distributed to each group us-
ing layout DM,%. Moreover, we also wish to

redistribute the b vectors such that instead of

D;) P we wish the distribution to be Db E. Two

shghtly different schedules for this redlstrlbu—
tion are needed: one for R < /P and one for
R > \/P.

We will discuss the schedule for R < \/P. The
redistribution schedule for the other case is very
similar and, for brevity, we will omit its discus-
sion.

Consider R < v/P. We begin by redistributing
so that each group is assigned the matrix M us-
ing D’ . Clearly, only processors above and

below (on the mesh) a processor need the same
data to communicate. Collecting the data items
of M in each column to the first processor in the
column and then sending out the information
to every other processor in the column would
effectively accomplish the first step of the re-
distribution. The remaining redistributions can
be easily taken care of using Schedule 1 above.

This would be accomplished by running the fol-
lowing:

For all j < v/P do in parallel

Eor all2 < i < % every processor p; ; do
in parallel

send all initial data items of M to py ;
(pipelined broadcast)

p1,j do a one to all (pipelined) broadcast of
the items of M to processors p j, - -+, p N

For each group P; do in parallel
Run schedule 1 for the assigned vector
Run schedule 1 for M

Running Time: O(%Y + /P).

5.5. Schedule 3

In this communication schedule, we are redis-
tributing data layout 5 into the layout in which
the matrix M is distributed to every proces-
sor. This is simply a “one-to-all broadcast” of
3(N — 1) items. Clearly, this can be accom-

plished in O(N — 1 4 \/P) steps. Due to the
assumptions made in layout 5, the running tims

is O(M% + /P + logN).

5.6. The Optimal Algorithms

In the previous subsections, we have discussed
the data layouts and some communication re-
distribution schedules we plan to use in our al-
gorithms. In this section, we present the algo-
rithms which will produce running times within
at most a small constant factor of the lower
bounds presented in the previous section.

5.6.1. SubAlgorithm 1 for Best Data Layout

This algorithm solves a tridiagonal system by
sequentially solving values based on values it
has already computed and not sent from another
processor. This Subalgorithm will be a building
block for the full algorithms.

Assume y of the vectors of b are assigned to
this group of P’ = 29 processors. Moreover,
assume the processors are ordered using the or-
dering given in data layout 3. The items of row
i of level j are considered to be £, ., m} and b]s,i
(of all y vectors). Lastly, we will utilize only
P’ — 1 processors.

SubAlgorithm 1 for Data Layout D

Every processor p; (1 < i < 27) do in parallel :

fors=1ton—gqgdo
forz=2""9"5(i— 1)+ 1 to
21=4=5(j 4 1) — 1 do
compute (serially) the items of row z of
level s

send items of row i of level n — g to p; | and
receive from p;_

10

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

/*if i = P' — 1 do not send, and if i = 1
do not receive */

send items of row i of level n — g to p;— and
receive from p;

/*ifi = 29— 1 do notreceive, and if i = 1
do not send */
fors=1tog— 1do

if 5 is an integer then

compute the items of row 27°i of level
n—q-+s
if s < %logP then
send items of row 27 of leveln— g+
to pi+os routed through the path

(Pit1, Pig2s -+ “Pitks Pik+1s ** *Pit2:—1)
and received from p;_os

/*if i+ 2s > 29— 1 do not send, and
if i — 2° < 1 do not receive */

send items of row 27 of leveln— g+
to p;i_os routed through the path

(Pi-1, Di=2, =" "Pi—k> Pi—k—1 "~ Pi—2s—1)
and received from p; os

/*if i + 2s > 29 — 1 do not receive,
and if i — 2° < 1 do not send */

else s = %logPﬂLk

send items of row i27* of level n — g+ s
to p;tos routed through the path

(Pis B PisayBr " PisjyB Pis (1) /P
S Piy ko) \/1—3) and received from p;_»s

/*if i + 2s > 29 — 1 do not send,

and if i — 2° < 1 do not receive */
send items of row i27* of level n — g+ s
to p;_os routed through the path

(pi—\/j_ba Piayp " Pij/P Pie(j—1)VP
S Pk /p) andreceived from p; ¢ »s

/*if i + 2s > 29 — 1 do not receive,
and if i — 2° < 1 do not send */

For back substitution, if p; was the last
processor to handle items of row j

then p; computes all x;;, where by is
assigned to p; (and if necessary,

send and receive appropriate values of
all xg,,)

Running Time: 0(% +ylogP' + /P')

5.7. Algorithm 1 for Data Layout 1

This data layout is used when R < P. This algo-
rithm is simply solving the tridiagonal system
with one vector. We have partitioned the pro-
cessors into R groups. Since the best data layout
actually is not needed for subalgorithm 1 and in
fact our data layout is sufficient, we simply call
SubAlgorithm 1 for each group in parallel with
P = I—I;, y = 1. Therefore the total running time

is O(%% +1og %%—\/g) = 0(¥+logN+\/§).
As we stated in the subsection defining Data
Layout 1, if P > RN%, we simply assume

P = RN3. Therefore the running time is clearly
O(N3).

5.8. Algorithm 2 for Data Layout 2

This data layout is used when R > P. This al-

gorithm is simply sequentially solving the tridi-
. R - .

agonal system with 5 right-hand side vectors.

We have partitioned the vectors into P groups.

Each processor in parallel, serially solves their

assigned system. Therefore the total running

time is 0(% +1logN) = 0(% +1log N + \/g)_

5.9. Algorithm 3 for Data Layout 3

This algorithm first calls schedule 1, then it sim-
ply solves the tridiagonal system with R vectors.
We consider the case P < ; O]gv 5+ Since the best
data layout is actually not needed for subalgo-
rithm 1 and in fact our data layout is sufficient
(after schedule 1), we simply call SubAlgorithm
1 with P = P, y = R. Therefore the total run-
ning time is the time for Schedule 1 plus the time

for Subalgorithm 1: O(%% + RlogN + /P).

N

Since P < TogN then the run-time is clearly
O(ME + /P +1ogN).

For the case where % < P < N, subal-

gorithm 1 is easily modified so that the tasks

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks 11

in the last phases of reduction and the first
phases of back substitution are replicated so that
at least half the processors are always work-
ing. This will produce a running time of:

O™ +logN + V/P).

5.10. Algorithm 4 for Data Layout 4

This algorithm first calls schedule 2 then it is
simply solving the tridiagonal system with one
vector. We have partitioned the processors into
R groups. Since the best data layout is actually
not needed for subalgorithm 1 and in fact our
data layout is sufficient (after schedule 2), we
simply call SubAlgorithm 1 for each group in
parallel with P = £,y = 1. Therefore the total

running time is O(X% + log N + /P).

5.11. Algorithm 5 for Data Layout 5

This algorithm first calls schedule 3, then it is
simply sequentially solving the tridiagonal sys-
tem with % right-hand side vectors. We have
partitioned the vectors into P groups. Each
processor in parallel, serially solves their as-
signed system. Therefore the total running time

is O(®% + logN + V/P).

In this section, we designed algorithms for each
of the data layouts which cover all problem
sizes. Analyzing the running times of our al-
gorithms, we see that they are all within a small
constant factor of the lower bounds provided.
In particular, the algorithms for Data Layouts
1 and 2 satisfy the general lower bounds. The
algorithms for the remaining Data Layouts all
satisfy the single-item bounds. Moreover, an-
alyzing the design of the algorithms, we see
that to achieve the single-item bounds simply
requires redistribution of a single-item layout to
the layouts used to achieve the general lower
bounds. Furthermore, no layout assigned any
processor more than O(™R) initial data items.

6. Conclusion

In this paper we examined the problem of
designing optimal tridiagonal solvers on
2-dimensional mesh interconnection networks

with multiple right hand sides using odd-even
cyclic reduction. This is the first paper to have
tackled and solved this problem asymptotically.

We were able to derive asymptotic lower bounds
on the execution time. Moreover, we were able
to provide algorithms whose running times dif-
fer by only a small constant factor of these lower
bounds.

Specifically, we proved that the complexity for
solving tridiagonal linear systems regardless of
data layout (i.e. a general parallel lower bound

on a 2-dimensional mesh) is Q(N %) when P =
Q(RN%) else the bound is Q(YE +log N + \/g).

This shows that utilizing more than Q(RN %)
processors will not result in any substantial run-
time improvements. In fact, utilizing more pro-
cessors may result in much slower run-times.

When we added the realistic assumption that
the data layouts are single-item and the num-
ber of data items assigned to a processor is
bounded, we derived lower bounds for classes
of data layouts. The asymptotic lower bound is
Q(%® +log N + /P). We provided three types
of data layouts which provided optimal running
times. In other words, we showed that the best
types of layouts in general are those in which
either (a) each processor is assigned an equal
number of rows of M” and b, (b) the processors
are grouped into R groups in which every group
is assigned % of the vectors, or (c) each proces-

sor is assigned % whole vectors of b. Therefore,
we see that the skewness of proportion of data
will significantly affect performance. Compar-
ing the lower bounds for the 5-layouts with the
general lower bounds, we see that restricting the
proportion of data items assigned to a processor
to % does not result in a significantly higher
complexity than assuming all processors have

all the data items for sufficiently large N (i.e.
P < RN3).

Lastly, we show that there are algorithms, data
layouts, and communication patterns whose run-
ning times are within a constant factor of the
lower bounds provided. This provides us with
the ©-bounds stated above.

To achieve the general lower bound, i.e. the
complexity for these methods regardless of data
layout, while we could have used D, the best

12 Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

data layout, i.e. the data layout in which every
processor is assigned all the data items, we did
not. We presented two data layouts in which no
processor was assigned more than O(YX) data
items. Two types of algorithms produce optimal
running times: (a) algorithms in which proces-
sors are partitioned into R sets such that each
set is in essence an independent tridiagonal sys-
tem, or (b) algorithms in which each processor
sequentially solves % of the vectors.

As stated previously, three different data lay-
outs were provided in order to design optimal
algorithms for single-item layouts. The three
types of algorithms are: (a) algorithms which
in essence utilize block layouts and solve the
tridiagonal system R times. (b) algorithms in
which processors are partitioned into R sets such
that each set is in essence an independent tridi-
agonal system, or (c) algorithms in which each
processor sequentially solves % of the vectors.
For (b)-(c), the algorithms provided are very
similar to those to achieve the optimal running
times (regardless of data layout). In fact, the
difference in run-time is primarily the need to
do redistributions of data in order to run the
optimal algorithms.

Finally, it is worthwhile to observe that for suf-
ficiently large N, the single-item lower bounds
are asymptotic to the general lower bound.

References

[1] C. AMODIO AND N. MASTRONARDI, A parallel
version of the cyclic reduction algorithm on a
hypercube, Parallel Computing, 19, 1993.

[2] D. HELLER, A survey of parallel algorithms in
numerical linear algebra, SIAM J. Numer. Anal.,
29(4), 1987.

[3] A. W. HOCKNEY AND C. R. JESSHOPE, Parallel

Computers, Adam-Hilger, 1981.

[4] S. L. JOHNSSON, Solving tridiagonal systems on
ensemble architectures, SIAM J. Sci. Stat. Comput.,
8, 1987.

[5] S. P. KUMAR, Solving tridiagonal systems on the
butterfly parallel computer, International J. Super-
computer Applications, 3, 1989.

[6] S. LAKSHMIVARAHAN AND S. D. DHALL, A Lower
Bound on the Communication Complexity for Solv-
ing Linear Tridiagonal Systems on Cube Architec-
tures, In Hypercubes 1987, 1987.

[7] S. LAKSHMIVARAHAN AND S. D. DHALL, Analysis
and Design of Parallel Algorithms : Arithmetic and
Matrix Problems, McGraw-Hill, 1990.

[8] F. T. LEIGHTON, Introduction to Parallel Algorithms
and Architectures: Arrays-Trees-Hypercubes, Mor-
gan Kaufmann, 1992.

[9] E. E. SANTOS, Optimal Parallel Algorithms for
Solving Tridiagonal Linear Systems, In Springer-
Verlag Lecture Notes in Computer Science #1300
(Proceedings of Euro-Par), 1997.

[10] E. E. SANTOS, Optimal Tridiagonal Solvers on
Mesh Interconnection Networks In Springer-Verlag
Lecture Notes in Computer Science #1557 (Pro-
ceedings of ACPC), 1999.

[11] E. E. SANTOS, Solving Tridiagonal Linear Systems
on a Torus Proceedings of the International Con-
ference on Parallel and Distributed Processing and
Techniques, 1998.

Received: May 15, 1999
Accepted in revised form: January 21, 2000

Contact address:

Eunice E. Santos

Department of Electrical Engineering and Computer Science
19 Memorial Drive West

Lehigh University

Bethlehem, PA 18015

phone: +1 (610) 758-4517

Fax: +1 (610) 758-6279
e-mailsantos@eecs.lehigh.edu

EUNICE E. SANTOS is an Assistant Professor in the Department of Elec-
trical Engineering and Computer Science at Lehigh University. She
joined the faculty at Lehigh in August of 1995 after receiving a Ph.D.
in Computer Science from the University of California, Berkeley in
May of that year. Dr. Santos has also obtained B.S. and M.S. degrees
in both Mathematics and Computer Science. Dr. Santos’s research in-
terests include: parallel and distributed processing, algorithm design
and analysis, parallel complexity, scientific and numerical computing,
optimization, computational science, and evolutionary computing. She
has over 30 technical publications in parallel processing alone. In 1996,
Dr. Santos was awarded an NSF CAREER Grant in order to pursue her
research interests.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

